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SUMMARY 

One of the hottest topics related to advanced IEEE 802.11 (Wi-Fi) PHY layers is the ability to perform 
environment sensing by exploiting auxiliary information present in the Wi-Fi signals, which ultimately 
can lead to unauthorized surveillance. Recent publications show that the Channel State Information 
(CSI) embedded in Wi-Fi frames carries enough information about the propagation environment to 
enable fine localization of people, making it possible to control people movement and activity. 

The goal of the CSI-MURDER project is  
1. to evaluate the severity of this threat, and 
2. to propose novel countermeasures to prevent unauthorized surveillance by leveraging the 

environment and the functionalities offered by the ORCA testbed. 
An extensive experimental campaign has been performed in two different surveillance scenarios, both 
reasonable in real-life scenarios: in the first case (passive attack), an attacker exploits the CSI 
transmitted by standard devices (e.g., an 802.11 AP into a room) and only controls a receiver where 
he collects the CSI data for further processing a device; in the second one (active attack), the attacker 
actively transmits packets to locate the victim. In both cases the victim does not need to carry a device, 
but she/he is localized just because the CSI information is modified in a unique way as a function of 
where the victim is standing. It is clear that the unauthorized surveillance unveiled by these two 
scenarios is particularly distressing, as it seems that the victim has no way to protect herself, but to 
renounce to Wi-Fi communications, indeed, in the second scenario the victim should even actively jam 
the electromagnetic spectrum, because the attacker transmit his own packets to collect the relative 
information.  
CSI-MURDER has, for the first time, devised and shown that countermeasures can be taken and they 
are effective, and indeed that at least for the case of passive attacks these countermeasures can be 
embedded in standard devices, so as to prevent even the possibility of attack.  

The countermeasure for the passive attack is based on actively modifying the CSI information at the 
transmitter side, so that every packet still resembles a valid packet transmitted in a realistic 
environment, but it is forged introducing random characteristics that prevent learning the 
electromagnetic "fingerprint" that identifies the victim location. The countermeasure for the active 
attack is instead more complex, because it entails a very fast reaction of a device that intercept all 
traffic and inject appropriate random disturbance synchronous with the packet preamble. Details 
change, but the disturbance is crafted in such a way to have the same effect as the modification of the 
preamble at the transmitter side in case of passive attacks.  

Results of all the experiments done show that even in a challenging environment it is possible to 
perform unauthorized localization and determine the position of a person up to a certain extent, and 
we can imagine that as technology evolves, these localization systems will become more precise and 
cheaper. These same results show that the countermeasures devised by the CSI-MURDER team are 
very effective, and pave the road for further research and development to improve the methodology, 
find theoretical results that support the heuristics so far implemented, and include these 
methodologies in devices and communication systems that include privacy by design and whose 
privacy-preserving properties are based on sound theoretical results.  
The methodology developed on the ORCA testbed has been reproduced in a local setting to evaluate 
the significance of the environment in performing such measurements. In all the considered scenarios, 
the proposed countermeasure has been proven effective in neutralizing unauthorized surveillance 
while preserving the communication between the nodes of the wireless network. 
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1  TECHNICAL CONTRIBUTION 

1.1 Concept and objectives 
CSI-MURDER takes the move from one of the most flourishing research topics in wireless networks: 
the ability to exploit communication signals to sense the surrounding environment and hence to 
localize people and possibly objects [Adib2013, Ma2019, Sanam2018, Wu2018]. However, the 
objective of the Experiment is not to propose yet another localization system, but to explore the 
possibility of preventing unauthorized localization without hampering the communication 
performance. The experiment focuses on the latest IEEE 802.11 (Wi-Fi) PHY layers because localization 
research based on Wi-Fi is thriving, laying the ground for novel—more accurate—localization 
techniques, but also raising serious questions about users’ privacy, with emphasis on unauthorized 
surveillance. 

Wi-Fi frames embed a field in their header that enables the derivation of the Channel State Information 
(CSI), which is a compact description of the properties of the communication channel. From a 
communication perspective, the CSI is an estimation of the current channel condition that allows to 
adapt transmission and reception (the equalizer in particular) parameters accordingly, greatly 
enhancing performance. Recently, researchers have studied innovative ways to collect, process and 
analyse time series of CSI measurements to understand how wireless signals propagate in the 
environment, revealing features of the physical structure: for instance, measuring how CSI amplitude 
changes over time it is possible to detect human presence or motion, recognize different types of 
activity, even detect specific gestures or measure human breathing, albeit these fine-grained detection 
has proven hard to replicate. Research focuses mostly on sensing and localization, forgetting the 
privacy implications that they pose; in particular, it seems that almost nobody is tackling the problem 
of neutralizing un-authorized surveillance while preserving the communication performance.  

CSI-MURDER is thus one of the first efforts to understand if “obfuscation” techniques can be found 
that render localization inaccurate or unreliable, thus preserving users’ privacy. The methodology is 
strictly experimental, aiming at presenting a feasibility proof and collect insight to tackle the 
theoretical analysis in the future. The experiment has two objectives defined as follows (taken from 
the proposal): 
•    Anti-sensing technique A against passive sensing (Objective 1). In this case, attackers exploit the 
transmissions originating from victim’s devices. As victims have full control of their (at home) 
hardware, they can configure it to artificially shape the preamble of the transmitted signals so that 
they are still decodable at the intended receiver (e.g., victim’s smart tv), but the CSI extracted by 
attacker’s sniffer will appear completely random (i.e., keeps changing over time). 
•    Anti-sensing technique B against active sensing (Objective 2). In this other case attackers use their 
own transmitting equipment and study how CSI of frames that they transmit change over time. To 
circumvent sensing, the victim must deploy a system that detects transmissions coming from the 
attacker and react by over-transmitting signals that can modify the CSI observed by the attacker in a 
random fashion, but without jamming the packets that can still be received. 

These two objectives require two different solutions, but the anti-sensing techniques developed in the 
two cases stem from the very same premise: the ability to tamper with the CSI in order to make them 
appear “random” at a receiver owned by a malicious user and prevent further analysis. 

To study the problem in an effective manner and to design a solid countermeasure, we leverage the 
inner flexibility of the ORCA testbed. In particular, we rely mostly on the following features: 

• A full-stack SDR-based implementation of the IEEE 802.11 protocol compatible with Linux; 
• An automated framework for repeating measurements over long time spans with high 

accuracy. 
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Given the complexity of the experiments and their cutting-edge nature, CSI-MURDER also exploits a 
laboratory at the University of Brescia and equipment available in Brescia (compatible with equipment 
available at w.iLab.t) to prepare the experiments in ORCA, but also to validate the results obtained in 
w.iLab.t with additional data that provides further insight, especially in light of publishing the results 
in high-impact venues, where replicability and validation are fundamental requirements.  

1.1.1 Localization Obfuscation Concepts 
Localization methodologies are based on the analysis of the CSI, thus any such methodology, and in 
particular those based on Machine Learning, Neural Networks and so forth must be based on the 
information present in the CSI itself. Figure 1.1.1 reports the amplitude and phase of the OFDM signal 
collected on 70 packets at the receiver with a person in two different locations. The NN of the 
localization system is fed exactly with these quantities, so that whatever the NN learns it must be 
present here. It is clear that the characteristics are remarkably constant across different packets for 
the same position, so that learning is feasible.  

Figure 1.1.1: Amplitude and phase of the CSI for several packets collected with a person in two 
different positions in a laboratory    

 

Interesting features that are visible are the peaks and notches in the amplitude, and the phase jumps; 
however, the notch around carrier 0 and the phase jumps seem to be independent from the position 
of the person (result confirmed by nearly all positions), so that they are probably useless in position 
estimation. The other peaks and notches, instead, have positions in the spectrum that clearly depend 
on the person’s location, which is probably what the NN learns.  
We can try to disrupt the NN ability to learn the position of a person from CSI information by “fiddling 
around” with the CSI, so that it does not reflect exactly the electromagnetic fingerprint of the 
environment (thus revealing the position of the person in a deterministic way), but it also contains 
“deceit features” that confuse the learning and decision process of the NN.  
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As it is explained in detail in Sections 1.2.1.2 and 1.2.1.3 describing the implementation, early 
experiments have shown that the peaks are the features that, once modified, obfuscate the location 
more efficiently, thus the obfuscation systems we have developed for this Experiment, both in case of 
passive attacks and of active attacks, are based on the modification of these peaks.  

1.2 Technical results and lessons learned 
The results of the Experiments are extremely promising, showing that it is possible to obfuscate the 
location while maintaining the communications. At the same time, our initial implementation, has 
the clear disadvantage to carry the signature of the obfuscation, meaning that it is immediately evident 
if a frame preamble has been tampered with, so that an attacked could potentially study counter-
countermeasures. 
It must however be considered that the challenges we faced in the implementation of the obfuscation 
system and in the deployment of the experiments are daunting, and in general they could not be 
foreseen in the design phase, being implementation and environment related. Thus, a proof of 
feasibility, even if clearly identifiable by an external observer is a clear success.  In the following 
sections we describe the work carried out in the project, with special emphasis on the most promising 
results and on how we overcame the difficulties and achieved the intended technical results thanks, 
also, to the ORCA environment.  

1.2.1 Localization and Obfuscation Implementation 
The obfuscation system we devised (see Section 1.2.1.2) should in principle work with any localization 
system, because it operates directly on the signal, ideally making it impossible to derive proper 
information on the location of a person simply because the position-dependent information carried by 
the original signal is destroyed by tampering with the signal at the transmitter. Thus, we should be able 
to pick any existing localization implementation and use it. Unfortunately, most of the localization 
system proposed are not endowed with a public implementation of the system, thus we had to also 
implement a credible localization system. Our implementation is derived from [Cai2018, 
Kosterhon2020] and is described in Section 1.2.1.1. Finally, the selective jammer implementation 
required to achieve Objective 2 is described in Section 1.2.1.3.  

All the implementations described here, together with instructions on how to use the software, 
pointers to the GitHub open repositories for download and extension and so forth can be found on 
the Experiment web site at https://ans.unibs.it/projects/csi-murder  
For the sake of readability we keep the description compact without any unessential detail, and we 
refer the reader interested in details to the web page of the Experiment.    

1.2.1.1 Localization system 
The main idea at the core of CSI-based localization is the assumption that a distinctive electromagnetic 
fingerprint can be associated to one specific configuration of the environment. The relative position of 
the transceivers, the geometry of the room, the type and the position of obstacles—and ultimately the 
location of a person—all affect the way waves are propagating in the environment and consequently 
the CSI measured. No accurate and implemented analytical solution is known to this problem, and 
most of the proposals available in the literature (e.g., [Abbas2019, Sanam2018, Wu2018]) are based 
on Machine Learning (ML) and Artificial Intelligence (AI) technologies.  
Neural Networks (NN) and Deep Learning (DL) have proven to be powerful and viable solutions, even 
though they need a training phase. In particular, Convolutional Neural Networks (CNN) have been 
effective to tackle the CSI-based localization problem. Many architectures have been proposed for this 
scope, but they are all equivalent from the perspective of our Experiment as there are no theoretical 
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reasons for one architecture to be more robust than others in face of obfuscation. Our implementation 
inspired by the one presented in [Cai2018] is an extension of the one developed in [Kosterhon2020]. 

The architecture of the CNN we implemented is shown in Figure 1.2.1. The software can work with any 
IEEE 801.11 channelization (10, 20, 40, 80, and 160 MHz); clearly the larger the bandwidth the more 
accurate is the localization and the more computational power is needed to run it. 
 The description that follows refers to 20 MHz channels because the hardware available in w.iLab.t 
does not allow handling larger channels. The localization system comprises two parts: the CSI 
extraction and the CNN. The CSI extraction works on-line at the Nexus 6P mobile phone receiver that 
embeds a Broadcom chipset for which our group previously developed a CSI extraction tool based on 
the nexmon firmware [Schulz2017]. The CNN part works off-line and is implemented using TensorFlow, 
a well-known framework developed by Google widely adopted by the research community. The 
localization system that we used at our lab is similar, i.e., still based on the same CSI extraction tool 
and NN, but works on 80MHz channels: instead of Nexus 6P as receivers we used Asus RT-AC86U 
Access Points that embed a chipset similar to that of the phone.  

The input of the network consists of an array of 52 complex values obtained by removing from the 
normalized CSI the unused subcarriers; the output of the network is a choice among a set of N classes 
which corresponds to the estimated location of the person. The first two layers of the network are 
convolutional layers of size 30 and 50 respectively, while the kernels in both layers have 5 taps. The 
output of the last convolutional layer is concatenated into a 1D vector that is then processed through 
three fully-connected layers with different dimensions. The last layer has size N, equal to the number 
of classes that the network is asked to discriminate. The activation function of all the layers but the 
last is the common Rectified Linear Unit (ReLU) function. The last layer of the network uses a softmax 
activation function for selecting the most probable class (i.e., the person’s location). 

1.2.1.2 Obfuscation system (Objective 1) 

During the project, we used two different implementations of the obfuscation system. The first 
version, which we developed in Matlab, was used for understanding which type of modification 
worked better. Frames generated and obfuscated by Matlab were then transmitted using a SDR radio 
and finally received on nodes running our CSI extraction tool: from there we were feeding the NN and 
analysing the performance of the obfuscation. The second system was implemented by the patron 
inside the OpenWiFi stack that is available on w.iLab.t testbed. After having understood which 
obfuscation system to use, we then customised the OpenWiFi transmitter for adopting the same 
approach. 

Figure 1.2.1: Architecture of the Neural Network used for localization. 
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In both cases, we were manipulating (tampering) the signal so that it looks like it has been transmitted 
in a channel with a response different from the actual one; we call this "fake channel response" for the 
sake of simplicity. The fake response is applied to the baseband IQ samples at the transmitter as shown 
in Figure 1.2.2. On a 20 MHz channel, each OFDM symbol comprises 64 subcarriers, as shown in Figure 
1.2.3, equally spaced by 312.5 kHz. Not all the subcarriers are used to transmit data: 11 are used as 
guard-bands, 4 as pilots and also the subcarrier at 0 is not used. On an 80 MHz channel, things are 
slightly more complex for the case of single spatial streams, but the principle is the same: each OFDM 
symbol comprises of 256 subcarriers, again spaced by 312.5 kHz. Similarly to the 20 MHz case, 11 
subcarriers are used as guard-bands, 8 are pilots and 3 subcarriers around 0 are suppressed. In 
addition, as we show in Figure 1.2.2, the first part of the physical preamble of an 80 MHz frame is built 
as if there are four neighbouring 20 MHz frames: this is fundamental to let the 80 MHz transmissions 
coexist with all those nodes that are configured as 20 MHz only, behind the considered 80 MHz spectral 
extension. Thanks to this approach, each 20 MHz node can detect the start of an 80 MHz transmission. 
 

Figure 1.2.2: Format of an 80 MHz OFDM frame with the obfuscation processing in the lower part: 
initial symbols are known and are used to infer the CSI at the receiver; specifically, a proper 

randomization is injected through the yellow block after the IDFT mimicking a fake channel response. 

 

 

Figure 1.2.3: Wi-Fi OFDM uses 52 of the available 64 subcarriers to carry information the other 12 
are used as guard-bands and pilots.  

The fake channel response must be properly randomized, so that localization systems cannot derive 
sufficient information to infer anything meaningful about the position of a person (or an object) in a 
room or laboratory. So far, we have not addressed the problem of localization obfuscation in open air, 
but to the best of our knowledge, no CSI-based (nor RSSI-based) passive localization system works 
outdoors.  
The fake channel response can be seen as a random distortion to the transmitted CSI, so that a receiver 
can still equalize the channel (i.e., not destroying the communication) while localization efforts based 
on CSI characteristics are hampered.  
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The position of the obfuscation block in the transmitter depends on the version. For instance, in our 
Matlab implementation we decided to apply the appropriate distortion at the output of the IDFT block, 
right before the Digital to Analog Converter (DAC) represented by the SDR transmitter, in the yellow 
block where randomization is injected in Figure 1.2.2. This position may be sub-optimal w.r.t. other 
positions earlier in the transmission chain, but it makes the technique easily understandable and it 
could also be implemented outside chipsets in a real device, allowing the realization of specialized, 
privacy-preserving devices without the need to develop a new chipset from scratch. The fake channel 
response consists in the manipulation of the transmitted signal so that additional peaks, notches or 
phase jumps appear randomly in the CSI. This is done by taking the I/Q samples, moving to the 
frequency domain by running a DFT, applying an obfuscation complex “mask” on each carrier, and 
finally going back to the time domain (with an IDFT transformation) where for each symbol recompute 
the Cyclic Prefix. In the OpenWiFi stack the details of the implementation were decided by the patron 
but, as we will see next, the spectral mask can be assigned by using specific configuration functions of 
the OpenWiFi stack. 
This disturbance must not be “white,” looking like a memoryless random process, because otherwise 
the CNN would very simply filter it out, selecting only the location-dependent features. The 
optimization of the process that changes the fake channel response is outside the scope of this 
Experiment.  

As mentioned before, the fake channel response can modify the peaks, notches or phase jumps of the 
signal, thus it can be seen as a filtering function where a proper mask is multiplied with the signal to 
be transmitted. Figure 1.2.4 shows the three possibilities, where S(·) is the Wi-Fi signal generated by 
the PHY before IDFT and mask(f) is the mask that we apply to achieve the obfuscation. 

Figure 1.2.4: The tree different manipulations experimented to randomize the position: a) adding 
random peaks; b) introducing random notches; c) introducing random phase jumps. 

 
A first question arises on the most appropriate manipulation to obfuscate location information. To 
solve this issue, we ran a preliminary experimental campaign in the laboratory at the University of 
Brescia, to avoid wasting precious experiment time at w.iLab.t.  Figure 1.2.5 shows one exemplary 
outcome of these experiments, where we qualitatively compare how effective it is to obfuscate the 
location of a person standing in a specific position in the laboratory (the black circle in the figure). It is 
clear that adding random spike destroys the capability of the localization system to properly locate the 
person, while adding notches of phase jumps is almost ineffective. This was verified in many different 
experiments, with different persons and also in different rooms. Also adding peaks, notches and phase 
jumps all together does not improve on the case of adding peaks only. Thus, we decided to implement 
and use a mask that adds random peaks in the CSI, changing their pattern periodically.  
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The obfuscation system works by assigning one scalar value to each subcarrier (also to the unused 
ones, for ease of implementation). Each value indicates a scale factor that reduces the amplitude of 
the corresponding subcarrier, i.e., the set of all the 64 values forms a mask representing the profile of 
the fake channel response. Since each value is coded with 3 bits, scale factors are discretized over 8 
levels as indicated in Table 1.2.1. The same type of mask can be applied in both versions, i.e., our own 
developed in Matlab and the OpenWiFi stack. 

Figure 1.2.5: Preliminary results with a single localization position showing that introducing peaks is 
sufficient to obfuscate the location, while notches and phase jumps seems to have a lesser impact. a) 

without CSI modification; b) with selective phase shifting; c) with randomly-placed notch filters; d) 
with randomly-placed spikes. 

Table 1.2.1: Mapping between values and scale factors. 

Value Scale Factor 
000 0/7 = 0.00 
001 1/7 = 0.14 
010 2/7 = 0.29 
011 3/7 = 0.42 
100 4/7 = 0.57 
101 5/7 = 0.71 
110 6/7 = 0.86 
111 7/7 = 1.00 

For the sake of completeness, we have implemented also the filter with notches. Thus, our code can 
realize:  

• fake channels with randomly placed notches: a random number of subcarriers is selected 
(ranging from 3 to 6 according to a uniform distribution) and their scale factor is set to 0, while 
all the other channels are assigned scale factor 1; 
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• fake channels with randomly placed peaks: a random number of subcarriers is selected 
(ranging from 3 to 6 according to a uniform distribution) and their scale factor is set to 1, while 
all the other channels are assigned scale factor 1/7—this corresponds to amplify the selected 
subcarriers by a factor of 7; 

although only the second version has been actually used during the Experiments.  

The following code snippet shows how carriers are selected for applying notches/peaks. It is important 
to notice that in the implementation of the obfuscation system, OFDM subcarriers are numbered from 
0 to 63, with the DC component starting at index 0 and the negative subcarriers being mapped at 
indices from 32 to 63. 

 
The purpose of the obfuscation system is to show a fake channel response which is varying over time, 
so we denote by T the time spent using one given configuration. The two limit cases are obtained for 
T going to infinity, in which the fake channel response never changes and obviously becomes quite 
useless for our scope, and for T going to 0, in which the fake channel response changes for every 
transmitted packet. The main drawback of this latter approach is that if we let the mask change too 
fast, the randomly placed peaks/notches can be treated as noise by the neural network and get easily 
discarded in the classification problem. This insight shows that the problem of selecting the optimal T 
is crucial for the effectiveness of the obfuscation system, but it is also deeply connected to the scenario 
considered, e.g., how much time does the training phase takes or how many different locations are 
considered. In general, an attacker setting up an unauthorized localization system to monitor a victim 
should not be able to recover the value of T, hence T should be made random.  

As we mentioned already the optimal process that drive T is outside the scope of this project, and we 
run experiments either with fixed T or drawing T from a truncated exponential distribution with mean 
µ = 2.5 s and maximum 2µ. The following code snippet shows how T is selected by our obfuscation 
system: 

 

[…] 
const int nCarriers = 64; 
const int nPoints = floor(3 + 4 * drand48()); // number between 3 and 6 
 
/* Initialize mask to all 1’s when applying peaks 
   or initialize it to all 7’s when applying notches */ 
unsigned int mask[nCarriers]; 
for (int carrier = 0; carrier < nCarriers; carrier++) { 
    mask[carrier] = 1; 
} 
 
for (int k = 0; k < nPoints; k++) { 
    int carrier = floor(1 + 52 * drand48()); 
    if (carrier > 26) carrier += 11; 
    mask[carrier] = 7; // or set it to 0 if applying notches 
} 
[…] 

[…] 
const double avg = 2.5; 
double x, y; 
 
do { 
    x = drand48(); 
    y = -avg * log(1-x); // y is draw from a single-side exp. distr. 
} while (y > 2 * avg); 
 
unsigned int T = (unsigned int) (y * 1000000); // T is in us 
[…] 
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It is clear that the obfuscation we devised, although simple, is not tailored or designed specifically for 
the CNN technique we have implemented for localization. Albeit we did not have the resources to 
implement other localization techniques, we are convinced that the obfuscation works with any CSI-
based localization system, and probably also with RSSI-based ones, thus the results obtained are 
general in nature. We are also aware that by knowing the obfuscation methodology, it is probably 
possible to devise a localization technique that circumvent it, but this Experiment is a proof of concept 
and a feasibility study that pave the road for further research whose goal should be to find an optimal 
obfuscation system that preserve privacy by design without hampering communication capabilities.  

1.2.1.3 Obfuscation Against Active Attacks (Objective 2) 

When the attack is active, i.e., both receiver and the transmitter are controlled by the attacker, 
obfuscation through filtering is not possible (the legitimate user does not have access to the 
transmitter), thus the only possible countermeasure is to tamper with the packets of the attacker. We 
do not want, as done e.g., in [Gezici2016], to jam all the traffic, because this would destroy 
communications, but to interfere in such a way that both the physical header from which the CSI is 
extracted and the following symbols are modified in the same way: this would make the entire frame 
content decodable at receiver but it would also alter the CSI. 

Before describing the implementation we devised, let us recall that this technique has never been 
implemented before, and that our goal is to provide a proof of concept, without having the possibility 
of implementing the system in hardware or FPGA, which would allow a real-time reaction to signals, 
so that some tricks are due for the implementation. The main idea is to keep the mechanism as simple 
as possible to make it anyways easy to implement in an FPGA without having to use complex 
techniques such as full-duplex blocks. In principle, the FPGA should just listen to the channel and 
decide when to start transmitting the interfering signal, after switching its radio from reception to 
transmission. In our proof of concept, we hence skip the “reactive” part, where we are aware that 
synchronization may be non-trivial, and we just focus on the interfering signal: we use two SDR radios 
for transmitting the attacking signal and the interfering signal at the same time, synchronising them 
by properly generating the corresponding I/Q samples on the controlling host, as we show in Figure 
1.2.6. It is clear that in this configuration synchronization is ideal, and also the position of the two 
transmitting antennas is very close. The study of the impact of partial de-synchronization and how to 
compensate for the different distance of the antennas from the receiver is very interesting and part of 
future work given the success of this initial proof of concept.  

 
Figure 1.2.6: Reference scenario for demonstrating the active attack. 

Since we do not use a full-duplex system, the content of the interfering signal cannot be based on any 
information from the attacking signal: we craft it by generating simple sinusoidal tones at the same 
frequencies of the OFDM sub-carriers composing the Wi-Fi signal. The number of tones and their 
frequencies is decided in a very similar way as in the “Obfuscation System” of Objective 1 explained 
above. To test the effectiveness of the technique, we first simulated it with Matlab (we provide the 
code in Appendix B). Since this is a preliminary idea, we did not try to model analytically the 
phenomena behind the proposed technique yet, and we consider the Matlab simulation enough to 
prove its validity at the moment. Figure 1.2.7 shows the CSI of a 20 MHz signal that propagates through 

wi-fi signalinterference

controlling host
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multiple randomly generated AWGN channels with same SNR. In this test the energy of the Wi-Fi signal 
is four times that of the interfering signal, that is composed of 7 neighbouring carriers. 

Figure 1.2.7: Matlab simulation of the proposed active attack. 

Still the effect on the collected CSI is extremely clear, and in line with the principle of the passive 
technique. We only plot the CSI of signals that were correctly decoded by Matlab. For the sake of 
clarity, the interfering signal extends only from the central sample of the L-STF symbol and the VHT-
SIG-B symbol. This is extremely important as 1) it gives the possibility to react at the reception of the 
L-STF, and 2) it does not need to know the length of the frame, as it ends before the payload starts. 

We then implemented the SDR-based system by sending to a B210 radio the sequence of I/Q samples 
representing the Wi-Fi frame that we generated with Matlab. At the same time, we are sending to the 
other B210 radio a different sequence of samples, generated with Matlab by summing together a 
number sinusoidal tones with random frequencies, selected using the same approach as in the passive 
technique. The pattern of the sinusoidal tones in the obfuscating signals is also changed every T, as 
discussed in the previous sections. In the w.iLab.2 testbed, where a single B210 radio was up and 
running, we used the two chains of a single B210 radio, while for the testbed in Brescia we were using 
two separate B210 radios synchronised with an external clock. 

While we did not port the active system to OpenWiFi, this work should be relatively easy: the receiver 
should be modified in order to react at the first detection of the L-STF by switching from RX to TX and 
transmitting the interfering sequence of fixed length. As the signal is composed of sinusoidal tones of 
known frequency (yet randomly selected from a pool of possible tones), they can be precomputed so 
that the transmitter should only sum the precomputed tone samples and avoid computing them for 
each transmitted frame. 

1.2.2 Experiments setup 

To carry out the Experiment, we have used two different locations and several setups to guarantee the 
soundness and reproducibility of results. Compared to other Experiments, CSI-MURDER is 
characterized by the need of "using" human beings during the experiment as the main goal is exploring 
the possibility of obfuscating the localization to preserve privacy. This implies that remote experiments 
are extremely complex, and we are very grateful to our patron and in particular to Vincent Sercu for 
the support provided and patience to act as a localization victim in w-iLab.2. However, to optimize the 
experimental time in w-iLab.2, we ran many preliminary experiments both in the w-iLab.2 testbed 
using the robots extensively and in our laboratory in Brescia. Furthermore, Objective 1 (O1) and 
Objective 2 (O2) require different setup. Overall, we have 7 experimental setups (4 in Brescia and 3 in 
w-iLab.2) listed below and each one described in detail in the following subsections. 

B1. Passive attack with humans: Localization precision dilution in Brescia (O1) 
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B2. Passive Attack with objects: Comparison with humans (O1) 
B3. Passive Attack with humans: Work position obfuscation (O1) 
B4. Active Attack with humans: Localization precision dilution in Brescia (O2) 
W1. Passive attack with humans: Localization precision dilution in w-iLab.2 (O1) 
W2. Passive attack with objects: Localization precision dilution in w-iLab.2 (O1) 
W3. Active Attack with robots: Localization precision dilution in w-iLab.2 (O2) 

In each experiment we evaluate the performance of the localization system both under normal 
operating conditions and when our obfuscation system is deployed with the goal of showing that our 
obfuscation system significantly affects the performance of a localization system that otherwise would 
work fairly well in all the considered scenarios. In every experiment both the training of the neural 
network and the testing of its precision are done either with or without the obfuscation, i.e., if no 
obfuscation is used, then the CNN is trained without obfuscation and the testing too, while if the 
obfuscation is used, then both the training and the testing are done with the filter active.  

We have always collected data in two different days or at least several hours apart, to verify that the 
localization system is able to estimate the position not only "contextually" with the training, but also 
at another point in time, when the micro characteristics of the environment (temperature, humidity, 
etc.) have slightly changed, and also the person being tracked can be a different one, he has changed 
dressing, or simply his own physiological parameters (sweat, hearth rate, etc.) are not identical.  
As a final note, we have not run experiments where the CNN is trained without the obfuscation and 
the testing is done with the obfuscation active, simply because a simple analysis shows that in this 
scenario the CNN cannot work properly even from a theoretical point of view, because the process it 
observes during the two phases is neither stationary nor ergodic, thus the theoretical foundations of 
the learning process are violated.   

1.2.2.1 B1: Passive attack with humans: Localization precision dilution (Brescia)   

Figure 1.2.8: On the left the map of the laboratory in Brescia with the points used for training the 
CNN (zi,j) and the position of the transmitter and the central receiver. The space is divided into four 

quadrants SW–NE for the sake of clarity. On the right the picture of the laboratory: the origin point of 
the training grid (z0,0 - SW) is highlighted together with the transmitter and the central receiver 

reported in the map; the other two receivers are also visible.  
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The goal of this scenario is to explore how much the simple obfuscation methodology devised is 
efficient in diluting the precision of the localization. Figure 1.2.8 shows the layout of the experiment 
on the left-hand side and a picture of the laboratory with the important features on the right-hand 
side. The position of the transmitter and one of the receivers we used in the experiments are 
highlighted in the map, while important features (as well as the transmitter and the three receivers) 
are highlighted in the picture. The picture also shows a pillar at the centre of the room supporting 
electrical outlets, making the environment already complex (although not as complex as the one of w-
iLab.2 as we shall see in the relative subsection. 

In this scenario, the localization system is trained using 700 packets for each zi,j point, and the last 
stage of the NN (the fully connected Layer 3 in Figure 1.2.2) is configured to output the estimated  
cartesian coordinates rather than a classification on the zi,j points. In other words, one of the 
experimenters stand in each zi,j point for a couple of minutes, allowing the collection of enough packets 
to do the training and also a "contextual testing," i.e., collect at least another 70 packets that are used 
to verify if the localization system can actually localize the person and with which precision. After 
several hours (normally the day after) the same experimenter (or another one) repeats the entire 
experiment to test if the localization system is still able to estimate the position with enough accuracy. 
As we shall discuss presenting the results in Section 1.3, the notion of position (and precision dilution) 
of a human body is ambiguous: Is it the projection of the barycentre on the floor? Is it the middle point 
between the feet? Or should we consider a 3D space? This latter hypothesis, probably the most 
accurate and scientifically valid is never considered in the literature to the best of our knowledge, and 
the CNN-based methodology we use for localization is indeed designed and trained for 2D spaces. For 
this reason, in general, we do not consider a position as a single point but as a 2D circle of radius r 
centred approximately on the projection of the person barycentre. If not stated otherwise, we use 
r=0.25m.   

Some of the results obtained in this scenario are included in [Cominelli2020].  

1.2.2.2 B2: Passive Attack with objects: Localization precision dilution (Brescia) 
Most of the literature on CSI-based localization focuses on people; however, in many cases it might 
turn useful to adapt the same technology to localize objects. Moreover, in our particular case we are 
conducting extensive experimentation with robots (rather than people) in the Orca testbed since the 
related experiments are much quicker to schedule and easier to automate with scripts. 
Robots have a much smaller volume than a person, and they expose a metallic—highly reflective—
frame on top of them, so it is not trivial to foresee how the electromagnetic characteristics of channel 
will be modified by their movements. This experiment, conducted in our laboratory in Brescia, aims at 
filling the gap between human localization and small object localization and it is useful in providing a 
reference for localization performance of robots in the w-iLab.2 facility. 

Figure 1.2.9 shows the two objects we have chosen to run these experiments: a stove pipe and a "fake 
robot" (left picture). Both objects are handcrafted to mimic some appropriate characteristics. First of 
all they are both high enough (around 1 m) to be comparable with a human being, as some quick 
experiments highlighted that any object (stools, boxes, etc.) that remains well below the line of 
communication between the transmitter and the receiver is not able to modify the propagation 
environment in a significative way. The stove pipe is an almost perfect reflector, though being round 
scatter the electromagnetic waves rather than coherently reflecting them. The "fake robot" at first 
sight does not look like a robot at all, but we have crafted it in such a way that we think it may have 
some electromagnetic properties of a robot. First of all it has a "body" and "legs"; the legs are metallic, 
while that body is a sandwich of cardboard, aluminium foil, and other soft, padding materials, thus it 
is partially reflective, partially absorbing and highly asymmetrical, so that moving and turning it as 
shown in the right picture may have a differentiated influence on the propagation characteristics. 
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Figure 1.2.9: The "fake robot" (tripod with reflective panel) and the stove pipe used for localization 
experiments with objects.  

For this setup we are considering only 8 target positions, represented in Figure 1.2.10. All the other 
characteristics of this setup are the same as setup B2 described in subsection 1.2.2.1.  

 
Figure 1.2.10: Representation of the 8 positions considered for object localization in our lab. 
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1.2.2.3 B3: Passive Attack with humans: Work position obfuscation (Brescia) 
This setup inherits most of the characteristics of B1 in subsection 1.2.2.1, but it is tailored to represent 
a realistic threat to people privacy. As depicted in the left-hand side of Figure 1.2.11, an attacker wants 
to infer the location of a person in a room, e.g., an employee being kept under surveillance in a 
laboratory. We assume the presence of a common Wi-Fi AP providing Internet access in the laboratory. 
The attacker (e.g., the employer) has positioned a hidden Wi-Fi receiver—in our case a second AP, but 
in general any device capable of extracting CSI—in the laboratory and uses the CNN-based localization 
system. In our specific setup, visualized in the right-hand side of Figure 1.2.11, the receiver RX and the 
transmitter TX are on the opposite side of the room, in the same positions of scenario B1 (Figure 1.2.8). 

We make the following assumptions regarding the attacker model:  

1. The attacker is able to train the localization system, which only requires collecting some 
measurements of reference positions; and  

2. The attacker can only access the receiver and retrieve CSI from it. It’s clear that this attack can 
be easily replicated in hotels and multi-room environments as well as in private homes. 

 

Figure 1.2.11: The "privacy attack scenario" we emulate in this setup.  

The goal in this scenario is not to measure the precision dilution of the obfuscation system, but to 
actually measure its ability to prevent a real attack on people's privacy. To focus ideas, suppose that 
the goal of the attacker, i.e., the person who is trying to illegally track the position of someone, is to 
know in front of which working desk somebody working in the laboratory is passing his time, for 
instance to determine the fraction of his work time dedicated to different tasks, an act contrary to 
labour legislation in most countries, at least in Europe. To this end, the sectors (NW, NE, SE, SW, 
separated by the red lines) we divided the laboratory in Figure 1.2.8 comes handy. The shaded square 
of 2 m edge at the centre of the room is not considered for the localization purposes, as it is clearly an 
area where a person would not normally stay, but simply transit moving between the quadrants of the 
lab. As a side note, consider how simple it is to setup such an attack: the presence of an AP in a 
laboratory is very likely, a small sniffing device can be hidden easily, the training can be done when 
nobody else is present; given all this, then the attacker can very easily tell how much time the person 
spends in which part of the lab. The goal of the attacker is thus to understand in which sector the 
person is passing his time, and can do this by either estimating the cartesian coordinates of the person 
as in scenario B1, or by training the CNN-based localization system to classify the position into one of 
the sectors.  
Some of the results obtained in this scenario are included in [Cominelli2020]. 
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1.2.2.4 B4: Active Attack with humans: (Brescia) 
The goal of Objective 2 is to provide a countermeasure against active attackers that are not exploiting 
existing Wi-Fi signals but are bringing their own equipment (transmitter and receiver) on the field to 
perform CSI measurements. Obviously, the technique developed for Objective 1 cannot work in this 
scenario, but we can apply the same core idea of tampering with the packet headers to enforce again 
users’ location privacy. 
This setup provides only a proof-of-concept of the proposed anonymization method. We assume that 
an attacker is able to transmit and receive Wi-Fi packets using two devices that he fully controls. We 
also assume that the victim controls another device that can detect all packets on a given channel 
(included the ones transmitted by the attacker) and react immediately by injecting some “noise” in the 
channel, which ultimately lead to corrupted CSI reception but still preserves Wi-Fi communications. In 
order to emulate this, we adopted the setup described in Section 1.2.1.3. In this setup, we measure 
the effectiveness of CSI obfuscation on the 8 positions represented in Figure 1.2.10. 

1.2.2.5 W1: Passive attack with humans: Localization precision dilution (w-iLab.2)  
The laboratory in Ghent is very different from the one in Brescia, and accessing it with humans is 
complex and requires the cooperation of a local patron, but thanks to the experience accumulated in 
Brescia we designed a set of reasonable setups. Figure 1.2.12 and 1.2.14 report the map of the entire 
laboratory and the portion of it we used for the experiments with the position of the transmitter, the 
receivers and the positions of the person to be localized. The maps are not perfectly in scale, but the 
entire laboratory measures approximately 55 x 18 m. Figure 1.2.13 reports instead a picture of the 
portion of the laboratory we used for the Experiment. The presence of the ventilation pipes is evident 
and the devices used as transmitter and receivers are also visible (sdr). 

Figure 1.2.12: Complete map of the w-iLab.2, the yellow and blue squares are floor to ceiling 
obstacles. 

The yellow and blue squares in the maps of Figures 1.2.12 and 1.2.14 are metallic obstacles that are 
more or less floor to ceiling, and additional obstacles (ventilation pipes) are also present horizontally 
(not represented in the maps, but some of them are visible in the picture of Figure 1.2.13) only the 
right part of the laboratory has been used for the Experiment. As in setup B1 the positions are 
considered to be a circle with 0.25m radius, here are shown as larger squares just for the sake of 
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readability. In any case, since we cannot use a regular grid, localization is based on classification and 
not on the extrapolation of Euclidean coordinates.  

Figure 1.2.13: Picture of the portion of w-iLab.2 we used for the Experiment, the ventilation pipes are 
well visible as well as some of the devices available in the laboratory (sdr1,...,4) are also visible, as 

well as a device in the foreground dangling from the ceiling; sdr1 is the device we use as transmitter, 
while the receivers are realized with the robots as shown in Figure 1.2.15; this picture, with reference 

to the map in Figure 1.2.14 is taken from left to right roughly in the position P7. 

1.2.2.6 W2: Passive Attack with objects: Localization precision dilution (w-iLab.2) 
This setup is fairly identical to what we already described in the previous subsection for setup W1. 
We have started our experiments on the w-iLab.2 testbed using the available mobile nodes. In this 
way, we could test the functionality of the localization system and the obfuscation countermeasure 
with automated experiments without the need of having one person from our patron to repeatedly go 
into the w-iLab.2 testbed for localization experiments. Moreover, the knowledge acquired during 
these preliminary trials was fundamental in designing scripts that optimize the time required to 
perform full CSI measurements on the testbed in setup W1. 
Ultimately, we have repeated an experiment analogous to the one reported for setup W1, except for 
the fact that the target “victim” is a mobile node deployed in the very same positions P1,…,P10. In this 
document we report results only for this last experiment. For completeness, we report in Figure 1.2.16 
the setup of these experiments in jFed. The target Wi-Fi link is established between nodes sdr1 (Xilinx 
ZC706 Zynq running OpenWiFi and controlled by server16) and apuT1. The three mobile receivers Rx1, 
Rx2 and Rx3 are identified by nodes mobile8, mobile7, and mobile5 respectively. The node apuT1 is 
configured as an AP for a control network that we use to drive the robots and to issue control 
commands when robots are undocked. 
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Figure 1.2.14: Portion of w-iLab.2 we used for the experiments with the position of the transmitter 
(Tx) the three receivers (Rx1,2,3) and the positions of the person (P1,...,10) used both for training and 

testing the localization system; the squares of the grid are 1m.  

Figure 1.2.15: Three pictures with the robot-receivers placed in the positions indicated in Figure 

1.2.14 (Rx1,2,3).  
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Figure 1.2.16: Configuration of the experiment in jFed for setup W1 and W2. For setup W2, the node 

mobile10 is also controlled through apuT1 and used as victim instead of a human target. 

1.2.2.7 W3: Active Attack with robots: (w-iLab.2) 
In this setup we test the proof-of-concept CSI obfuscation against active attackers, extending to w-
iLab.2 the setup B4. In fact, also in this case we are emulating two distinct transmitters—the equipment 
brought by the attacker and the active device which provides the desired obfuscation—using two 
distinct channels of a USRP B210 SDR. In Figure 1.2.17 we show the setup of this experiment, with the 
8 target positions of the victim robot placed around a square in a way similar to what already described 
for setup B4.  

 
Figure 1.2.17: Map of the w-iLab.2 testbed with the 8 positions for which the active attack was 

evaluated; the Tx node is a USRP B210. 
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1.2.3 Results and analysis 

It is now time to present the results obtained in the seven setups described in Section 1.2, but before 
presenting them we need to analyse and discuss the meaning of the measurements and the metrics 
that can be used to evaluate the results. The concept of "precision dilution" very often used in 
positioning systems derives, as well known, from the deliberate randomization done by the U.S. 
Department of Defence in the early days of GPS. The concept is based on the reliability of the position 
estimate within a Euclidean space, which is perfectly legitimate for GPS, estimating the position of a 
small antenna that can be considered as a point in space. The reliability is based on the simple 
Euclidean distance between the estimate and the true position. In our case, where we want to estimate 
the position of a human body, which occupies a fairly large volume in space, this is not appropriate. 
Thus as precision dilution we consider two different metrics depending on how the CNN-based 
localization system is used, whether it estimates a Euclidean coordinate or if it is tuned to perform as 
a classifier, i.e., it always assign an estimation point to one of the possible locations of the body/object 
to be identified. Estimating a Euclidean coordinate is feasible only if the training has been done on a 
regular and quite fine grid as we did in setup B1 in Brescia, while it is impossible if the training points 
are few, sparse and/or not regular; therefore, in all other setups the CNN is trained to classify one of 
the possible locations (e.g. P1,…,10 for scenario W1). 

The first metric we use is a Euclidean distance measure to verify and validate the methodologies under 
analysis. As discussed above, the classical mean square error of the distance is not appropriate for our 
goals. The NN outputs a (x,y) position in a plane (2D), while a human body occupies a fairly vast space 
in 3D, so that it is indeed not possible to define the distance between the body and the (x,y) estimate. 
Call ρ a radius around the point estimate (x,y) of the NN, so that the circle of radius ρ and centre (x,y) 
can be considered the projection of the human body on the 2D plane 

Given the coordinate estimate (x, y) as computed by the NN, and the co- ordinates (xc,yc) of the training 
point ξ where the person stands (see Figure 1.2.8), we construct a localization reliability index LR as 
follows 

where di is the Euclidean distance between the position estimate and the coordinates of the ξ where 
the person was when the i-th sample is taken and Nl is the total number of position samples (packets) 
taken to localize the person. 

Clearly LR ∈ [0, 1] and converges to one when all position estimates are within ρ from the true position 
and converges to zero when all estimates are more than three times ρ from the true position. As a 
useful comparison to understand the reliability of localization we can use the metric above assuming 
the location is simply a random point in the portion of the laboratory where a person can reasonably 
stay, i.e., the lab minus the border where tables and furniture are. If we exclude 0.8 m around the wall, 
then the useful area of the lab is Au = (6.6 − 0.8) × (7.0 − 0.8) ≃ 36 m2, thus randomly placing the 
location of a person inside this area yields 
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as a function of ρ, giving a good reference to compare the localization quality and the obfuscation 
effectiveness. 

The second metric we define and use in all the cases when the NN is used as a classifier and does not 
output Euclidean coordinates measures the capability of the system to actually localize a person with 
high reliability, but with relaxed precision. In other works, this metric simply measures the probability 
(or percentage) that an estimation is correct of not: 

where Nl is the total number of position samples (packets) taken to localize the person or object as 
above and Il(i) is an indication function that tells if the location is correctly classified (Il(i)=1) or not 
(Il(i)=0). Pl is a simpler metric compared to LR, and gives less insight in the obfuscation process and 
efficiency, but it is meaningful also in scenarios and setup where the localization system tries only to 
infer a "rough position" previously classified, and not a specific location based on the interpolation of 
Euclidean coordinates. Sometimes in the literature, especially works based on ML/AI classification 
techniques, instead of a simple probability metric as Pl, results are presented through "confusion 
matrices", which are the representation of the entire classification procedure in terms of conditional 
probability, i.e., where the person/object position has been estimated given the actual position of the 
person/object. Confusion matrices can sometimes give more insight in the results, but they are very 
dispersive, so we only present a few examples in Appendix A.  

1.2.3.1 B1: Passive attack with humans: Localization precision dilution (Brescia)  
The B1 setup is focused on evaluating the localization dilution that is achievable with the obfuscation 
method of CSI-MURDER. Thus, we compare the performance obtained with and without the 
obfuscation. For both cases, we train the NN with 700 packets for each one of the 32 positions 
highlighted in Figure 1.2.8 and then we test the localization performance on a different set of measures 
consisting of 150 packets per position collected at a different time. We capture CSI data from each of 
the four antennas available at the three receivers in the lab (visible in the picture of Figure 1.2.8) for a 
total of 12 CSI feeds. Interestingly, results for the three receivers are similar and it also turns out that 
training the NN with data from one single antenna or any combination of the four antennas for each 
of the three receivers does not have any significant impact on the results. Figure 1.2.18 reports the 
average results obtained considering the metric LR. The solid line is the average for the 32 positions 
computed by considering all the CSI (averaged over 12 antennas). The shaded regions around the solid 
lines, show the area between the worst and best performing antenna, obtained again by averaging 
over the 32 positions. All the lines increase with ρ as expected, the most interesting cases for 
localization are the ones with small ρ, e.g. for values between 0.3 and 0.6. In particular, for ρ = 0.3, the 
average LR score is above 0.5 for the localization system but drops below 0.05 when CSI randomization 
is active. The benefit of using our randomization system is evident from the fact that the curves 
obtained using randomized CSI are much closer to the black dashed line corresponding to the uniformly 
distributed random guesses LR

rand. 
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Figure 1.2.18: Localization performance according to metric LR for ρ ranging from 0 to 1. Solid lines 
report the average result, while the shaded areas are the envelope of all measures including using 

different antennas and positions of the receiver. The dashed line is the theoretical result for 
uniformly distributed random guesses. 

Figure 1.2.18 gives a clear representation of the feasibility and power of localization obfuscation. 
Unfortunately, in its simplicity and clarity it requires to train the localization system on a regular grid 
of points, so that it is able to infer Euclidean coordinates, and it requires a very long experimentation 
time involving humans, so it is not possible to replicate these results for the setup W1, where a regular 
grid of points is not feasible and we cannot ask our patrons to spend hours and hours in standing in 
specific points in the lab.  For this reason, we also present the same results as accuracy matrices in 
Tables 1.2.2 and 1.2.3, so that results can be compared across different setups.  
On the same data, we reconfigure the localization system to classify the location, i.e., for each and 
every packet received the system assigns the position of the person to one of the possible position 
that is has learned during the training phase, rather than trying to extrapolate Euclidean coordinates.  
We present two set of results: Table 1.2.2 refer to the performance of the localizer immediately after 
the training (the dataset is the same, just running the testing on the last 70 packets for each position) 
and Table 1.2.3 to the localization performance obtained in another moment, normally after one day. 
Table 1.2.3 correspond to  the same scenario of Figure 1.2.18, while Table 1.2.2 determines a sort of 
upper bound for the localization system, because the testing is done on the same dataset as the as 
training, which is not a credible scenario in localization: the position of a person is inferred when 
she/he has not moved at all, so the attacker knows the position, and the position errors are due only 
to the localization system errors themselves. Both tables present the results in the case of clean CSI 
and in the case of obfuscated CSI.  
Using the same dataset (Table 1.2.2) the localization system is extremely accurate with clean CSI, while 
with the obfuscated CSI the classification estimation still corresponds to a decent "educated guess" as 
the position is correctly classified in nearly 50% of the cases. When instead the localization is 
attempted in another moment (Table 1.2.3) the obfuscation technique completely prevents the 
localization system to have even an educated guess of the actual position. It is interesting to notice 
that the overall accuracy (3%) corresponds nearly perfectly to a random guess over 32 positions, even 
if the actual distribution of the guesses is not uniform, but favours two of the possible positions. We 
do not have an explanation for this behaviour. To be completely transparent in our presentation, it 
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must be mentioned that the localization system is not very accurate if the testing is done in a different 
moment than the training, but still it correctly guesses the position about 50% of the times, which is 
much more than the uniform probability of a random guess (1/32).    

Classification accuracy [%] – clean CSI, 1 run 
j = 6 92.6 - 100 - 71.4 - 100 - 100 
j = 5 - 100 - 100 - 100 - 100 - 
j = 4 100 - 82.9 - 100 - 40.0 - 100 
j = 3 - 95.7 - 100 - 100 - 100 - 
j = 2 100 - 100 - 81.4 - 75.7 - 100 
j = 1 - 97.1 - 81.4 - 90.0 - 100 - 
j = 0 100 - 90.0 - 100 - 100 - 100 
zi,j i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Overall accuracy = 93.7 % 
Classification accuracy [%] – obfuscated CSI, 1 run 

j = 6 98.6 - 75.7 - 38.6 - 100 - 22.9 
j = 5 - 71.4 - 4.3 - 14.3 - 92.9 - 
j = 4 37.1 - 7.1 - 100 - 20.0 - 48.6 
j = 3 - 84.3 - 71.4 - 44.3 - 15.7 - 
j = 2 61.4 - 100 - 35.7 - 21.42 - 100 
j = 1 - 0.0 - 10.0 - 20.0 - 84.3 - 
j = 0 7.1 - 34.3 - 45.7 - 70.0 - 27.1 
zi,j i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Overall accuracy = 48.9 % 

Table 1.2.2: Localization accuracy over the 32 zi,j positions with clean and obfuscated CSI; training 
and testing samples are extracted from the same run. 

Classification accuracy [%] – clean CSI, 2 run 
j = 6 100 - 57.1 - 71.4 - 70.0 - 100 
j = 5 - 92.9 - 100 - 90.0 - 1.4 - 
j = 4 0.0 - 100 - 100 - 0.0 - 100 
j = 3 - 0.0 - 90.0 - 92.9 - 4.3 - 
j = 2 58.6 - 100 - 1.4 - 0.0 - 4.3 
j = 1 - 0.0 - 0.0 - 0.0 - 30.0 - 
j = 0 52.9 - 71.4 - 0.0 - 100 - 1.4 
zi,j i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Overall accuracy = 49.7 % 
Classification accuracy [%] – obfuscated CSI, 2 run 

j = 6 0.0 - 0.0 - 0.0 - 0.0 - 0.0 
j = 5 - 0.0 - 0.0 - 0.0 - 0.0 - 
j = 4 0.0 - 0.0 - 0.0 - 0.0 - 0.0 
j = 3 - 75.7 - 0.0 - 0.0 - 0.0 - 
j = 2 0.0 - 21.4 - 0.0 - 0.0 - 0.0 
j = 1 - 0.0 - 0.0 - 0.0 - 0.0 - 
j = 0 0.0 - 0.0 - 0.0 - 0.0 - 0.0 
zi,j i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Overall accuracy = 3.0 % 

Table 1.2.3: Localization accuracy over the 32 zi,j positions with clean and obfuscated CSI; training 
and testing samples are extracted from two different runs. 
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In this setup, given the availability of 802.11ac hardware, we also run experiments to understand if 
and how the CSI obfuscation affect the communication performance. In experiments dedicated to 
localization, only packets with the lowest-order modulation and coding scheme (MCS) (i.e., MCS0) that 
uses BPSK are transmitted for the sake of efficiency, as the preambles that allow the computation of 
the CSI always use MCS0. However, it is important to investigate the communication performance for 
higher-order MCSs because they are more susceptible to channel errors. Hence, we computed the 
Packet Delivery Ratio for all VHT-PHY MCS transmitted with 80 MHz bandwidth and a single spatial 
stream: Table 1.2.4 reports the Packet Delivery Ratio (PDR) for the three receivers when randomization 
is off (w/o) and on (w). 

It appears from the table that the positions of the three receivers enable acceptable performance for 
all MCS: only one receiver (Rx 1) suffers a bit with MCS9 without randomization. As easily predictable, 
only robust MCSs retain acceptable PDR when the randomizing filter is applied. In particular, when the 
modulation used is sensitive to distortion (i.e., 64- and 256-QAM modulations) the systematic errors 
introduced by the filter prevent correct decoding of the frame at one receiver (Rx 3) and kills reception 
at another one (Rx 1). Things get worse when further increasing the MCS: MCS8 and 9 cannot be 
received at almost any position. 

Table 1.2.4: Packet Delivery Ratio as a function of the Modulation and Coding Scheme, with and 
without the CSI obfuscation block. 

We think that these results are extremely encouraging, as we did not designed the obfuscation method 
having the transmission performance as a constraint, rather, we focused on the feasibility of 
localization obfuscation. The design of an obfuscation methodology that takes as constraint the 
transmission performance can be tackled, not that it is clear that localization can be obfuscated, with 
a theoretical approach that is inherently outside the scope of an ORCA Experiment. Given the absence 
of 802.11ac hardware in w-iLab.2 testbed, we have not pursued the analysis of throughput further.  

1.2.3.2 B2: Passive Attack with objects: Comparison with humans (Brescia) 
In this setup we are comparing the performance of the localization system when our target is not a 
human body but a relatively small object made of reflective material. The results described in this 
section are useful to compare the localization performance in the two cases and move from the idea 
of replicating in our lab in Brescia the experiments conducted with robots on the w-iLab.2 testbed. 

We see from Table 1.2.5 that when training and testing samples are drawn from the same CSI collection 
run, the CNN is always able to output the correct result. However, when we are drawing samples from 
two different runs (Table 1.2.6), the performance of the localization system begins to vary more 
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consistently when applied to locate different objects. It appears that human presence has a stronger 
impact on the electromagnetic characterization of the channel, leading to recurrent patterns that are 
“more recognizable” by the CNN, despite some natural variability in the CSI. These results ultimately 
lead us to conduct localization experiments in the w-iLab.2 testbed not only using the mobile nodes 
but also with human targets, with the kind support of our patron in Ghent. 

Stove pipe 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 100 100 100 100 100 100 100 100 

Tripod with reflective panel 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 100 100 100 100 100 100 100 100 

Human 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 97.1 100 100 100 100 100 100 100 99.6 

Table 1.2.5: Accuracy of the localization models learned on clean CSI with different targets; training 
and testing samples are selected from the same run. 

Stove pipe 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 0.0 100 100 100 0.0 8.6 24.3 100 54.1 

Tripod with reflective panel 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 92.9 100 0.0 100 100 100 100 0.0 74.1 

Human 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 90.0 100 24.3 40.0 65.7 100 100 77.5 

Table 1.2.6: Accuracy of the localization models learned on clean CSI with different targets; training 
and testing samples are selected from two different runs. 

1.2.3.3 B3: Passive Attack with humans: Work position obfuscation (Brescia) 
In this scenario we reduce the possible target positions, as we imagine that the attacker is not 
interested in deriving the precise location of the victim but rather having a rough estimate about which 
area of the room the victim is occupying. Training data consists of CSI collected when the victim is 
slowly moving in each one of the four corners of the room, labelled SW, NW, NE and SE respectively 
(see Figure 1.2.8). It is expected that in this case the classification carried out by the CNN is much more 
accurate with respect to the previous case with a finer grid, as shown both in Table 1.2.7 and Table 
1.2.8. Also in this case, our approach proves effective against passive localization since localization 
performance is sensibly lower when the CSI are obfuscated.  

In this setup it seems that the localization system is not much affected by the fact that testing is done 
on the same run of data as the training or not. Possibly this is due to the fact that a "loose localization" 
in terms of room sectors rather than precise positions present the learning system with a wide set of 
possible CSI so that the NN does not learn peculiarities of CSI for a specific point in space and time, but 
rather learns the generic properties of the CSI when a human being is in one of the sectors and these 
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properties are less sensitive to time-based changes of the environment. When the CSI is obfuscated it 
seems that the NE sector is unaffected by the obfuscation. We could not analyse the reasons for this, 
but we think that it will be possible in the future to design more efficient obfuscation filters.  

Clean CSI 

Pos. SW NW NE SE Overall 

Acc. [%] 100 100 100 100 100 

Obfuscated CSI 

Pos. SW NW NE SE Overall 

Acc. [%] 52.0 47.7 100 8.0 51.7 

Table 1.2.7: Accuracy of the localization models learned on clean and obfuscated CSI with human 
target; training and testing samples are selected from the same run. 

Clean CSI 

Pos. SW NW NE SE Overall 

Acc. [%] 100 100 100 100 100 

Obfuscated CSI 

Pos. SW NW NE SE Overall 

Acc. [%] 14.7 76.0 93.3 36.0 55.0 

Table 1.2.8: Accuracy of the localization models learned on clean and obfuscated CSI with human 
target; training and testing samples are selected from two different runs. 

Figure 1.2.19 presents results for a similar case, but were the CNN is trained to output Euclidean 
coordinates, (x,y) estimates, of the victim’s position, and the training is done with the victim sitting on 
a chair as if working normally. The "normal" position is represented by circles with a 60 cm. radius, a 
reasonable representation of how a person would normally sit and slightly move on an office chair.  
The data visualization clearly shows that also in this case a passive attacker can be easily tricked by our 
obfuscation mechanism in determining positions that are completely useless to reliably track a person. 

 

Figure 1.2.19: Localization estimates when the CNN is trained to output (x,y) coordinates. The four 
circles represent the location of the training/testing positions. 



  

 
© ORCA Consortium 2017-2020 Page 29 of 56 

1.2.3.4 B4: Active Attack with humans: (Brescia) 
With respect to Objective 2 of our experiment, we have conducted both in Brescia and in Ghent some 
preliminary experiments concerning the location privacy protection against active attacks, i.e. the ones 
in which the attacker owns and controls both the transmitter and the receiver. We start showing the 
results obtained in our local setup; in section W3 we present the results obtained in the w-iLab.2 
testbed, performing some comparisons between the two setups and drawing some conclusions. 
Preliminary results show that an obfuscation system preventing such types of attack require to react 
as fast as possible when detecting a new Wi-Fi packet. A set of pure tones, randomly placed on the 
wide-band spectrum of the signal, must be transmitted as soon as the packet is detected and for the 
entire duration of the header in order to obtain the same CSI obfuscation effect that we already 
described for passive setups. 

The 8 positions P1,…,8 considered in this experiment are the same positions used in scenario B2 and 
are illustrated in Figure 1.2.10. The target of the localization is a person standing in the corresponding 
positions. We show both in Table 1.2.9 and in Table 1.2.10 that also the new “active” countermeasure 
works well at anonymizing user’s location when it is able to detect transmitted packets early and react 
immediately to generate spurious CSI information for the attacker. 

Clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 100 100 100 100 100 100 100 100 

Obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 28.6 0.0 4.3 7.1 81.4 0.0 98.6 94.3 39.3 

Table 1.2.9: Accuracy of the localization models learned on clean and obfuscated CSI with human 
target; training and testing samples are selected from the same experiment. 

Clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 100 91.4 60.0 100 0.0 55.7 100 75.9 

Obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 88.6 0.0 0.0 4.3 5.7 28.6 74.3 67.1 33.6 

Table 1.2.10: Accuracy of the localization models learned on clean and obfuscated CSI with human 
target; training and testing samples are selected from two different experiment. 
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1.2.3.5 W1: Passive attack with humans: Localization precision dilution (w-iLab.2)  
Also for this setup in which we want to localize a human victim, we measure the localization 
performance 1) when the training and testing samples are drawn from the same experiment (the 
testing data is at the end of the experiment), and 2) when the training and testing samples are drawn 
respectively from two different repetitions of the experiment. 
For scenario 1) we show in Table 1.2.11 that the localization system is able to classify almost perfectly 
the ten target positions; however, even in this overly optimistic scenario (for the attacker perspective), 
the proposed obfuscation framework has a severe impact on classification accuracy, as shown in the 
same Table with obfuscated CSI.  

Localization performance quickly degrades in scenario 2) in a way similar to what we already observed 
in our previous experiments. Nevertheless, the results in Table 1.2.12 show that the localization system 
still works quite well with clean CSI, but it is doomed to complete failure if the CSI obfuscation system 
is in place. 
The discussion is similar to what we have verified in the previous experiments: also in the challenging 
environment of the w-iLab.2 facility—rich of reflective objects and obstacles that strongly interfere 
with electromagnetic propagation—even the presence of a human body can modify the propagation 
environment in a meaningful and recognizable way, since the localization system can correctly locate 
the person with a significative accuracy at least if not much time passes between the training of the 
localization system and the testing on the victim, while after some time the localization precision drops 
to about 50% (still quit high compare with 0.1 of a random guess over 10 possible positions).  

Rx1, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 100 100 92.9 100 100 100 98.6 100 100 99.1 

Rx2, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 100 100 100 98.6 84.3 98.6 100 100 8.6 89.0 

Rx3, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 100 100 100 100 100 100 97.1 100 100 99.7 

Rx1, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 78.6 0.0 100 0.0 0.0 0.0 100 100 0.0 77.1 45.6 

Rx2, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 48.6 0.0 0.0 0.0 0.0 97.1 4.3 0.0 0.0 25.0 

Rx3, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 15.7 14.3 0.0 100 45.7 100 100 30.0 0.0 15.7 42.1 

Table 1.2.11: Accuracy of the localization models learned by the three Rx for P1–10 on clean and 
obfuscated CSI with human target; training and testing samples are selected from the same run. 
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In any case, obfuscation is very effective, reducing localization precision below 40% during the same 
experiment, and down to a uniform random guess if testing is done in a different experiment than 
training. It is interesting to notice that in all results it looks like there are locations that are much easier 
to "pin" for the localization system and they are also more difficult to obfuscate, but indeed, this is not 
a property of the position, rather of the position, the receiver, time and possibly many other 
parameters we do not control. This seems to be a "property" of w-iLab.2 and we have not observed it 
in Brescia.  

Rx1, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 100 100 100 82.9 64.3 14.3 77.1 68.6 82.9 69.0 

Rx2, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 50.0 100.0 52.9 0.0 80.0 52.9 87.1 0.0 87.1 67.1 57.7 

Rx3, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 47.1 28.6 100 12.9 7.1 68.6 0.0 91.4 100 45.6 

Rx1, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 2.9 0.0 97.1 0.0 4.3 14.3 0.0 1.4 68.6 18.9 

Rx2, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 5.9 

Rx2, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 22.9 0.0 0.0 0.0 0.0 0.0 1.4 0.0 71.4 0.0 9.6 

Table 1.2.12: Accuracy of the localization models learned by the three Rx for P1–10 on clean and 
obfuscated CSI with human target, training and testing samples are drawn from two different 

experiments. 

A confirmation that in the complex (and indeed unusual) environment of w-iLab.2 the overall 
combination of devices and objects is dominant can be seen in Figure 1.2.20 where we show the CSI 
collected for four different positions of the victim by the same receiver. The CSIs looks almost identical 
to the human eye, yet we know that the localization system can find and distinguish appropriately the 
slight differences present. A further confirmation of this comes from the CSIs presented in Figure 
1.2.21 collected for the same position of the victim at the three receivers: they are completely 
different!   

The CSI obfuscation system introduces time-varying features and these are learned by the neural 
network so that localization performance is compromised, but clearly if a combination of the receiver, 
transmitter and all the other features is so characteristic that remains distinguishable even in face of 
the random artificial features, then this specific combination remains difficult to obfuscate, an one 
may conclude that localization is still possible, while more precisely one should say that that specific 
overall combination is difficult to obfuscate.  



  

 
© ORCA Consortium 2017-2020 Page 32 of 56 

 
Figure 1.2.20: Magnitude (normalized) of the clean CSI collected by Rx1 for different positions of the 

target person. 

Figure 1.2.21: Comparison among CSI received by the three Rx for the same position of the victim. 

1.2.3.6 W2: Passive Attack with objects: Localization precision dilution (w-iLab.2) 
The results discussed for scenario W1—captured with a human victim in the w-iLab.2 testbed—are 
fundamental for CSI-MURDER perspective, but they are obviously too expensive (from the perspective 
of the person(s) training the localization system first and then playing the role of the victim) to collect 
extensive results. Thus, from the very design of the Experiment, we planned to use the robots available 
in the testbed for a large measurement campaign, albeit, as already discussed, the actual impact of 
robots on the CSI was to be verified. We did this verification running an extensive evaluation campaign 
in this setup, before running the actual experiments on obfuscation. During this part we also did all the 
tunings necessary to work with robots rather than humans.   

The possibility of scripting the movements of the mobile nodes (robots) and programming in advance 
the execution of the experiments (both on mobile nodes and on the SDR platform with OpenWiFi), 
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enabled to plan complex trajectories of the robots in the testbed that ultimately led to many data 
collection campaigns in a fully automated manner. 

Data collected in this way were analysed and turned out very useful to determine the overall 
performance of our prototypes, as well as to spot pitfalls in our approach and correct our 
localization/obfuscation methods. Here we report results on passive robot localization that mainly 
confirm what we have already seen for scenarios B2 and W1. By drawing (without reinsertion) training 
samples and testing samples from the same dataset, the localization system works very well on clean 
CSI, while when training and testing samples are taken from two different runs of the same experiment 
(collected at different moments in time), then the localization performance in clean condition drops 
significantly, in this case to a mere 30% of accuracy. These results hints to the fact that objects (at least 
small objects) localization with Wi-Fi may be more difficult than human localization, but also that it is 
in any case feasible and countermeasures must be studied.  

Our obfuscation proposal in any case works correctly, reducing the accuracy of localization, once more 
to a uniform random guess when training and testing are done on different runs, and to  an average 
30% when they are taken in the same run.  

Tables 1.2.13 and 1.2.14 report the results in the two cases, and again we can observe that there are 
ambient combinations (position, receiver, time, etc.) that have completely different performance, 
sometimes favouring and sometimes hampering the localization.  

Rx1, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 100 100 100 95.7 95.7 98.6 100 100 90.0 98.0 

Rx2, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 98.6 100 98.6 97.1 25.7 67.1 100 100 100 88.7 

Rx3, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 100 100 100 100 100 100 98.6 100 100 99.9 

Rx1, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 0.0 0.0 0.0 67.1 100 0.0 0.0 100 100 36.7 

Rx2, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 0.0 100 11.4 18.6 100 97.1 100 28.6 100 55.6 

Rx3, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 100 100 24.3 2.9 7.1 97.1 0.0 0.0 100 43.1 

Table 1.2.13: Accuracy of the localization models learned by the three Rx for P1–10 on clean and 
obfuscated CSI with robot target; training and testing samples are selected from the same 

experiment. 
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Rx1, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 67.1 100 5.7 0.0 0.0 1.4 67.1 0.0 1.4 25.7 26.9 

Rx2, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 75.7 92.9 97.1 37.1 38.6 1.4 0.0 0.0 1.4 34.4 

Rx3, clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 0.0 95.7 0.0 0.0 90.0 0.0 7.1 0.0 0.0 29.3 

Rx1, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 2.9 0.0 0.0 44.3 0.0 21.4 0.0 35.7 18.6 0.0 12.3 

Rx2, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 100 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 4.3 10.7 

Rx3, obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Overall 

Acc. [%] 0.0 0.0 1.4 2.9 22.9 0.0 1.4 21.4 31.4 0.0 8.1 

Table 1.2.14: Accuracy of the localization models learned by the three Rx for P1–10 on clean and 
obfuscated CSI with robot target, training and testing samples are selected from two different 

experiments. 

Figure 1.2.22 reports the CSI collected at the three receivers for the one single position of the victim 
robot, once more it is clear that the receiver position dominates the CSI pattern, and this is a 
fundamental piece of information, that we collected thanks to w-iLab.2 testbed, for the development 
of a theory of obfuscation and theoretically sound methodologies for obfuscation implementation. 

 

Figure 1.2.22: Comparison among CSI received by the three Rx for the same position of the robot 
“victim,” showing the importance of the receiver position in determining the CSI characteristics, a 

very important piece of information for future works. 
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1.2.3.7 W3: Active Attack with robots: (w-iLab.2) 
In scenario B4 we presented the preliminary results against active attacks obtained for a human victim 
in our local setup. Here we generalize those results by applying the same countermeasure in a different 
setting, namely the w-iLab.2 testbed in Ghent with target robots as localization victims. 
Table 1.2.15 reports the results in the Orca testbed showing that localization accuracy drops 
dramatically when the obfuscation mechanism is active both when localization is done on the same 
run of data and when it is done on a different run. We are using two different chains of a USRP B210 
to emulate a system that reactively obfuscates user’s location by injecting spurious information in the 
CSI transmitted by another node. Once more, we remark that the complex environment of w-iLab.2—
rich of reflections and NLOS paths—characterizes the channel information in very complex ways, so 
that the effect of the obfuscation system is diminished with respect to scenario B4. 

We already know that the reduced volume of a robot is not sufficient to produce large variations in 
the CSI collected for different positions of the victim. For this reason, we expect that localization 
performance in this case are worse with respect to the human localization case proposed in scenario 
B4. This is indeed verified by the results shown in Table 1.2.16, in which we once again verify that the 
proposed obfuscation mechanism is working effectively, but it also suffers from the extremely complex 
electromagnetic environment.  

As already observed several times, the localization precision and the obfuscation efficiency are heavily 
dependent on the overall combination of transmitter, position, receiver and other parameters hard to 
control, so that results are not uniform and position independent, but highly skewed as a function of 
the specific position and receiver considered (the transmitter is always the same). 

Clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 100 100 100 100 100 98.6 100 100 99.8 

Obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 78.6 88.6 98.6 61.4 2.9 10.0 82.9 100 65.4 

Table 1.2.15: Accuracy of the localization models learned on clean and obfuscated CSI with robot 
target; training and testing samples are selected from the same experiment. 

Clean CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 0.0 1.4 64.3 0.0 0.0 95.7 100 100 45.2 

Obfuscated CSI 

Pos. P1 P2 P3 P4 P5 P6 P7 P8 Overall 

Acc. [%] 20.0 37.1 4.3 24.3 34.3 2.9 68.6 0.0 23.9 

Table 1.2.16: Accuracy of the localization models learned on clean and obfuscated CSI with robot 
target; training and testing samples are selected from two different experiment. 
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1.3 Impact 
The Experiment proposed by CSI-MURDER is very specific and peculiar as it deals with the possibility 
of localizing people and objects using standard Wi-Fi devices. Differently from other work, where the 
target of the localization technique is a Wi-Fi transmitter, the CSI-MURDER experiments have been 
targeting the passive device-free localization of a person through the opportunistic analysis of the Wi-
Fi frames preamble and the information it carries: this is normally used by receiving devices to derive 
the CSI (Channel State Information) and tune the equalization blocks that they use for optimizing the 
reception. Indeed, the Experiment goal is to demonstrate that it is possible to prevent such usage of 
Wi-Fi frames, and forbid malicious eavesdroppers from localising unaware people like neighbours or 
detecting their activities at their places.  
 

Please describe how the Experiment / Extension contributes to the research or serves your business 
goals (in case of innovation Experiment by Industry).  
The success of the CSI-MURDER experiment confirms that it is possible to re-enable the privacy of 
people by properly modifying in a non-destructive fashion the transmitted Wi-Fi frames: indeed frames 
can still be decoded as they would be in a communication system, but the information that they 
provide about the environment appears to an eavesdropper as noise. We believe that this has a great 
impact as it paves the way to new lines of research. 

 
Describe in detail how this Experiment may impact your business and product development (in case of 
innovation Experiment by SME), or your scientific roadmap (in case of scientific excellence Experiment).  

Before CSI-MURDER, besides creating tools for extracting CSI, we were using CSI to improve localization 
of transmitters [Ricciato2018] or for creating covert channels [Schulz2018]. After CSI-MURDER we are 
going to study the problem of CSI randomization with much higher emphasis as it will probably become 
one of our principal research themes. According to the output of the CSI-MURDER experiment, we will 
iteratively  improve the capabilities of the localization system and that of the obfuscation procedure, 
until when the signal received by a Wi-Fi device will really appear as physically propagating within a 
random environment. This is of course a long-term goal, which will probably require a better 
understanding of the problem and access to even more complex experimentation tools, probably yet 
to be designed. 
 

What is the value you have perceived from this Experiment/Extension? E.g. gained knowledge; acquired 
new competences; practical implementation solutions; new ideas for experiments/products; etc. 
Before CSI-MURDER we developed a CSI extraction tool within the Nexmon project that enables CSI 
data extraction from very common devices, i.e., those embedding a Broadcom wireless chipset 
[Gringoli2019]. Prior to the CSI-MURDER project, however, we were missing a specific use case 
validating the CSI data produced by the tool. Within CSI-MURDER we demonstrated for the first time 
(by implementing a passive localization system) that the CSI data produced by this tool is meaningful. 
More specifically, according to the positive results obtained, we proved that the data is as significant 
as that produced by competing tools, i.e., the Linux 802.11n CSI Tool for Intel card, and the Atheros 
CSI Tool for QCA chipset. If we consider that the chipset we target with our tool is embedded inside 
the majority of Android based mobile phones, it becomes clear that thanks to CSI-MURDER the tool 
can become one of the most adopted by the research community. 

During the project we also got familiar with the OpenWiFi tool which makes the implementation of the 
randomization procedure straightforward. Without OpenWiFi, we should use complex SDR tools and 
create each frame on a host with Matlab, then apply the randomisation “at hand” before sending 
samples to the SDR radio. This approach had many drawbacks: first, the transmitter is not a real Wi-Fi 



  

 
© ORCA Consortium 2017-2020 Page 37 of 56 

node running a full Wi-Fi stack; second, we cannot evaluate the randomisation performance within the 
dynamics of a real Wi-Fi network. With OpenWiFi, instead, we had the possibility to run localization 
experiments extracting the CSI from real iperf data sessions. The successful demonstration of the 
technique running inside OpenWiFi clearly demonstrates that the randomisation technique is 
lightweight enough to be implemented on the real ASIC that powers Wi-Fi chipset. 

Finally, the possibility to drive robots through repeatable trajectories was a very interesting feature 
that we never used before and that we will probably deploy in our own lab, since we realized during 
the CSI-MURDER experiment that it provides great help and ease in the collection of results. For the 
sake of clarity, the robot available in the ORCA facility did not show properties similar to the human 
body and we would need for the future different robots: nevertheless, working with such robots was 
fundamental for understanding the difference with respect to object with human-like properties. 
 

What was the direct or indirect value for your company/institution? What is the time frame this value 
could be incorporated within your current product(s) range or technical solution? Could you apply your 
results also to other scenarios, products, and industries? 
The tools, both hardware (i.e., robots) and software (i.e., OpenWiFi), that the ORCA project made 
available for the CSI-MURDER experiment turned out to be key for running the research associated 
with the experiment. As we will keep working on this field and considering that we are just at the 
beginning of an almost unexplored topic, we believe that the facilities provided by the ORCA testbed 
had a great value for the future of our institution. This is especially true if we consider the possibility 
to publish the collected results on future venues like conferences or journal, which is one of the main 
activities targeted by our institution.  

In addition, the knowledge and the skills acquired during the experiment will have a deep impact on 
our future projects, also those not directly connected with the CSI-MURDER experiment, as we get 
used to very simple tools that we now consider fundamental for our future activities. We plan, for 
instance, to bring tools like OpenWiFi in-house: the tool will be valuable also for other people working 
in Wi-Fi research. 

 

Are there any follow-up activities planned by your company/institution? New projects or funding thanks 
to this Experiment/Extension? Do you intend to use the ORCA facility, and SW components again in the 
future? 
All the people involved in the CSI-MURDER experiment plan to keep working on the same research 
line: we intend to push this project both from the theoretical and practical point of view. First, we need 
to gain a better understanding of the physical principles behind propagation - concepts that we usually 
use as black-box in our research. We now need to study the black-box and create tools that allow to 
modify the black-box internals, or better, how they appear to a receiver, for improving the 
randomisation technique. We also plan to extend the features of the OpenWiFi project and to 
incorporate a VHT-PHY compliant transceiver inside the FPGA based Zynq board. 
It would be extremely interesting to keep using the facilities from the ORCA testbed as many of the 
hardware components are extremely expensive, not only in terms of cost but also maintenance.  

 

How did ORCA influence your ability to conduct such an Experiment? Which of the enablers and 
functionalities provided by ORCA seemed the most important one’s in the realization of your 
Experiment.  
Prior to the CSI-MURDER project we were mostly limited i) on the transmitter side, and ii) on the 
repeatability of the experiment. First, the availability of OpenWiFi was key enabler for demonstrating 
that randomization techniques can be deployed on real ASIC-based nodes like all the commercial Wi-
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Fi chipsets. Second, the main limit of our previous approach was in the way we were running 
experiments: replacing a moving human with a robot will be key for our future activities, even though 
we need to use special robots carrying volumes with properties similar to human tissues.  

 
If the ORCA facility wasn’t available, would it be possible to conduct your Experiment with pre-existing 
tools, and what would be the overhead in this case compared to your current status?  

Without OpenWiFi, demonstrating that randomisation works in full stack Wi-Fi nodes would have not 
been possible as we were using SDR tools available in our lab like the Ettus N300 in a “raw” fashion. 
We would have needed to develop the randomisation technique inside our WARP V3 nodes, but given 
we are “users” of that platform and not developer, this would have required months for analysing 
where to add the randomisation procedure in the 802.11 stack developed by the Rice University.  
 

Will you keep using ORCA facility, platforms and/or SW components for your future Experiments?  

This is very likely. As mentioned before, some of the tools that we have only started using with this 
Experiment proved fundamental for our research and it would be great to continue using such 
components. Our plan is to keep working on this research topic in the future and we will surely consider 
the option of keep using the ORCA facility and platforms. For instance we would really like to test the 
active attack once implemented inside the OpenWiFi code: once ready we might collect useful data in 
the ORCA testbed and try submitting another original publication. 
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2 FEEDBACK TO ORCA 

2.1 Testbeds/hardware/software resources used 

Please indicate what is used in your experiment or extension in the table below. Please describe in 
additional paragraph in case the used facility/resource is not listed in the tables. 

 

TESTBEDS  Required (Yes/No) 

w.iLab.t (Heterogeneous wireless testbed @ imec, Ghent, Belgium) yes 

IRIS (Software Defined Radio testbed @ TCD, Dublin, Ireland)  

ORBIT (20 x 20 radio grid testbed @ Rutgers University, New Jersey, 
US) 

 

IMEC portable testbed  

TUD macro scale testbed (Macro scale testbed @ TUD, Dresden , 
Germany 

 

KU Leuven testbed (KU Leuven @Leuven, Belgium)  
 
 

SDR HARDWARE PLATFORMS Number of nodes required 

Nutaq ZeptoSDR  
Nutaq picoSDR  
PicoZed Xilinx Zynq®-7000 SoC  
USRP B200-mini  
USRP B210 1 
USRP E310  
USRP N210  
USRP X310  
USRP 2920  
USRP 2921  
USRP RIO 2942R  
USRP RIO 2943R  
USRP RIO 2952R (+ GPS)  
USRP RIO 2953R (+ GPS)  
USRP RIO 2953R (+ EBD)  
WARPv2  
Xilinx ZC706 Evaluation Kit - Zynq® 7000 SoC + 
AD FMCOMM radio frontend  

1 with OpenWiFi 

ZedBoard Xilinx Zynq®-7000 SoC  
ZedBoard Xilinx Zynq®-7000 SoC + AD 
FMCOMM radio frontend 
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BB – NI PXI 7975 Module  
BB – NI PXI 7965 Module  
FE – NI PXI 5644  
FE – NI PXI 7976R   

 
 

ORCA functionalities (categories) Used (Yes/No) 

mmWave  

Massive MIMO  

Full Duplex  

PHY& MAC yes 

Sensing   

Slicing  

RAT Interworking  

SDR management  

Full stack SDR solutions yes 
 

2.2 Feedback on the usage 

2.2.1 Feedback on the testbed and experimentation tools 

Please share your experience regarding the testbed usage, such as whether it is easy to get acquainted 
with the testbed:  

• How did you experience the learning curve regarding using the ORCA facility?  

- In the end we have been using mobile phones Nexus 6 connected to mobile robots 
through PC Engines computers, fixed PC Engines computers equipped with QCA Wi-Fi 
cards, OpenWiFi nodes running on Zynq boards, and a SDR node connected to an Ettus 
B210. 

- Learning how to use the Zynq boards was somehow time-consuming, but in the end 
easy thanks to the instructions provided. Learning how to start the proper FPGA image 
with the randomization mechanism took a little bit. Learning how to use the 
randomization primitives was straightforward. 

- Learning how to use mobile robot nodes was more difficult: in particular how to keep 
active the Wi-Fi connection established on the carried PC Engines computers prior to 
undocking. 

- Learning the procedure for accessing and rooting the mobile phones was long but easy 
in the end. 

- Rate 4.  

• How do you rate the documentation provided for the testbeds supported in ORCA? 

- We found the documentation excellent. Sometimes it does not cover some issues, 
but they turned out to be almost unexpected. 
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- Rate 5. 

• How did you experience the experimentation tools, such as jFed, or software-defined radio 
related toolkits. 

- jFed worked almost flawlessly. We experienced sometimes its inability to mark a node 
as dead. We do not know if this is pertinent but the interface between jFed and the 
mobile robots fails sometimes: we underline, maybe the problem is due to some 
mechanical difficulties during docking that seems to be error-prone. 

- the SDR toolkit that we used was OpenWiFi. It works pretty well except for the 
Viterbi decoder that times-out after a few hours and require to restart the Zynq-
based host. 

- Rate 4 

• Did you make use of all requested testbed infrastructure and hardware resources, as specified 
in your Open Call proposal? If not, please explain.  

- Yes. 
• Did you have enough time to conduct your Experiment/Extension in the testbed(s) offered by 

ORCA? 
- Regarding this point, there were unexpected delays due to the covid-19 lockdown that 

almost waisted three months between end of February and end of May when we had 
again the ability to meet in our lab. The lockdown prevented the possibility to work as 
we initially planned. The provided extension however almost solved this problem. 

- In any case, it seems that 6 months was really tight, in particular because of the time 
for understanding how to use the Zynq nodes and the mobile robots, plus the fact 
that there were some other users accessing the same nodes with medium-long 
reservations. 

- Rate 4.  
• Were the results of your Experiment/Extension below / in line with / exceeding your initial goals 

and expectations? 
- Yes, in the end we were able to demonstrate the feasibility of the proposed 

experiments. 
• What were the hurdles / bottlenecks? What could not be executed? Was this due to technical 

limitations? In case you experienced technical limitations, please specify them. 
- Apart from the issues reported above, that have been always sorted out, we found 

two minor technical difficulties: i) accessing the remote cameras was not immediately 
feasible from our lab because we do not have ipv6. We really suggest to switch to ipv4 
to avoid any troubles; ii) scp files from local computers to those in the testbed is 
cumbersome, even if doable by hacking a little bit the ssh command that jFed opens 
in the local shell. Maybe this command can be modified to always open side-tunnels 
for easily copying files to/from the remote nodes. 

- Rate 5. 
• How was your experience with particular experimentation tools, such as jFed or remote access 

of other software toolkits? 
- Satisfactory. 
- Rate 5. 

2.2.2 Feedback on the interactions and communications 

Please share your experience with respect to the administrative process, patron communication, and 
support received from the ORCA consortium: 
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• How do you rate the level of work for administration / feedback / writing documents / 
attending conference calls or meetings compared to the timeframe of the 
Experiment/Extension?  

- The submission process was straightforward as well as the procedure for signing the 
agreement. Same for sending the invoice. All administrative procedures so far have 
been lightweight and fast. 

- Rate 5. 

• How was your experience concerning the communication and support of your Patron? Is there 
any other kind of support that you would expect from the patron, which is not available today? 

- Our patron was great! People in the team helped a lot providing immediate reaction 
times and effective solutions! 

- Rate 5. 

2.2.3 Main added value and what is missing? 

Describe why ORCA was useful for your conducting your Experiment/Extension? Which components 
were perceived as most valuable for you?  

Please share your opinion on what you wanted to have, what should be changed or was missing. 

The main feature that made ORCA key for the success of the experiment are the mobile robots with 
the Nexus 6P phones for capturing CSI over repeatable trajectories, and the OpenWiFi modified by the 
patron that made randomization technique possible. 
It would be interesting to repeat the experiments once new PHY are available, like the 11ax that is 
already in the roadmap of the project.  
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3 EXPLANATION OF COSTS 

The funding from ORCA was completely allocated to cover personnel costs as shown in the table below. 
The original budget included travel costs (8000 €) to participate in ORCA meetings and possibly to visit 
the laboratories in Ghent, however due to the Covid-19 pandemics any travel was obviously cancelled, 
and we dedicated more resources to run experiments. The subdivision of the work lead Francesco 
Gringoli to allocate about 3.5 months, Renato Lo Cigno 1.5, and Marco Cominelli about 5 months. 

 Total PM Cost (€) 

(1) Direct personnel costs 8 38000 

(2) Other direct costs, of which:  

       Travel  

       Equipment  

       Other goods and services  

(3) Indirect costs  9500 

(4) Total costs (Sum of 1, 2 and 3) 47500 

The effort was put in learning the management tools of ORCA, designing the obfuscation methodology, 
implementing the software and the Matlab tools for testing, and obviously to run the experiments 
interpret the results and prepare this report. It must be highlighted that this report includes results 
from many experiments run in Brescia too, and not only in w.iLab.2. Most of the time devoted to these 
experiments has not been covered by ORCA and is not claimed in the table above. Thus, in some sense,  
CSI-MURDER has been co-financed with internal resources, though without a formal procedure.  

Regarding the specific questions posed in the report template we can answer as follows. 

 
• Was the allocated budget for conducting the Experiment/Extension satisfactory? Was it 

sufficient in order to allow the successful completion of the Experiment/Extension, or have 
additional resources been used from your side? 

Yes the budget was sufficient, in particular it was enough to run all the experiments in the ORCA 
testbeds and to cover the specific efforts needed to port our design and software within the ORCA 
framework. 

 

• Did you receive other funding for executing this Experiment/Extension besides the ORCA Open 
Call (e.g. internal, national, other EC projects, etc.)? 

No, we have not received and additional funding for the execution of this Experiment, though we 
do put some internal effort (i.e., person months not covered by ORCA funding) for running 
experiments in Brescia that were necessary to tune the solutions before running them in the ORCA 
testbeds.  

 

• Would you also execute this Experiment/Extension without receiving any external funding? 

Yes. We see the advantage of using ORCA testbeds, and in general we are willing to use them 
without specific funding even if they sometimes introduce an overhead in the workflow. In 
particular, we are eager to implement the active attacks presented in this report in the OpenWiFi 
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stack and to experiment with it, this has not been possible during the CSI-MURDER timeframe also 
due to Covid-19 that complicated work and schedules, but if the OpenWiFi development team is 
willing to cooperate in the implementation this is an activity that can be pursued.  

However, regarding CSI-MURDER, we have also to highlight that the facilities available within the 
ORCA consortium are not fully up-to-date (regarding the communication hardware in particular, 
but also the robots available), so that experiments involving localization and localization 
obfuscation end up in being particularly complex and time consuming.  
In conclusion, we appreciate the possibility of using ORCA facilities in general, but, as detailed in 
Part 2 (Feedback) we think that sometimes the benefits are not a-la-par with the effort, so that its 
use without specific, dedicated resources (not necessarily coming from the ORCA consortium) may 
probably not give enough return on the investment needed.  

 

• Would you even consider paying for conducting such an Experiment/Extension? If so, what do 
you see as most valuable component(s) to pay for (SDR platforms, SW components, etc.)? 

Even if we perceive the high value of these platforms, as a public University in Italy it is very difficult 
to find internal resources to invest in external laboratories. Furthermore, we do not normally have 
an allowance that let us spend for research, rather we are bound to find resources to fund our own 
PhDs and PostDocs, thus, albeit we see the value of the ORCA infrastructure it would be very 
difficult to find institutional resources to pay for its use. An exception would obviously be the case 
when experiments are run in ORCA as part of an industrial or similar project that actually pays for 
them. In this case the ORCA testbed can become an enabler to execute industry-driven research 
and as such very valuable.   
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4 PROMOTIONAL MATERIALS 

1. Title of the Experiment 

Experimental analysis of CSI based anti-sensing techniques (CSI-MURDER) 

2. Name of organisation and logo 

University of Brescia  

Università degli Studi di Brescia (legal name for use in official documents) 

   
3. Goal(s) of Experiment/Extension (about 50 words, but definitely not more than 400 characters 

including spaces) 

The goal of the Experiment is to study and propose an anti-sensing technique against novel 
device-free CSI-based localization frameworks. In particular, we intend to safeguard users’ 
privacy by preventing both passive and active environment sensing attacks without affecting 
too much the ongoing Wi-Fi communications. 

4. Main challenge(s) of Experiment/Extension (about 50 words, but definitely not more than 400 
characters including spaces) 

Two main challenges: 
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• Choose from the Wi-Fi sensing literature a passive localization technique and deploy 
it using lab facilities; 

• Find and implement a randomization mechanism at the Wi-Fi physical layer that makes 
the localization technique above useless without compromising the communication 
capabilities of the randomized devices, should they be actively adopting 
randomization or passively being randomized from an external device. 

5. Description of setup of Experiment or concept of Extension, including 1 or maximum 2 figures  

 
                             a)                                                                  b) 

The experiment demonstrated that it is possible i) to use the facilities in w.iLab.2 to discover 
the location of a victim moving in the lab (e.g. among 10 target positions as shown in Figure a) 
by analyzing the CSI received at a given node; and ii) to adopt a proper countermeasure at the 
transmitter to make the deployed localization technique useless. In fact, the countermeasure 
is able to modify the CSI almost arbitrarily. We show the effect of amplifying 4 adjacent 
subcarriers in Figure b, but in general we can generate random patterns that do not depend 
on the actual channel condition, so that CSI cannot be used anymore for localization purposes. 

6. Main results, illustrated by 1 or maximum 2 figures with clear, but concise figure captions. 
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The Figure shows the average classification accuracy of a person over 10 possible target 
positions in the w.iLab.2 testbed. The label same run refers to the fact that training and testing 
samples are drawn (without reinsertion) from the same CSI collection experiment, while for 
label different runs we collected training and testing CSI samples at two different times. It is 
interesting to notice that the localization system still works fairly well in the second case, but 
more importantly we show that the proposed anti-sensing techniques disrupts localization 
accuracy in both cases. 

7. Conclusions (about 50 words, but definitely not more than 400 characters including spaces) 

This is the first study to characterize the possibility of obfuscating Wi-Fi frames to prevent 
environment sensing. Our experiments in the w.iLab.2 testbed confirm that an eavesdropper 
is not able to infer the location of a victim in a room, while Wi-Fi communications are 
preserved. The outcome of this experiment can be used for designing future privacy-aware 
chipsets. 

8. Feedback (about 50 words, but definitely not more than 400 characters including spaces).  

Our experience has been positive. Many results in this Experiment could not have been 
achieved without the tools available in the testbed and the constant support of our patron, 
which promptly solved a few issues that we encountered while using the facility. 

9. Quote(s): please provide at least one quote we could use for further dissemination activities. 
By completing the following sentence: “Thanks to the ORCA facility that we were able to... 
[Other phrasings are also fine.] 

Thanks to the ORCA facility, we have obtained the necessary resources and support to conduct 
the first systematic and experimental study of an obfuscation technique to prevent 
unauthorized use of CSI information to breech people privacy. Such results, beyond opening 
an entire new field of research, are also fundamental to guarantee the future socio-economic 
sustainability of Wi-Fi technology.  

 

This information is obviously public. 

High-quality logo and figures with sufficiently high resolution should also be provided separately in one 
of the following formats: jpg, png or pdf. Please make sure that text on figures is still readable when 
printed on leaflet with A4 format (try to avoid too small fonts). 

All the material above can be used to produce leaflets, posters, and any other dissemination and 
promotional material the ORCA consortium deem fit, also in conjunction with material provided by 
other experiments. The authors are available to cooperate in the preparation or review of such 
material to guarantee its adherence to the results obtained and maximize the impact of the ORCA 
project.   

 

 



  

 
© ORCA Consortium 2017-2020 Page 48 of 56 

APPENDIX A: CONFUSION MATRICES OF SOME EXPERIMENTS 

We report in this appendix some of the confusion matrices relative to results in Section 1.2.3.5 and 
Section 1.2.3.6 (setup W1 and W2). In each experiment we consider 70 test samples per class. From 
these data it is easy to determine accuracy and recall for each experiment, although we do not 
compute them explicitly. 
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Setup W1: human target, same run 

 

Rx1, clean CSI Rx1, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 55 0 0 0 0 0 0 0 0 0 100

P2 0 70 0 0 0 0 0 0 0 0 100 P2 0 0 0 0 0 29 0 0 10 0 0,0

P3 0 0 70 0 0 0 0 0 0 0 100 P3 0 0 70 0 0 0 0 0 0 0 100

P4 0 0 0 65 0 0 0 0 0 0 100 P4 0 0 0 0 0 0 0 0 17 16 0,0

P5 0 0 0 0 70 0 0 0 0 0 100 P5 13 70 0 0 0 2 0 0 0 0 0,0

P6 0 0 0 0 0 70 0 1 0 0 98,6 P6 0 0 0 0 70 0 0 0 1 0 0,0

P7 0 0 0 5 0 0 70 0 0 0 93,3 P7 2 0 0 70 0 0 70 0 7 0 47,0

P8 0 0 0 0 0 0 0 69 0 0 100 P8 0 0 0 0 0 0 0 70 34 0 67,3

P9 0 0 0 0 0 0 0 0 70 0 100 P9 0 0 0 0 0 0 0 0 0 0 -

P10 0 0 0 0 0 0 0 0 0 70 100 P10 0 0 0 0 0 39 0 0 0 54 58,1

% 100 100 100 92,9 100 100 100 98,6 100 100 99,1 % 78,6 0,0 100 0,0 0,0 0,0 100 100 0,0 77,1 45,6

Rx2, clean CSI Rx2, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 70 0 0 0 0 9 0 0 0 0 88,6

P2 0 70 0 0 0 0 0 0 0 0 100 P2 0 34 0 0 0 28 0 2 0 0 53,1

P3 0 0 70 0 0 10 0 0 0 0 87,5 P3 0 0 0 70 0 1 0 0 0 62 0,0

P4 0 0 0 70 1 0 0 0 0 0 98,6 P4 0 0 0 0 0 0 0 1 0 0 0,0

P5 0 0 0 0 69 0 0 0 0 64 51,9 P5 0 36 0 0 0 1 0 50 0 8 0,0

P6 0 0 0 0 0 59 1 0 0 0 98,3 P6 0 0 70 0 22 0 2 0 70 0 0,0

P7 0 0 0 0 0 1 69 0 0 0 98,6 P7 0 0 0 0 0 0 68 12 0 0 85,0

P8 0 0 0 0 0 0 0 70 0 0 100 P8 0 0 0 0 48 31 0 3 0 0 3,7

P9 0 0 0 0 0 0 0 0 70 0 100 P9 0 0 0 0 0 0 0 2 0 0 0,0

P10 0 0 0 0 0 0 0 0 0 6 100 P10 0 0 0 0 0 0 0 0 0 0 -

% 100 100 100 100 98,6 84,3 98,6 100 100 8,6 89,0 % 100 48,6 0,0 0,0 0,0 0,0 97,1 4,3 0,0 0,0 25,0

Rx3, clean CSI Rx3, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 11 0 0 0 0 0 0 0 0 0 100

P2 0 70 0 0 0 0 0 0 0 0 100 P2 0 10 0 0 0 0 0 1 0 0 90,9

P3 0 0 70 0 0 0 0 0 0 0 100 P3 0 0 0 0 11 0 0 0 0 0 0,0

P4 0 0 0 70 0 0 0 0 0 0 100 P4 0 51 0 70 24 0 0 21 0 0 42,2

P5 0 0 0 0 70 0 0 1 0 0 98,6 P5 0 1 25 0 32 0 0 0 0 0 55,2

P6 0 0 0 0 0 70 0 0 0 0 100 P6 34 2 6 0 0 70 0 0 57 0 41,4

P7 0 0 0 0 0 0 70 0 0 0 100 P7 0 6 0 0 3 0 70 1 0 59 50,4

P8 0 0 0 0 0 0 0 68 0 0 100 P8 25 0 0 0 0 0 0 21 13 0 35,6

P9 0 0 0 0 0 0 0 0 70 0 100 P9 0 0 28 0 0 0 0 26 0 0 0,0

P10 0 0 0 0 0 0 0 1 0 70 98,6 P10 0 0 11 0 0 0 0 0 0 11 50,0

% 100 100 100 100 100 100 100 97,1 100 100 99,7 % 15,7 14,3 0,0 100 45,7 100 100 30,0 0,0 15,7 42,1
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Setup W1: human target, different runs 

 

Rx1, clean CSI Rx1, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 0 0 0 0 0 0 0 0 0 0 - P1 0 0 0 0 0 0 0 0 0 0 -

P2 11 70 0 0 0 0 0 0 21 1 68,0 P2 0 2 0 2 0 1 0 0 0 0 40,0

P3 20 0 70 0 0 0 9 0 0 0 70,7 P3 0 0 0 0 0 0 0 0 27 0 0,0

P4 3 0 0 70 0 0 17 0 0 0 77,8 P4 0 0 0 68 0 0 0 0 0 0 100

P5 0 0 0 0 58 0 0 0 0 0 100 P5 20 0 17 0 0 0 2 0 0 0 0,0

P6 5 0 0 0 12 45 3 0 0 11 59,2 P6 0 18 1 0 0 3 0 13 0 0 8,6

P7 1 0 0 0 0 0 10 0 0 0 90,9 P7 0 0 0 0 0 0 10 57 0 0 14,9

P8 5 0 0 0 0 0 0 54 1 0 90,0 P8 0 37 0 0 0 21 3 0 0 22 0,0

P9 25 0 0 0 0 0 16 16 48 0 45,7 P9 0 2 52 0 70 45 34 0 1 0 0,5

P10 0 0 0 0 0 25 15 0 0 58 59,2 P10 50 11 0 0 0 0 21 0 42 48 27,9

% 0,0 100 100 100 82,9 64,3 14,3 77,1 68,6 82,9 69,0 % 0 2,9 0 97,1 0 4,3 14,3 0 1,4 68,6 18,9

Rx2, clean CSI Rx2, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 35 0 0 0 0 0 0 6 0 0 85,4 P1 0 0 0 0 12 0 0 0 0 0 0,0

P2 0 70 0 0 0 0 0 0 0 1 98,6 P2 0 6 0 0 0 70 0 0 0 70 4,1

P3 0 0 37 0 0 0 0 0 0 0 100 P3 0 63 0 0 58 0 0 0 0 0 0,0

P4 2 0 0 0 2 0 0 0 0 11 0,0 P4 0 0 0 0 0 0 0 0 0 0 -

P5 4 0 2 22 56 0 8 0 1 9 54,9 P5 2 0 70 67 0 0 0 36 35 0 0,0

P6 7 0 8 0 0 37 1 0 0 0 69,8 P6 0 0 0 0 0 0 70 34 0 0 0,0

P7 22 0 23 48 2 33 61 64 8 2 23,2 P7 68 0 0 0 0 0 0 0 0 0 0,0

P8 0 0 0 0 0 0 0 0 0 0 - P8 0 1 0 0 0 0 0 0 0 0 0,0

P9 0 0 0 0 10 0 0 0 61 0 85,9 P9 0 0 0 3 0 0 0 0 35 0 92,1

P10 0 0 0 0 0 0 0 0 0 47 100 P10 0 0 0 0 0 0 0 0 0 0 -

% 50,0 100 52,9 0,0 80,0 52,9 87,1 0,0 87,1 67,1 57,7 % 0,0 8,6 0,0 0,0 0,0 0,0 0,0 0,0 50,0 0,0 5,9

Rx3, clean CSI Rx3, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 0 0 0 0 4 0 0 0 0 0 0 P1 16 0 0 0 0 1 1 0 0 0 88,9

P2 54 33 39 0 0 3 16 69 0 0 15,4 P2 0 0 0 0 0 0 0 0 0 70 0,0

P3 1 0 20 0 12 0 0 0 4 0 54,1 P3 1 0 0 0 1 0 0 0 0 0 0,0

P4 0 0 0 70 2 59 6 0 1 0 50,7 P4 0 0 0 0 0 0 0 0 0 0 -

P5 6 21 0 0 9 0 0 1 0 0 24,3 P5 0 0 70 70 0 0 0 1 0 0 0,0

P6 1 11 0 0 0 5 0 0 0 0 29,4 P6 47 0 0 0 0 0 0 0 20 0 0,0

P7 0 0 5 0 0 3 48 0 0 0 85,7 P7 3 0 0 0 0 0 1 63 0 0 1,5

P8 0 5 0 0 3 0 0 0 0 0 0 P8 1 66 0 0 0 69 53 0 0 0 0,0

P9 8 0 0 0 36 0 0 0 64 0 59,3 P9 2 4 0 0 69 0 15 6 50 0 34,2

P10 0 0 6 0 4 0 0 0 1 70 86,4 P10 0 0 0 0 0 0 0 0 0 0 -

% 0,0 47,1 28,6 100 12,9 7,1 68,6 0,0 91,4 100 45,6 % 22,9 0,0 0,0 0,0 0,0 0,0 1,4 0,0 71,4 0,0 9,6
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Setup W2: robot target, same run 

 

Rx1, clean CSI Rx1, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 0 0 0 0 0 0 0 0 0 0 -

P2 0 70 0 0 0 0 0 0 0 0 100 P2 0 0 0 0 0 0 0 0 0 0 -

P3 0 0 70 0 0 0 0 0 0 0 100 P3 0 0 0 70 0 0 0 0 0 0 0,0

P4 0 0 0 70 0 0 0 0 0 0 100 P4 0 55 0 0 0 0 0 0 0 0 0

P5 0 0 0 0 67 0 0 0 0 0 100 P5 0 0 0 0 47 0 0 0 0 0 100

P6 0 0 0 0 0 67 1 0 0 6 90,5 P6 0 0 0 0 0 70 0 0 0 0 100

P7 0 0 0 0 0 3 69 0 0 1 94,5 P7 0 0 0 0 1 0 0 0 0 0 0,0

P8 0 0 0 0 3 0 0 70 0 0 95,9 P8 70 0 70 0 0 0 18 0 0 0 0,0

P9 0 0 0 0 0 0 0 0 70 0 100 P9 0 0 0 0 22 0 52 70 70 0 32,7

P10 0 0 0 0 0 0 0 0 0 63 100 P10 0 15 0 0 0 0 0 0 0 70 82,4

% 100 100 100 100 95,7 95,7 98,6 100 100 90,0 98,0 % 0 0,0 0 0 67,1 100 0 0 100 100 36,7

Rx2, clean CSI Rx2, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 0 0 0 0 0 0 0 0 1 0 0,0

P2 0 69 0 0 1 0 0 0 0 0 98,6 P2 0 0 0 0 0 0 2 0 0 0 0,0

P3 0 0 70 1 0 41 17 0 0 0 54,3 P3 0 0 70 33 0 0 0 0 0 0 68,0

P4 0 0 0 69 0 0 2 0 0 0 97,2 P4 0 0 0 8 0 0 0 0 0 0 100

P5 0 1 0 0 68 0 0 0 0 0 98,6 P5 0 70 0 0 13 0 0 0 0 0 15,7

P6 0 0 0 0 0 18 3 0 0 0 85,7 P6 0 0 0 0 10 70 0 0 1 0 86,4

P7 0 0 0 0 0 9 47 0 0 0 83,9 P7 0 0 0 0 0 0 68 0 44 0 60,7

P8 0 0 0 0 0 0 0 70 0 0 100 P8 70 0 0 0 1 0 0 70 2 0 49,0

P9 0 0 0 0 1 2 1 0 70 0 94,6 P9 0 0 0 29 38 0 0 0 20 0 23,0

P10 0 0 0 0 0 0 0 0 0 70 100 P10 0 0 0 0 8 0 0 0 2 70 87,5

% 100 98,6 100 98,6 97,1 25,7 67,1 100 100 100 88,7 % 0,0 0,0 100 11,4 18,6 100 97,1 100 28,6 100 55,6

Rx3, clean CSI Rx3, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 70 0 0 0 0 0 0 0 0 0 100 P1 0 0 0 0 0 0 0 0 0 0 -

P2 0 70 0 0 0 0 0 1 0 0 98,6 P2 0 70 0 0 0 64 0 0 0 0 52,2

P3 0 0 70 0 0 0 0 0 0 0 100 P3 0 0 70 0 0 0 0 70 10 0 46,7

P4 0 0 0 70 0 0 0 0 0 0 100 P4 0 0 0 17 5 0 0 0 0 0 77,3

P5 0 0 0 0 70 0 0 0 0 0 100 P5 0 0 0 0 2 0 0 0 1 0 66,7

P6 0 0 0 0 0 70 0 0 0 0 100 P6 13 0 0 0 1 5 0 0 0 0 26,3

P7 0 0 0 0 0 0 70 0 0 0 100 P7 13 0 0 0 62 0 68 0 0 0 47,6

P8 0 0 0 0 0 0 0 69 0 0 100 P8 0 0 0 53 0 0 0 0 59 0 0,0

P9 0 0 0 0 0 0 0 0 70 0 100 P9 0 0 0 0 0 0 0 0 0 0 -

P10 0 0 0 0 0 0 0 0 0 70 100 P10 44 0 0 0 0 1 2 0 0 70 59,8

% 100 100 100 100 100 100 100 98,6 100 100 99,9 % 0,0 100 100 24,3 2,9 7,1 97,1 0,0 0,0 100 43,1
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Setup W2: robot target, different runs 

 

Rx1, clean CSI Rx1, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 47 0 66 0 0 0 0 0 0 0 41,6 P1 2 30 0 0 0 0 0 0 0 12 4,55

P2 0 70 0 0 0 0 0 23 0 0 75,3 P2 0 0 0 0 0 0 0 0 0 6 0,0

P3 0 0 4 0 69 0 0 0 0 0 5,5 P3 14 20 0 0 2 22 0 0 0 0 0,0

P4 0 0 0 0 0 0 0 0 0 0 - P4 2 0 0 31 44 14 0 0 0 0 34,1

P5 0 0 0 0 0 0 0 0 0 0 - P5 0 0 70 0 0 0 0 2 5 52 0,0

P6 0 0 0 0 0 1 19 47 69 51 0,5 P6 23 0 0 0 0 15 0 43 51 0 11,4

P7 22 0 0 0 0 62 47 0 0 1 35,6 P7 0 15 0 0 22 19 0 0 0 0 0,0

P8 0 0 0 0 0 0 0 0 0 0 - P8 0 0 0 0 0 0 0 25 1 0 96,2

P9 0 0 0 70 1 0 0 0 1 0 1,4 P9 1 2 0 9 2 0 0 0 13 0 48,1

P10 1 0 0 0 0 7 4 0 0 18 60,0 P10 28 3 0 30 0 0 70 0 0 0 0,0

% 67,1 100 5,7 0,0 0,0 1,4 67,1 0,0 1,4 25,7 26,9 % 2,86 0,0 0,0 44,3 0,0 21,4 0,0 35,7 18,6 0,0 12,3

Rx2, clean CSI Rx2, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 0 0 0 0 1 0 0 0 0 0 0,0 P1 70 0 0 20 3 0 12 0 4 2 63,1

P2 48 53 0 0 0 0 0 0 0 34 39,3 P2 0 0 0 24 0 0 0 0 0 33 0,0

P3 22 3 65 0 0 39 68 0 70 14 23,1 P3 0 0 0 18 7 70 0 32 0 0 0,0

P4 0 0 4 68 0 0 0 0 0 0 94,4 P4 0 0 0 0 41 0 0 0 0 0 0,0

P5 0 12 0 0 26 0 0 0 0 21 44,1 P5 0 0 70 0 2 0 37 0 1 31 1,4

P6 0 2 1 1 17 27 0 0 0 0 56,3 P6 0 70 0 0 0 0 0 38 0 0 0,0

P7 0 0 0 1 13 4 1 0 0 0 5,3 P7 0 0 0 0 0 0 0 0 0 0 -

P8 0 0 0 0 0 0 1 0 0 0 0,0 P8 0 0 0 0 0 0 1 0 37 0 0,0

P9 0 0 0 0 13 0 0 56 0 0 0,0 P9 0 0 0 1 1 0 0 0 0 1 0,0

P10 0 0 0 0 0 0 0 14 0 1 6,7 P10 0 0 0 7 16 0 20 0 28 3 4,1

% 0,0 75,7 92,9 97,1 37,1 38,6 1,4 0,0 0,0 1,4 34,4 % 100 0,0 0,0 0,0 2,9 0,0 0,0 0,0 0,0 4,3 10,7

Rx3, clean CSI Rx3, obfuscated CSI
Target Class Target Class

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 % P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 %

P1 0 0 3 1 0 0 0 0 22 0 0,0 P1 0 0 0 0 0 0 0 0 29 0 0,0

P2 16 0 0 0 0 0 22 0 41 0 0,0 P2 0 0 0 0 0 0 0 0 0 0 -

P3 0 0 67 65 0 0 0 0 0 0 50,8 P3 40 20 1 2 0 70 0 0 0 70 0,5

P4 0 0 0 0 0 0 0 0 0 0 - P4 0 0 29 2 0 0 49 51 0 0 1,5

P5 0 0 0 0 0 0 0 0 0 0 - P5 1 0 13 55 16 0 18 0 0 0 15,5

P6 0 0 0 0 70 63 0 0 0 0 47,4 P6 0 0 1 1 0 0 0 0 0 0 0,0

P7 2 59 0 0 0 0 0 0 7 0 0,0 P7 19 50 21 8 0 0 1 4 19 0 0,8

P8 5 0 0 1 0 0 48 5 0 0 8,47 P8 8 0 4 2 53 0 2 15 0 0 17,9

P9 0 0 0 0 0 0 0 0 0 0 - P9 1 0 1 0 1 0 0 0 22 0 88,0

P10 47 11 0 1 0 7 0 65 0 70 34,8 P10 1 0 0 0 0 0 0 0 0 0 0,0

% 0,0 0,0 95,7 0 0,0 90,0 0,0 7,1 0,0 100 29,3 % 0,0 0,0 1,4 2,9 22,9 0,0 1,4 21,4 31,4 0,0 8,1
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APPENDIX B: MATLAB SIMULATION CODE 

We report in this appendix the Matlab code that we wrote for testing the feasibility of the active attack. 
The code that follows generate a Wi-Fi frame using the Matlab WLAN toolbox, add the artificial “CSI- 
randomizer” sequence, which is composed by a number of sinusoidal tones, propagate the signal 
through a random channel, and try to decode it, again using the Matlab WLAN toolbox. It then plots 
the CSI of each correctly received frame. 
 

Main script code, uses function in script “decodeframe.m” below. 
BW = 20; % do analysis for 20MHz frames 
 
% create Wi-Fi signal 
vhtCfg = wlanVHTConfig; % Create packet configuration 
vhtCfg.ChannelBandwidth = sprintf('CBW%d', BW); % 20 MHz channel bandwidth 
vhtCfg.NumTransmitAntennas = 1; % 1 transmit antenna 
vhtCfg.NumSpaceTimeStreams = 1; % 1 space-time stream 
vhtCfg.GuardInterval = 'LONG'; 
vhtCfg.MCS = 0; % Modulation: QPSK Rate: 1/2 
scramblerInitialization = randi([1 127], 1, 1); % Initialize scrambler 
macCfg = wlanMACFrameConfig('FrameType', 'QoS Data'); 
macCfg.FrameFormat = 'VHT'; % Frame format 
macCfg.MSDUAggregation = false; % do not use AMSDU 
macCfg.MPDUAggregation = false; % do not use AMPDU 
lenByte = 50; % frame length (payload) 
symbols = ['0':'9' 'a':'f']; 
payload = symbols(randi(numel(symbols), [1 lenByte * 2])); 
[macFrame, frameLength] = wlanMACFrame(payload, macCfg, vhtCfg); 
vhtCfg.APEPLength = frameLength; 
decimalBytes = hex2dec(macFrame); 
bitsPerByte = 8; 
frameBits = reshape(de2bi(decimalBytes, bitsPerByte)', [], 1); 
txWaveform = wlanWaveformGenerator(frameBits, vhtCfg, ... 
    'NumPackets', 1,'IdleTime', 0, ... 
    'ScramblerInitialization', scramblerInitialization); 
txWaveform = transpose(txWaveform); 
 
% Generate CSI modifier signal 
noise = 0 * txWaveform; 
Tc = 1 / (BW * 1e6); % time step 
t = (0:length(txWaveform) - 1) * Tc; % time domain 
DELTAF = 312500; % carrier spacing 
carriers = [12 13 14 15 16 17 18 ]; % carriers to modify 
for carrier = carriers, 
  noise = noise + exp(j * 2 * pi * carrier * DELTAF * t); 
end; 
noise = noise / length(carriers); 
 
% signal to propagate 
txsignal = [txWaveform + noise zeros([1 1000])]; 
 
% iterate over different random channels and plot received CSI 
figure(1); hold on; 
cbw = vhtCfg.ChannelBandwidth; 
for kk = 1:100, 
  tgacChan = wlanTGacChannel('SampleRate',BW*1e6,'ChannelBandwidth',cbw, ... 
       'LargeScaleFadingEffect','Pathloss and shadowing', ... 
       'DelayProfile','Model-D'); 
  preChSigPwr_dB = 10*log10(mean(abs(txsignal))); 
  sigPwr = 10^((preChSigPwr_dB-tgacChan.info.Pathloss)/1); 
  chNoise = comm.AWGNChannel( 'NoiseMethod','Signal to noise ratio (SNR)',... 
       'SNR',10,'SignalPower', sigPwr); 
  txreceive = transpose(chNoise(tgacChan(transpose(txsignal)))); 
  try 
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    [bytesRecoveredString, eq] = decodeframe(txreceive, sprintf('CBW%d', BW)); 
    NN = length(eq); 
    myfreqs = -NN/2:NN/2 - 1; 
    plot(myfreqs, abs(eq)); 
    drawnow; 
  catch 
    disp 'cannot decode'; 
  end; 
end; 
 
xl = xlabel('Carrier #'); set(xl, 'FontSize', 18); 
yl = ylabel('Magnitude (a.u.)'); set(yl, 'FontSize', 18); 
grid on; 
 
 
 

Function “decodeframe.m” used by the code above. 
function [bytesRecoveredString, chEstVHTLLTF] = decodeframe(txWaveform, chanBW); 
 
cfgVHTRx = wlanVHTConfig ('ChannelBandwidth', chanBW); 
idxLSTF = wlanFieldIndices (cfgVHTRx, 'L-STF'); 
idxLLTF = wlanFieldIndices (cfgVHTRx, 'L-LTF'); 
idxLSIG = wlanFieldIndices (cfgVHTRx, 'L-SIG'); 
idxVHTSIGA = wlanFieldIndices (cfgVHTRx, 'VHT-SIG-A'); 
idxVHTSTF = wlanFieldIndices (cfgVHTRx, 'VHT-STF'); 
idxVHTLTF = wlanFieldIndices (cfgVHTRx, 'VHT-LTF'); 
idxVHTSIGB = wlanFieldIndices (cfgVHTRx, 'VHT-SIG-B'); 
idxVHTData = wlanFieldIndices (cfgVHTRx, 'VHT-Data'); 
 
rx = transpose(txWaveform); 
pktOffset = wlanPacketDetect (rx, chanBW, 0); 
LSTF = rx (pktOffset + (idxLSTF (1):idxLSTF (2)), :); 
coarseFreqOffset = wlanCoarseCFOEstimate (LSTF, chanBW); 
 
% Symbol timing synchronization 
LLTFSearchBuffer = rx (pktOffset + (idxLSTF (1):idxLSIG (2)),:); 
pktOffset = pktOffset + wlanSymbolTimingEstimate (LLTFSearchBuffer, chanBW); 
 
% Timing synchronization complete: packet detected 
fprintf ('Packet detected at index %d\n\n', pktOffset + 1); 
 
% Fine frequency offset estimation using L-LTF 
LLTF = rx (pktOffset + (idxLLTF (1):idxLLTF (2)), :); 
fineFreqOffset = wlanFineCFOEstimate (LLTF, chanBW); 
demodLLTF = wlanLLTFDemodulate (LLTF, chanBW); 
chanEstLLTF = wlanLLTFChannelEstimate (demodLLTF, chanBW); 
 
noiseVar = helperNoiseEstimate (demodLLTF); 
 
fmt = wlanFormatDetect (rx (pktOffset + idxLSIG (1):end), chanEstLLTF, noiseVar, 
chanBW); 
disp([fmt ' format detected']); 
 
[rxLSIGBits, failCheck, eqLSIGSym] = wlanLSIGRecover (rx (pktOffset + (idxLSIG 
(1):idxLSIG (2)), :), chanEstLLTF, noiseVar, chanBW); 
 
if failCheck 
  disp '** L-SIG check fail **'; return; 
end; 
 
[recBits,failCRC,eqSym] = wlanVHTSIGARecover (rx (pktOffset + (idxVHTSIGA (1): 
idxVHTSIGA(2)), :), chanEstLLTF, noiseVar, chanBW); 
BW = bi2de (double (recBits(1:2).')); 
 
if BW == 3, 
  disp 'Supports only 20/40/80MHz'; 
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  return; 
end; 
GID = bi2de (double (recBits(5:10).')); 
if GID ~= 0 & GID ~= 63, 
  disp 'Not SU frame'; 
  return; 
end; 
NSTS = bi2de (double (recBits(11:13).')); 
if NSTS ~= 0, 
  disp 'Only 1 SS supported'; 
  return; 
end; 
NSTS = 1; 
GUARDINT = bi2de (double (recBits(25).')); 
MCS = bi2de (double (recBits(29:32).')); 
BEAMFORMED = bi2de (double (recBits(33).')); 
if BEAMFORMED, 
  disp 'Not compatible with beamforming'; return; 
end; 
VHTLLTF = rx (pktOffset + (idxVHTLTF (1): idxVHTLTF (2)), :); 
demodVHTLLTF = wlanVHTLTFDemodulate (VHTLLTF, chanBW, NSTS); 
chEstVHTLLTF = wlanVHTLTFChannelEstimate (demodVHTLLTF, chanBW, NSTS); 
 
[recBits,eqSym] = wlanVHTSIGBRecover (rx (pktOffset + (idxVHTSIGB (1): 
idxVHTSIGB(2)), :), chEstVHTLLTF, noiseVar, chanBW); 
 
if BW == 0, % 20MHz 
  LEN = bi2de (double (recBits(1:17).')); 
elseif BW == 1, % 40MHz 
  LEN = bi2de (double (recBits(1:19).')); 
elseif BW == 2, % 80MHz 
  LEN = bi2de (double (recBits(1:21).')); 
end; 
 
LENBYTE = LEN * 4; 
vhtCfgRX = wlanVHTConfig; 
vhtCfgRX.ChannelBandwidth = chanBW; % sprintf('CBW%d', chan80'; 
vhtCfgRX.NumTransmitAntennas = 1; 
vhtCfgRX.NumSpaceTimeStreams = 1; 
vhtCfgRX.GuardInterval = 'LONG'; 
if GUARDINT ~= 0, 
  vhtCfgRX.GuardInterval = 'SHORT'; 
  disp 'Using short guard interval'; 
else 
  disp 'Using long guard internval'; 
end; 
vhtCfgRX.MCS = MCS; 
vhtCfgRX.APEPLength = LENBYTE; 
 
bitsRecovered = wlanVHTDataRecover(rx (pktOffset + idxVHTData(1):end), chEstVHTLLTF, 
noiseVar, vhtCfgRX); 
bytesRecovered = bi2de (reshape (bitsRecovered, 8, length(bitsRecovered) / 8)'); 
bytesRecoveredString = sprintf('%02x', bytesRecovered); 
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