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Abstract—Channel State Information (CSI) based localization
with 802.11 has been proven feasible in multiple scenarios and is
becoming a serious threat to people privacy in work spaces, at
home, and maybe even outdoors, even if outdoors experiments
proving the feasibility are still not available. Countering unautho-
rized localization without hampering communications is a non-
trivial task, although some very recent works suggest that it is
feasible with marginal modification of the 802.11 transmission
chain, but this requires modifying 802.11 devices. Furthermore,
if the attacker controls two devices and not only a receiver,
transmission side signal manipulation cannot help. This work
explores the possibility of countering CSI based localization
with an active device that, instead of jamming signals to avoid
that a malicious receiver exploits CSI information to locate a
person, superimpose on frames a copy of the same frame signal
whose goal is not destroying reception as in jamming, but only
obfuscate the location relevant information carried by the CSI. A
prototype implementation and early results looks promising; they
show feasibility of location obfuscation with high efficiency and
excellent preservation of communication performance, paving the
road for further research and improved users privacy.

I. INTRODUCTION AND BACKGROUND

The estimation of the propagation channel through the so-
called Channel State Information (CSI) is one of the enabling
mechanisms to support multi-gigabit throughput in 802.11
systems. The development of new CSI-based equalization
techniques inside next generation 802.11be (branded Wi-Fi
7 by the Wi-Fi Alliance) allows up to 16 spatial streams and
a datarate of 46 Gbit/s [1]. In parallel with the transmission
performance boost, another interesting use of CSI emerged:
CSI-based localization. The attention to CSI-based localization
was brought by early works [2]–[5] nearly 10 years ago,
immediately proving that CSI-based localization techniques has
the ability to outperform traditional Received Signal Strength
Indicator (RSSI)-based techniques.

After these initial works, the topic flourished, with proposals
to identify activities and gestures [6]–[8], health and medical
applications [9] or even “hear” people [10], and many other
works and papers that is not possible to cite here.

Recent years witnessed the explosion of Machine Learning
(ML) and Artificial Intelligence (AI) methodologies applied
to the topic [11]–[16], which achieve astounding results using
different classification or analysis techniques, often involving
Deep Learning or Reinforcement Learning.

This work has been partially funded at the University of Brescia by the
European Commission under the Horizon 2020 Orchestration and
Reconfiguration Control Architecture – ORCA project (grant no. 732174)
Open Call 3 “Experimental analysis of CSI based anti-sensing techniques –
CSI-MURDER” experiment.

What none of these works have ever discussed, is how
ethical or intrusive the CSI-based localization can be. What
characterize most of these techniques compared with others,
e.g., based on the Time of Flight of frames, is that they can
be used without consent from the localized person, which is a
clear violation of privacy, not to mention the security problems
that can arise with the ability of some attacker to tell if and
how many people are inside a room, house, or laboratory.

The technology is particularly invasive because the attack can
be both passive or active and the victim is completely unaware
of the attack: She/he does not need to wear any device to be
located, and has no means to detect the attack. In a passive
attack, attackers capture frames transmitted by sources in well
known positions, like almost all the Access Points (APs) we
normally have at home or at work; attackers do not need to
control such transmitters, they only have to place a receiver
somewhere in the same room for precise localization or even
outside if the goal is detecting presence or approximate location.
In an active attack, instead, attackers control both a transmitter
and a receiver: they have more freedom, and power, in the
design of the attack. In case of active attack, the attacker may
decide to use a different technology for location sensing, but in
this case the attack is very easy to detect on-air and prevention
by simple jamming is easy, not to mention that the non-Wi-Fi
devices can be easily tracked and removed.

This paper introduces CSI-based localization fundamentals,
the related work, and sketches the general principles of
localization privacy protection based on the obfuscation of the
location information carried by the CSI. The core contribution
of this work is the design, implementation and analysis of an
obfuscation technique based on the injection in the channel of
artificial signal reflections that can prevent active attacks, i.e.,
those where the attacker controls at least one transmitter and
one receiver. In these scenario, in fact, manipulating the signals
at the (legitimate) transmitter is not sufficient to prevent the
attack, and manipulating the signal transmitted by the attacker’s
device is clearly not possible. One may argue that an active
attack is detectable, as it implies on-air traffic which is not
“legitimate.” The observation is valid, but of limited use: who
cares when yet-another Service Set Identifier (SSID) appears at
home? Not to mention public spaces, where nobody can really
control what are the legitimate Wi-Fi users. Even in office
environments it is very difficult to imagine that the victim can
identify an attack, if not for else because the victim can be an
employee and the attacker the employer, who wants to control
his/her employees beyond what legislation permits.



II. CSI-BASED LOCALIZATION

Figure 1: Amplitude and unwrapped phase of the CSI collected from
100 frames with a person standing in two different locations in our
lab in Brescia.

Whatever the technology used to extract location information
from the CSI, this information must be present in the signal
itself. It is embedded in the signal during propagation and
carries pieces of information on people presence and location
because a human body absorbs, scatters, and reflects Wi-Fi
signals. Fig. 1 reports the amplitude and unwrapped phase of
100 frames collected with a person standing in two different
locations in our lab in Brescia. The exact location is irrelevant,
but it is clear that the amplitude of consecutive received
frames is remarkably constant in the same location, while
it changes significantly when moving from one location to
another. Repeating the experiment at different times shows that
there is a time-based variation, but still the CSI carries enough
location-specific information to allow a proper algorithm to
infer the person location. It is clear that both the amplitude and
phase are affected, although the linear variation of the phase
with the carrier frequency has nothing to do with localization,
and only phase jumps are important.

Figure 2: 802.11 receiver modified to infer people location; first the
localization system is trained with a person standing in positions
of interest building a reference set, during the attack the infers the
position of the person classifying CSI data on the reference set.

The transmission technique has clearly a huge importance in
CSI manipulation, and the structure of Wi-Fi frames, their gen-
eration and filtering at both the transmitter and the receiver are

fundamental to fully understand localization techniques. Fig. 2
sketches the diagram of a single antenna receiver modified to
retrieve information on people’s localization. After sampling
the incoming signal, samples are duplicated. The standard
data-path goes through the equalizer that compensates the
channel distortions, and then to the demodulation and decoding
blocks that yield the frame bits if decoding is successful.
The duplicated samples, instead, enter the localization system
that, exploiting the same CSI used by the equalizer, yields
an estimation of the person’s location. The CSI is carried by
the training sequences at the beginning of the frame, and in
particular by the Long Training Sequence (LTS), whose bits
and structure are known, allowing the equalizer to compute
the channel frequency response, and the localization system to
use this information to fingerprint the person’s position.

The localization techniques that have received more attention
recently are based on Neural Networks (NNs) that are trained
with someone standing in a known position and then, during the
attack, estimate the position of a person based on the training
fingerprints. Given a localization technique, the system that
implements it can follow several design lines. One key design
decision regards the transmissions. The localization system can
be passive, i.e., it exploits the data packets normally sent by
users, of it can be active, i.e., it uses frames that are sent by a
device specifically to perform the localization.

A passive attack is easier to mount as only a specialized
receiver is needed to perform the localization; however, the
frames used for localization must come from a transmitter in
a fixed location (not necessarily known), because otherwise
the change in CSI determined by the transmitter movement
completely confuses the classification at the receiver. In most
cases this is not a problem, since APs are fixed and they
also generate the largest amount of traffic. On the other hand,
as we have shown in [17], it is possible to obfuscate the
information on localization carried by the CSI by properly
manipulating the transmitted frames, so that protection against
passive localization is achievable.

An active localization attack, instead, uses both a transmitter
and a receiver, so it is somewhat more complex, it is detectable
because there are frames on-air that do not belong to a legiti-
mate Basic Service Set (BSS), but there is no way to confuse the
localization technique by manipulating the transmitted frames,
as the transmitter is not controlled by legitimate users, but by
the attacker. In this work, we concentrate on active localization
systems based on fingerprinting and a single transmitter-receiver
pair. We do not consider localization techniques based on the
angle of arrival and we do not consider the possibility to have
more than one receiver that work coordinately to improve the
localization accuracy.

The localization technique adopted in this work relies
on a Convolutional Neural Network (CNN) to perform the
classification task. The design of the CNN is inspired by the
work in [14] and refined in [18]. Based on these two works,



within the CSI-MURDER project1 we have developed an effi-
cient implementation that has good localization efficiency and
properties as we discussed in [17]. A high-level representation
of its architecture is shown in Fig. 3.
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Figure 3: Architecture of the CNN used by our localization system.

One CSI data is extracted from each 802.11 frame correctly
decoded at the receiver, each one being an array of complex
values (the IQ samples) computed at the receiver to estimate
the frequency response of the channel. We consider 802.11ac
frames transmitted on 80 MHz channels in the 5 GHz band;
therefore, each raw CSI point consists of 256 complex values.
During the preprocessing phase, we remove data relative to
all the subcarriers that are suppressed by the modulation
for communication purposes, since they do not carry any
information. The input of the CNN is thus a 242× 2 matrix.
The first two convolutional layers of the CNN shown in Fig. 3
are used to extract complex features from the input data by
exploiting the similarity of adjacent frequencies. In cascade to
the convolutional layers, there are three fully-connected layers.
The output of the last layer corresponds to a choice among one
of the possible classes, i.e. positions. The number of classes
can be changed as it is needed by the localization task without
modifying the other layers of the CNN, its range and scope is
rather flexible, from simple binary decisions (e.g., right hand
side or left hand side of the room), to fine classification of
arbitrary positions, not necessarily in a regular grid, to estimate
(x, y) coordinates in a Cartesian space provided that the training
grid is sufficiently dense, as we did in [17] where we explored
localization obfuscation against passive attacks. All the layers
but the last (which uses a softmax function) use a common
Rectified Linear Unit (ReLU) activation function. The Adaptive
Momentum Estimation (ADAM) algorithm is used to adjust
the weights of the CNN during the training phase.

III. RELATED WORK

A review of CSI based localization techniques is out of the
scope or this paper; we overview only works whose target is
localization obfuscation or localization privacy protection.

Our previous work [17] deals with localization obfuscation
against passive attacks. Albeit the scope of the two works is
the same, the methodology is rather different. In a passive
attack, localization is based on the CSI of frames transmitted
by APs, and countermeasures can be based on the manipulation

1Further details on this project, the software produced an so forth can be
found at https://ans.unibs.it/projects/csi-murder/.

of frames at the transmitter: no additional devices are needed
and the paper presents a simple proof-of-concept showing that
proper manipulation at the transmitter can obfuscate the actual
position of a person.

A countermeasure against Wi-Fi sensing attacks has been
implemented in [19] to prevent gesture recognition; similarly
to our proposal, this system relies on an additional component
acting as a relay that must be placed in the environment, and
we also inherited from this work the term obfuscation with the
meaning of distorting the information imprinted on a frame by
the environment, contrasted to the more common jamming that
instead superimpose (sum) a different signal (possibly noise)
with the goal of making the frame useless, thus also killing
communication capabilities. This said the techniques proposed
are different and [19] is focused on gesture recognition rather
than localization.

A closely related work published recently [20] manipulates
the CSI with the goal of avoiding device radiometric fingerprint-
ing and helping in the prevention of impersonation attacks. The
goal of the paper is not localization; however the technique used
are similar to those we use in this work, and clearly, in case a
person also holds a Wi-Fi device the double attack identifying
the device and the location of the person is a possibility.

Finally, exploiting a reactive jamming device that selectively
kills frames that belong to the localization attack can be
conceived and techniques like [21], [22] can be adapted to the
scope. Actually, to the best of our knowledge, this has never
been proposed in the literature, so it is difficult to state how
effective it can be; moreover the approach requires to know
that a localization attack is under way, and the jamming device
must recognize the illegitimate traffic and try to kill those
frames only, while our approach is transparent, as it does not
affect the reception of frames, so that the obfuscating device
can be active at any time on any frame.

IV. ACTIVE CSI BASED ATTACKS AND OBFUSCATION

An active localization attack is based on the control, by
the attacker, of one transmitter and at least one receiver. The
attacker has thus full control of the transmission chain and
the only way to interfere with his/her intrusion is by actively
mingling transmitted frames on the channel.

A. Attack Model

Fig. 4 depicts the attack model. A person is standing in a
room, can be an office or home or anywhere, and the attacker
aims at collecting information on the person position. To
achieve this goal the attacker has installed a standard Wi-Fi
transmitter and a modified receiver. The receiver implements
the localization technique described in Sect. II and has the
ability to access the room at some time to train the CNN. After
training the CNN the attacker can simply configure the system
to send frames periodically and collect the estimation of the
person position when she/he is in the room. The attacker can
possibly use more than one receiver, presumably improving the
localization performance by correlating the position estimation
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Figure 4: In active localization, the attacker controls both the
transmitter and at least one receiver; the location privacy of the
victim can be preserved only if an active device is able to obfuscate
the CSI of frames.

by all the receivers. This possibility is however beyond the
scope of this paper and it is left for future work.

B. Active Obfuscation Requirements

To protect people privacy in presence of an active attack,
which can be difficult to detect as we discussed at the beginning
of the paper, the only possibility is to install an active device
that randomly changes the channel response “reflecting” the
incoming signal with a properly designed amplification, delay
and phase distortion. The key idea is that this device acts as
an additional feature of the propagation environment, changing
it in such a way that it is impossible for the localization
system to identify the position of the person based on the
CSI fingerprint, because this latter contains too much random
information to allow identifying the features that allow the
position classification. This device is the obfuscator in Fig. 4,
but since it conceptually reflects the Wi-Fi signal, we also call
it the reflector throughout the paper.

The obfuscator cannot operate only on non-legitimate frames,
simply because the reflection delay must be well below a
single symbol duration, and it is impossible to read the
Medium Access Control (MAC) addresses before reflection.
Since the CSI information is embedded in preambles, stopping
the reflection when MAC addresses are available would be
detrimental to frame reception as it is equivalent to have a
channel coherence time shorter than a frame.

Similarly to an attacker controlling more than one receiver,
also the reflectors can be more than one, possibly enhancing
the obfuscation performance; however, this analysis is left for
future research.

V. ACTIVE CSI RANDOMIZATION

In a real anti-localization system the obfuscator can be a
repeater that mimics a reflective surface, or, in a bit more
futuristic scenario it can be a Reflective Intelligent Surface [23]
changing its properties under the control of a proper obfuscation
function. The goal of the obfuscator is to add one more
“reflecting path” into the propagation environment, and to
manage this artificial path to confuse the localization algorithm.
At the same time the channel distortion must remain plausible,
meaning that it should allow the equalizer at the receiver

Figure 5: Effect of the active obfuscation on the CSI. In both cases the
victim is standing still in one position; however, when the obfuscator
is actively relaying the received signal, the channel conditions appear
to change over time.

to correctly compensate the distortion so that frames can be
received without reducing the communication performance.

To fix the ideas on what an active obfuscation shall achieve,
consider Fig. 5. On the left hand side there are 100 CSI
amplitude samples collected as reference (in blue) and 100
collected after 10 s when a person is standing still in a given
position and there is no obfuscation. On the right hand side,
instead, we repeated the same experiment with the obfuscator
on. It is clear that the obfuscator actually alters significantly
the propagation environment (the blue lines are very different
in the two plots) and after 10 s the red lines tell a different
propagation story, and we can conjecture that any localization
technique will have a hard time in fingerprinting and classifying
positions.

Ideally, the outcome of the obfuscation at the receiver should
be indistinguishable from a standard channel response, both in
the distribution of attenuation and phase jumps, and in the time
correlation. It is still not clear if this is fully achievable, also
because there is a lack of experimental studies that properly
characterize the stochastic properties of the channel response.

VI. IMPLEMENTATION

The implementation of the obfuscator/reflector in hardware
is unfortunately beyond the possibilities of our lab; let alone
realizing a controllable reflective intelligent surface. Moreover,
such an expensive endeavor is justified only if the proposed
technique works and is tamper proof; thus to realize our proof-
of-concept implementation we resort to Software Defined Radio
(SDR) devices and a little ‘trick.’

Our setup consists of two SDRs—namely two Ettus USRP
N300, one for the transmitter and one for the obfuscator—and
a commercial AP (Asus RT-AC86U) used as receiver. The SDR
transmitter keeps sending 802.11 frames generated using the
Matlab WLAN Toolbox at a constant rate of one frame every
10 ms. The receiver includes a Broadcom chipset from which
we extract the CSI data points using the tools provided by the
Nexmon project [24]. The localization system is implemented
off-line working on the memorized CSI data points, since there
is in general no real-time requirement in the identification of
a person’s position. In any case the analysis of the CSI by the
CNN of the localization system is extremely fast: according to
our tests, an Intel Core i7 clocked at 4.4 GHz takes as only as
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Figure 6: Schematic representation of the experimental setup; the
obfuscator acts as an active, configurable reflector.

60µs for processing the CSI data extracted from every single
frame.

Implementing a real-time 802.11 signal relay in software is
hard: the latency introduced by typical SDR systems cannot
meet the strict timing requirements and in general some kind
of hardware-accelerated processing is necessary. In case of
hardware implementation, the delay, which is in the order of
nano seconds to tens of nano seconds, is easily achievable
working in the analog domain. For this reason, we resort to a
gimmick in order to implement our system that is shown in
Fig. 6. The two SDRs—one playing as the attacker’s transmitter
and the other one as the obfuscator—are synchronized by
means a common clock source. This common clock source
is provided in our case by an Ettus Octoclock-G and consists
of both a 10 MHz reference signal and a 1 Hz separate signal
(Pulse Per Second (PPS)) that together allow almost perfect
synchronization. Once the two SDRs are synchronized, the
obfuscator can emulate the effects of a reflected path in different
ways.

The easiest way to emulate a reflected path is to apply a
delay to the signal transmitted by the obfuscator, i.e., to shift
the sequence of IQ samples transmitted by the obfuscator by a
certain amount of samples. Despite being simple, this solution
has a substantial limitation: samples are transmitted by the radio
at a fixed rate; therefore, the time between two consecutive
samples is completely determined by the available bandwidth.
In our implementation, the transmission rate of the N300 SDRs
is 125 MSample/s, which corresponds to a sampling period
of 8 ns. This means that the minimum delay that corresponds
to a shift of the sequence by one sample is equivalent to a
path difference of approximately 2.4 m. Moreover, this method
can only emulate propagation delays that are multiple of this
quantity, which would be an inconvenient limitation in the
implementation of our proof-of-concept.

A better solution is to process the sequence of IQ samples
in the frequency domain. Given the digital signal x[n] and
assuming that all the conditions on proper sampling are satisfied,
we apply the Discrete Fourier Transform (DFT) to get its
representation in the frequency domain X[k] (Eq. (1)). Then,
we modulate the digital frequencies by a complex exponential
as in Eq. (2) to obtain Xd[k], which is the frequency domain
representation of the delayed digital signal xd[n] obtained
applying the Inverse DFT (Eq. (3)). The effect of these
operations is to produce a new sequence of samples xd[n]

representing a signal that is a copy of x[n] delayed by a generic
quantity ∆t, expressed in number of samples. In this case ∆t
can also be a fraction, which allows an arbitrary resolution
when tuning the delay introduced by the obfuscator.

X[k] =

N−1∑
n=0

x[n] · e−j 2π
N kn, k = {0, ..., N − 1} (1)

Xd[k] = X[k] · e−j 2π
N k∆t (2)

xd[n] =
1

N

N−1∑
k=0

Xd[k] · ej 2π
N kn, n = {0, ..., N − 1} (3)

In our implementation, the delay ∆t introduced by the
obfuscator can change between a minimum value t0 (which is
manually set depending on the relative position of transmitter
and obfuscator) and a maximum value t1 that is set to
t0 + 120 ns. This arbitrary value corresponds to a path of
the signal that is approximately 36 m longer than the shortest
possible one generated by the obfuscator.

Early tests showed that it is possible to obfuscate the position
of the victim by letting the artificial delay ∆t vary uniformly
within the given range. However, our goal is to obfuscate the
position of the person and a clever attacker might identify the
obfuscation if the CSI is too random. For this reason, we devise
a simple algorithm that changes the delay by a random quantity,
but with a Markovian correlation on the previous frame, so
that to a simple statistical analysis it would look like a moving
person. Obviously, the obfuscator must retain the delay applied
previously when applying a new delay. In our implementation,
we update the value of the delay ∆t every 100 ms according to
Eq. (4). The quantity U[0,1] is a uniform random variable taking
values between 0 and 1. This specific value of the increment
makes the total length of the multipath component introduced
by the obfuscator change with an average speed of 1.2 m/s. The
sign of the increment becomes negative when ∆t reaches the
maximum value t1 and returns positive when ∆t falls below
t0. In this way, ∆t continuously swings between t0 and t1
with an average round-trip time of 30 s.

∆tnew = ∆told ± 0.1 · U[0,1] (4)

This evolution mimics, with some simplifications, what would
happen if the reflection is due to a person moving in the room
with a random waypoint mobility model and a strolling speed
around 0.6 m/s. Clearly more sophisticated patterns can be used,
but we kept it simple for the sake of results interpretation.2

VII. SCENARIO AND MEASURES

Our experiments are carried out in a laboratory of the ANS3

group at the University of Brescia. A plan of the laboratory

2Observing the evolution in time of the channel response (at least of its
complex envelope amplitude) when the reflector is on and when it is off is
extremely insightful. Unfortunately, it is impossible to include a movie in a
paper; the interested reader can find some examples of the evolution in time
of the channel response on the CSI-MURDER web site
(https://ans.unibs.it/projects/csi-reflector/).

3The Advanced Networking Systems group is a research group in
telecommunication at the University of Brescia
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Figure 7: Plan of the lab in which localization experiments are
performed. The small square dots represent the target locations of
the victim. The red ‘shadows’ labeled A, B, C are the locations of
the obfuscator in different scenarios. Five different positions for the
receiver are also considered.

with the positions of the transmitting and receiving nodes is
shown in Fig. 7. The transmitter and all the receivers, controlled
by the attacker, are placed outside of the room on two opposite
sides. We assume that the victim is standing inside the room in
one of the nine possible spots P1, . . . P9 in Fig. 7. Position 9, at
the center of the room, is very close to a metallic pole with an
electrical cabinet, thus it is a position where the presence of a
person may not induce significant variations to the environment
from an electromagnetic point of view.

As indicated in Fig. 7, we consider three different positions
of the obfuscator: A) in front of the transmitter (TX); B)
at a 45◦ angle from TX and the receiver (RX2); and C)
in front of RX2. The three positions of the obfuscator with
respect to the other receivers (RX1,3,4,5) assume many different
configurations. Indeed, the position of RX4 and RX5 can seem
“weird” and one may think that with the receiver outside the
room on the same side the localization system cannot work,
but this is not always the case. Overall the setup consists of 15
possible configurations, giving a good “coverage” of different
layouts and scenarios, considering also experiments when the
obfuscator is off, it makes 20 different experiments.

For each target position and experiment we collect 800
samples (i.e., CSI data points associated to one 802.11 frame)
for the training phase and 100 samples for the testing phase.
Training and testing samples are collected from two different
experiments with the same setup, but not at the same time to
make experiments more realistic.

To assess the validity of the proposed CSI randomization
technique, we compare the classification accuracy of the

Table I: Confusion matrix for receiver RX2 in two different scenarios.
Upper numbers in every cell refer to the results obtained with
the obfuscator off, while the lower numbers are obtained with the
obfuscator in position A. The last column (in gray) reports the True
Positive Ratio, i.e. the number of correct guesses among all the
ones produced for a given position. For each target position, we are
considering 100 CSI samples.

74 0 0 0 0 0 0 0 0 100%
0 0 22 0 0 0 0 0 0 0%
0 100 0 0 0 0 0 0 0 100%
0 0 24 0 0 71 0 2 0 0%
26 0 100 0 6 0 0 0 4 74%
14 0 0 0 0 0 0 30 82 0%
0 0 0 100 0 0 0 0 82 55%
0 5 0 0 1 0 0 1 3 0%
0 0 0 0 94 0 0 0 0 100%
0 0 0 94 99 0 0 0 0 51%
0 0 0 0 0 100 0 0 0 100%
0 1 0 0 0 0 0 0 0 0%
0 0 0 0 0 0 100 0 0 100%
86 94 0 0 0 0 100 67 15 28%
0 0 0 0 0 0 0 100 14 88%
0 0 54 6 0 29 0 0 0 0%
0 0 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0 0 0 -
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localization system when the obfuscator is on (in the three
different positions) and when it is turned off, and this for all the
5 receivers. When we consider obfuscation, the obfuscator is on
also during training, otherwise the training classification would
have no meaning during testing and localization is obviously
impossible.

VIII. EXPERIMENTAL RESULTS

First of all we want to assess the quality of the experimental
setup, to avoid biases and results that are peculiar to some
specific features of the setup itself. Tab. I reports the confusion
matrix of one experiment with the obfuscator in A and RX2.
The two numbers in the squares report the absolute number
of classifications for the position on the rows when the actual
position is the one in the columns. The upper number is with
the obfuscator off, while the lower one is with the obfuscator
on. The diagonal (green squares) is in practice the accuracy
for every position, and the lowest square is the overall average.
It is clear that the localization works well when the obfuscator
is off, while it is barely better than a random guess when the
obfuscator is on.

Position P9 results to be peculiar, and the localization never
works in this point. We think the reason is the presence of
the pole with the electrical cabinet, so in the remaining of the
paper we exclude P9 from the evaluation, as it is indeed a bias
due to the specific location.

A specific note is due also for P5 and P7. For these two
points the accuracy of the localization system is very high even
with the obfuscator on. However, we have to consider that the



Table II: Accuracy of the localization system in the considered scenarios.

Accuracy [%]
RX1 w. obfuscator RX2 w. obfuscator RX3 w. obfuscator RX4 w. obfuscator RX5 w. obfuscator

Positions off A B C off A B C off A B C off A B C off A B C

1 100 9 0 6 75 0 0 0 93 0 11 96 0 19 0 0 17 0 0 0
2 100 0 4 0 100 0 10 0 100 41 0 0 91 8 0 0 14 0 0 0
3 100 0 20 95 100 0 62 95 100 0 100 74 98 0 0 14 12 7 0 94
4 94 0 100 0 88 0 99 0 99 2 89 0 100 0 100 0 17 1 86 0
5 97 100 100 66 94 99 100 61 66 98 98 69 100 99 100 49 17 93 91 19
6 80 3 60 93 99 0 0 38 100 2 0 0 97 0 0 0 15 0 0 3
7 89 22 0 0 100 89 1 78 79 76 29 0 99 33 0 0 13 3 0 0
8 100 0 78 100 100 0 0 94 100 5 0 80 100 0 0 84 9 0 0 91

Average 95 17 45 45 95 24 34 46 92 28 41 40 86 20 25 18 14 13 22 26

localization system is a classifier: it must assign a position to
each CSI data point, and it seems that in this experiment it has
a certain preference for these two locations. Looking at the
last column, in fact, that reports the True Positive Rate (TPR),
i.e., the ratio between correct guesses and all the guesses in a
given position, it is clear that these two positions are selected
much more frequently than the others, so that the the TPR for
these two positions is just 55% and 28% respectively, which
is not that high.

We can now present the overall results, which are condensed
in Tab. II, even if they refer to 20 different experiments and
thousands of collected and analyzed CSI data points. The rows
refer to the 8 positions we consider, while the columns are the
20 different experiments. It is clear that when the obfuscator
is off, the localization system can efficiently determine the
location of the target with high accuracy, above 90% on average
when the receiver is on the other side of the room, and above
85% for RX4. Only RX5 is not able to properly localize the
person, and this is clearly due to an “overwhelming” direct
path between a transmitter and a receiver so close.

When the obfuscator is turned on, the localization accuracy
drops. While some configurations seem to work better than
others, in all the considered cases the accuracy of the local-
ization system is significantly impacted by the presence of
the obfuscating node and the average accuracy varies between
17% and 46%. Recall that a random guess would be 12.5%
accuracy. It is difficult to draw a general conclusion on what is
the best possible location for the obfuscator, or in turn, what
is the best place for the attacker to place its nodes knowing
where the reflector is. It is clear that RX4 is a less favorable
position to infer the location, but it is also clear that even such
position works without countermeasures, while it does not with
the obfuscator on.

A specific comment is due for RX5, where we observe
the surprising behavior of an increased accuracy when the
obfuscator is active in positions B and C. Indeed this is not
surprising at all, because in this case the reflector injects a
signal that is far from the receiver, thus it can be influenced by
the person position, adding information in the CSI that is not
present when the transmitter is “too close” to the receiver. This

result is very interesting and shows that localization obfuscation
may be trickier than expected.

A. Impact on throughput

Protecting users’ privacy is useless if in doing this the
service is destroyed, thus we have run an experiment aiming
at verifying that the obfuscating node is not harming the
throughput of the communication between the transmitter
and the receiver. To this end, we send 1000 frame from the
transmitter and we monitor how many of them we correctly
decode at the receiver, so that we can compute the Packet
Delivery Rate (PDR) for different scenarios as reported in
Tab. III. The PDR can vary in function of the MCS employed
for the communication. Frames with a higher MCS are required
to reach a high throughput but they are more sensitive to noise
and interference, especially in a complex environment such
as our lab. One striking evidence is that the PDR apparently
improves when the obfuscator is active inside the room. The
rationale of this is that the obfuscator is actually working as a
relay for the frame sent by the transmitter creating a dominant
second path, but also increasing the overall signal strength,
hence improving the quality of the link between transmitter and
receiver. This observation is once more extremely interesting,
because it hints to the possibility of creating privacy preserving
environments with extremely high communication performance,
possibly using more than one reflector.

IX. CONCLUSIONS AND FUTURE WORK

Environment sensing attacks exploiting 802.11 BSSs have
been proven feasible by recent works and represent a serious
threat to users’ privacy, exposing the presence of people in a
room, and even their precise position within it.

In this work we have shown that it is possible to counter
CSI-based localization with an active device that, instead of
jamming malicious signals, acts as a relay and forwards the
received frames with a varying delay to the sensing receiver,
thus confusing the CSI information in some sense mimicking
a continuous variation of the electromagnetic environment.
A brief heuristic discussion on how location privacy can
be achieved against an active attack where the attacker



Table III: PDR as a function of the MCS, with the obfuscating node
placed in different positions, averaged over the five positions of the
receiver.

Obfuscator
MCS Off Pos. A Pos. B Pos. C
index Mbit/s [%] [%] [%] [%]

0-BPSK 29.3 99.3 99.8 96.1 99.7
1-QPSK 58.5 99.3 99.4 99.4 99.4
2-QPSK 87.8 99.3 99.5 99.5 99.5
3-16-QAM 117.0 99.3 99.4 99.5 99.4
4-16-QAM 175.5 97.6 98.9 99.2 99.4
5-64-QAM 234.0 69.5 97.7 97.9 98.5
6-64-QAM 263.3 57.8 96.0 97.8 98.2
7-64-QAM 292.5 49.7 94.0 90.6 95.2
8-256-QAM 351.0 27.3 54.2 49.5 71.9
9-256-QAM 390.0 19.1 30.5 38.1 26.2

controls both a transmitter and a receiver is followed by the
design of such a privacy protection system. The experimental
results obtained with an SDR framework fully support the
heuristic derivation, and provide a clear proof-of-concept of
the feasibility of location privacy protection coupled with high
quality communications.

This work is just an initial step. Experiments with more
receivers that correlate their data are needed, a more complete
theoretical analysis and understanding of the system is due,
as well as the design of future environments where Reflective
Intelligent Surfaces may boost communications and privacy
for networks beyond 5G.
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