
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale

in Ingegneria Informatica

Tesi di Laurea

EvilRoam: analysis and deployment of
evil-twins-based attacks to Eduroam network

users’ security

Relatore: Chiar.mo Prof. Francesco Gringoli

Laureando:
Gabriele Bellicini

Matricola n. 708588

Anno Accademico 2020/2021

Contents

1 Introduction 4

2 Basics of WPA-Enterprise 6

2.1 Actors in WPA-Enterprise . 7

2.2 802.1X, EAP and RADIUS . 8

3 Authentication tools in 802.1X 10

3.1 Server-side authentication: digital certificates 10

3.2 Supplicant-side authentication: EAP methods 14

4 Steps of 802.1X authentication 19

4.1 Anonymous identity exchange . 20

4.1.1 Step 1 - example . 21

4.2 Negotiation of the phase 1 method 21

4.2.1 Step 2 - example . 22

4.3 Phase 1 authentication . 23

4.3.1 Step 3 - example . 23

4.4 Inner identity exchange . 24

4.5 Negotiation of the phase 2 method 24

4.6 Phase 2 authentication . 25

4.6.1 Steps 4, 5 and 6 - example . 25

4.7 Four-way handshake . 26

4.7.1 Step 7 - example . 27

5 Eduroam - Education Roaming 28

5.1 Eduroam configuration in Android 32

5.2 Eduroam configuration in iOS . 36

1

6 Vulnerabilities tied to eduroam in mobile OSs 38

6.1 Lack of anonymous identity . 38

6.2 No server certificate validation . 39

6.3 Manual validation of the server certificate 39

6.4 Insecure implementation of MS-CHAPv2 in iOS 40

6.5 No phase 2 method configured . 41

7 Attacks studied and tested 43

7.1 User tracking . 43

7.2 Credential stealing . 44

7.3 User authentication without a priori knowledge 47

7.4 Device de-anonymization . 50

7.5 Traffic sniffing . 51

7.6 DNS spoofing and phishing attacks 52

8 Live experiment 54

8.1 Goals . 55

8.2 Hardware . 56

8.3 Software . 58

8.3.1 FreeRADIUS . 58

8.3.2 HostAP daemon . 61

8.3.3 ISC-DHCP-Server . 62

8.3.4 Captive portal . 62

8.4 Outcomes . 63

9 Defensive mechanisms 67

10 Conclusions 70

11 Acknowledgements 72

2

12 Sommario 73

13 Appendix A - CA certificates 81

14 Appendix B - Server certificates 83

15 Appendix C - Main modifications to FreeRADIUS 87

16 References 92

3

1 Introduction

Wireless Local Area Networks, usually known as Wi-Fi networks, have quite a long

history. Ever since the birth of the 802.11 family of standards, engineers have tried

to obtain a high level of security on this kind of networks. Much effort was put

into inventing and implementing security mechanisms to protect users from various

attacks. Such an effort was necessary because of the nature of WLANs: since data is

exchanged over the air, they are intrinsically more insecure than wired networks.

Among the various Wi-Fi families, there is one of them which provides a higher

level of privacy, at least up to the 2nd generation, with respect to the other ones. This

family of networks is usually called WPA-Enterprise, WPA-EAP or simply 802.1X.

WPA-Enterprise networks are not as common as WPA-Personal ones, which are used

in basically every house nowadays, but are far more common in places where a high

number of users has to be connected to the same network.

Between the WPA-Enterprise networks, one stands up for its diffusion across

the globe. This network is called ”eduroam” and it is supported by a very huge

amount of universities in the whole world. As universities usually have thousands

of students, hundreds of professors and many other working people, eduroam counts

an unimaginable quantity of users. If set up in the right manner, eduroam can

provide top-notch security to its users. However, universities as of today still tend

to misinform their users on how to properly configure the eduroam network on their

smart devices, thus exposing them to various cyber attacks.

Eduroam and 802.1X networks in general have a long history of attacks. Literature

is plenty of documents about security flaws in these networks, with some important

examples being [1], [2], [3], [4], [5], [6], [7] and [8]. Some of the attacks described in

literature surely are well-known, whereas some others are not considered enough or

deemed to be not so harmful. Moreover, as we studied some attacks, we realised that

many of them, although being known, are strongly lacking of documentation on how

4

to replicate them or to understand them in depth.

Our main goal was to study, develop and test various attacks to eduroam users by

means of an evil-twin. An evil-twin is a fully operational device which replicates the

behaviours of another one, but with malicious intentions. In our case, the evil-twin

had to replicate an eduroam access point, thus letting users authenticate against itself

to then perform attacks to users’ privacy, stealing various kind of data. Moreover, we

deeply concentrated on understanding under which conditions an attack can succeed

or is forced to fail.

One of the most important part of our work consisted in deploying three evil-

twins inside our university to attack real-world users. In order to do so, we set up

three different evil-twins and, after receiving permissions from the ICT team of our

university, we installed them in three different places. We then let them run for several

days, catching as much data as they could, in order to have better understanding of

how many users are in danger under different point of views. The results of the

experiment can be seen in a dedicated chapter.

5

2 Basics of WPA-Enterprise

Nowadays, everyone possessing a smart device is familiar with ”Wi-Fi” networks. Wi-

Fi networks are omnipresent, as they are in every house, school, bar and restaurant

or public place in general. What users refer to as Wi-Fi networks generally are

WPA-Personal ones, also known as WPA Pre-Shared Key (WPA-PSK) networks,

i.e. networks where a user simply needs to know the password set on the access point

in order to have access to the internet. WPA is the acronym for Wi-Fi Protected

Access, a set of standards whose purpose is to secure wireless networks. WPA is

the heir of Wireless Equivalent Privacy (WEP), a deeply flawed protocol that was

marked as insecure shortly after being released.

A least known but equally important set of Wi-Fi networks is theWPA-Enterprise

one, also called WPA-EAP or 802.1X. Here, in order to authenticate, users don’t sim-

ply need to know a common password, instead they are provided with some sort of

credentials. These credentials typically are a username and a password, which should

be unique to each user. WPA-Enterprise networks are far more common than WPA-

Personal ones in crowded environments, where a multitude of users needs to have

access to the same network. Because of this, WPA-Enterprise networks are really

common in enterprises, as the name suggests, and universities, since there can be

even thousands of smart devices connected to the same network at the same time. In

this kind of places, having a unique secret password is problematic since:

• The password can be easily disclosed to people outside the organization, thus

letting them use the network without them having any right;

• If a user leaves the organization, he should also lose the right to use the network,

but this requires for the password to be changed on each access point of the

organization;

• Changing the password on each access point surely is a time-consuming task,

6

but most importantly every user needs to reconfigure the network on their smart

devices. As there can be thousands of users in the same organizations, this can

be quite a big problem.

Moreover, WPA-Personal networks are by design way less secure than WPA-

Enterprise ones. For example, it is pretty trivial for a user who has access to a

WPA-Personal network to decrypt traffic belonging to other users on the same net-

work. In WPA-Enterprise networks, on the other hand, this is virtually impossible

because of how key agreement between access point and smart device is carried out.

Concerning cryptographic aspects, as of WPA2 both WPA-Personal and WPA-

Enterprise networks use AES-128 to encrypt traffic between a smart device and an

access point. For this reason, brute-forcing a key on both networks is equally hard.

In WPA3, which is the latest installment in the WPA world, Personal networks will

still have 128-bit encryption keys, while Enterprise ones will use 192-bit keys, thus

increasing security against brute-force attacks. However, the 3rd generation of WPA

claims to increase the strength of WPA-Personal networks too, even if under other

aspects, making them comparable to WPA-Enterprise ones.

As it can be imagined, WPA-Enterprise networks are way more architecturally

complex than WPA-Personal ones. However, they surely are a must in some environ-

ments and, moreover, provide users with a very high degree of security, which is not

comparable to WPA-Personal networks, at least as of WPA2.

2.1 Actors in WPA-Enterprise

As said previously, WPA-Enterprise networks are far more complex than WPA-

Personal ones. While in the latter there are only access points and smart devices, in

the former there are three main actors instead. All of them need to cooperate during

the authentication process, but one of them will step back once authentication has

ended. The three main actors in WPA-Enterprise networks are the following ones:

7

• Authentication Server (AS). This server, that usually is a RADIUS server,

has access to the database containing users’ credentials. It is up to this server

to perform authentication of users’ devices, telling them whether the authenti-

cation was successful or not;

• Authenticator. In the wired case, an authenticator can be a switch with Eth-

ernet ports, while in wireless scenarios it is an Access Point (AP). In the latter

case, the authenticator communicates on a wireless interface with users’ devices,

while on a wired interface with the AS. In wireless scenarios, authenticators are

also called Network Access Server (NAS). In the initial phase, the authen-

ticator’s main role is to relay messages between the AS and the smart device,

in order to let them accomplish the authentication run. Once the authentica-

tion phase is successfully carried out, the authenticator and the smart device

negotiate the symmetric keys to secure the current session. These keys will be

used to encrypt and decrypt every message exchanged between the two devices

and also to provide their authentication and integrity protection;

• Supplicant. What has been referred to as ”user’s device” or ”smart device”

until now, is called supplicant in 802.1X terminology. A supplicant is any smart

device capable of doing 802.1X authentications. The most common examples

are smartphones, laptops and tablets. The supplicant needs to be provided with

the user’s credentials, in order for it to authenticate itself.

2.2 802.1X, EAP and RADIUS

The authentication process in WPA-Enterprise is based on the 802.1X standard.

According to this standard, a supplicant is assigned to a port of the authenticator

that can only forward authentication traffic. Every other kind of traffic is rejected

by the authenticator. Once the authentication run is completed and the supplicant

8

is correctly authenticated, the port to which it was assigned is unlocked and every

kind of traffic can pass through it. The 802.1X standard was developed for wired

connections only (supplicant wired to a switch), but it has been extended in order to

be used with wireless LANs too, where an access point replaces the switch.

In order to perform authentication according to the 802.1X standard, the Ex-

tensible Authentication Protocol (EAP) has been defined within this standard

and must be used for authentication runs. EAP, although its name might seem to

indicate otherwise, is not an authentication protocol per se, but is, in fact, an au-

thentication framework. To use a particular authentication protocol, what is called

an EAP method must be agreed and used by the two communicants. Inside the

authentication run, the EAP over LANs (EAPoL) protocol is used to encapsulate

EAP messages inside layer 2 frames exchanged between supplicant and authenticator.

This approach results in a really high flexibility, since various authentication methods

can be encapsulated in EAP messages, leaving freedom to the system administrators

of a specific network on how to authenticate users. More details on EAP methods

will be shown in paragraph 3.2.

On the other hand, for what it concerns the communication between the authen-

ticator (or NAS) and the authentication server, other kinds of protocols are used.

The most common one is the RADIUS protocol, which explains why authentica-

tion servers are typically called RADIUS server. This protocol is used to perform

authentication, authorization and accounting (AAA).

As it can be seen, while the supplicant and the AS only use a certain protocol

(EAPoL and RADIUS respectively), the authenticator must use both of them in

order to let the other two communicate. Basically, an authenticator operates as an

intermediary between supplicant and AS, translating messages coming from one party

to make them comprehensible to the other one.

9

3 Authentication tools in 802.1X

In WPA2-Enterprise, just like in WPA2-Personal, the authentication process provides

mutual authentication: in the former, it is mutual between AS and supplicant, while

in the latter it is mutual between access point and supplicant.

In the Enterprise scenario, the AS will first authenticate itself against the suppli-

cant, providing it with a digital certificate, while the supplicant will authenticate itself

afterwards, using some kind of credentials, if and only if the AS correctly authenti-

cated previously. It clearly appears that the authentication process can be divided

into two macro stages: server-side and supplicant-side authentication.

3.1 Server-side authentication: digital certificates

In 802.1X authentication it is always the AS who authenticates first against the

supplicant. In order to do so, the only possibility that the server has is to use

a digital certificate. Moreover, this certificate is also needed to build the TLS

tunnel between supplicant and AS used in tunneled methods. Basics of tunneled

authentication methods will be presented in the next subsection.

The main tool used by digital certificates is public key cryptography. In public

key cryptography, an entity must possess two keys:

• A private key, which must be kept secret by its holder, that provides integrity

protection, non repudiation and digital signature;

• A public key, that is disclosed to the world and that can be used by other entities

to make sure that their messages can only be read by the entity possessing the

private key.

For each private key there exists one and only one public key, so that a message

encrypted with a public key can only be decrypted by the corresponding private key

10

and vice versa. Public and private keys are generated for different algorithms and

are used by these algorithms in order to give different properties to the exchanged

messages, such as confidentiality, integrity protection, non repudiation and digital

signature. The most famous public key algorithms surely are RSA (Rivest-Shamir-

Adleman), DSA (Digital Signature Algorithm), its elliptic curve variant (ECDSA)

and ElGamal.

Since the purpose of a public key is to be shared with the rest of the world,

it can be included in a digital certificate belonging to the entity that possesses the

corresponding private key. A digital certificate contains data about the entity to which

it was released, plus the public key. This certificate is then signed with the private

key of a trusted party, which is assumed to be signing only legitimate certificates.

Upon receiving a digital certificate, another entity will be able to:

1. Determine whether the certificate refers to the right entity by looking at the

identification data contained in the certificate;

2. Determine whether the certificate is to be trusted, by validating the signature

written by the globally trusted party;

3. Contact confidentially the entity exposing the certificate, using the public key

contained in the certificate to encrypt data.

So, in order for the authentication server to authenticate itself against the suppli-

cant, it must be provided with:

• A private key;

• A digital certificate, signed by a certification authority (CA), containing

the corresponding public key.

Upon receiving an authentication request, the server provides its certificate to the

supplicant, which, in turn, uses the CA’s certificate it possesses to verify that that

11

certificate was signed by that specific CA. If the supplicant correctly verifies that

the certificate provided by the AS is genuine, server-side authentication is successful

and the supplicant can start using the AS public key to exchange messages with

it in a confidential way. If, in fact, the supplicant determines that the provided

certificate is not valid, then the connection is dropped by the supplicant and server-

side authentication does not succeed.

The certificates provided to authentication servers usually are in X.509 format,

which is a really common format in today’s web since it is widely used for TLS

certificates in HTTPS websites.

An X.509v3 certificate has the following structure:

• Version number. This number indicates the version of the X.509 certificate

and, as of today, should always be 3 (0x2);

• Serial number. This is an increasing number, starting from 1, which is set

by the signing CA every time it signs a new certificate. There cannot be two

distinct certificates, signed by the same CA, with the same serial number;

• Signature Algorithm ID. This field specifies which signature algorithm was

used by the CA to sign the certificate. An example for this field is

sha256withRSAEncryption, meaning that the signature is generated by hashing

data with SHA256 and encrypting the message digest with the CA’s RSA private

key;

• Issuer. This field usually contains pieces of information about the CA that

signed the certificate. Examples of these data are country/state and city where

the CA resides, the name of the organization, an email address and a DNS

common name;

• Validity Period. This field is divided into two sub-fields, that are:

12

– Not Before. A string containing a date and time before which the cer-

tificate is not to be considered valid;

– Not After. Similarly to previous one, this field tells when the certificate

expires and so becomes invalid;

• Subject. Similarly to the ”Issuer” field, this one contains pieces of information

about the entity who possesses the certificate;

• Subject Public Key Info. This field is divided into two sub-fields, containing

data about the public key of the subject:

– Public Key Algorithm. It’s the name of the asymmetric algorithm that

uses the specified public key. An example for this field is ”rsaEncryption”;

– Public Key. This field contains data regarding the server’s public key,

i.e. its length and the key itself. In the case of RSA keys, modulus and

public exponent are listed here. While the modulus changes between each

public key, the exponent is usually equal to 65537 (0x10001), a small but

secure value that lets clients verify RSA signatures faster;

• Certificate signature algorithm. This field is redundant but must be the

same as the ”Signature Algorithm ID”. It is needed in order to prevent circum-

vention attacks to the digital signature;

• Certificate signature. This is the signature of the certificate, i.e., in the case

of

sha256withRSAEncryption, the digest produced feeding the whole certificate to

SHA256, encrypted with the CA’s RSA private key.

A CA certificate has basically the same structure shown before, but with some

additional fields that indicate it belongs to a CA and not to a server. Moreover, a root

13

CA certificate has the issuer and subject fields identical, since it has been generated

and signed by the CA itself.

To summarize, in order for a supplicant to authenticate an AS, it must receive

its certificate and verify that it is not expired. Then, it can hash the content of the

certificate and decrypt the signature with the CA’s public key: if the two are equal,

then it means that the certificate has been signed by that CA and so it can be trusted

by the supplicant.

Once server-side authentication has succeeded, the following step in 802.1X au-

thentication requires for the supplicant to authenticate itself against the AS. In this

step, the EAP protocol will be used to carry authentication data between the two

parties.

3.2 Supplicant-side authentication: EAP methods

As mentioned in the introductory part, authentication in WPA2-Enterprise is carried

out according to the IEEE 802.1X standard, which relies on the use of the EAP

and EAPoL protocols. During the years, several authentication methods have been

developed and can now be used in WPA-EAP networks to carry out an authentication

run. In the following list, some of the most used and widely known EAP methods are

shown:

• EAP-MD5. This challenge-response method was the first one ratified for EAP

by IETF. However, since MD5 is a hash function that is vulnerable to dictionary

attacks and does not support the generation of dynamic keys, this EAP method

should never be used. It can still be found in various softwares, mainly for

historical reasons;

• EAP-PWD (Secure Password). This password-based authentication method

requires a shared secret between the AS and the supplicant. This secret is

14

usually a password and can even be a low entropy one, since this method is

claimed to be resistant to passive, active and dictionary attacks. It is based on

the same mathematical principles as the Diffie-Hellman key exchange protocol,

making it a really strong protocol;

• EAP-TLS. With this authentication method, the supplicant is provided with a

digital certificate too, containing pieces of information about the user, instead

of a password. In order for the AS to authenticate the supplicant, it needs to

validate this certificate similarly to how the supplicant validates the AS’ one.

This EAP method is one of the most important ones as it is one of the safest

and doesn’t use a password, making it handier for users;

• EAP-TTLS (Tunneled TLS). Unlike EAP-TLS, where the supplicant must have

a certificate, in EAP-TTLS a TLS tunnel is built between the AS and the sup-

plicant. Once the tunnel is built, another authentication method can be used

inside the tunnel to authenticate the supplicant inside the tunnel, so that every-

thing is protected by TLS. For this reason, EAP-TTLS must always be followed

by another authentication protocol, as if used alone it doesn’t authenticate the

supplicant;

• EAP-PEAP. Just like EAP-TTLS, the purpose of this method is to build a

TLS tunnel between AS and supplicant. The difference between the two is that

while in EAP-TTLS the exchanged messages contain RADIUS attributes, in

EAP-PEAP the attributes follow other rules, specified by the EAP protocol.

Basically, the difference between EAP-TTLS and EAP-PEAP only resides in

the format of exchanged data.

As it was shown in this list, some methods let a supplicant authenticate in the

clear (EAP-PWD and EAP-TLS), while others are only used to build a secure tun-

nel between the two parties (EAP-TTLS and EAP-PEAP). Inside this tunnel, even

15

insecure authentication methods can be used since the data exchanged are protected

by the TLS tunnel. Since in EAP-TTLS and EAP-PEAP the supplicant does not

authenticate itself in the first step, these methods are also referred to as phase 1

authentication methods, while the authentication methods used inside the TLS tun-

nel are called phase 2 authentication methods. As it will be shown in a dedicated

section, tunneled methods are the most common ones in eduroam, as they are easier

to manage with respect to EAP-TLS (no user certificate management) and they ex-

change authentication data inside an end-to-end encrypted tunnel, built between the

supplicant and the AS of the user’s home university.

Various authentication methods can be used inside a TLS tunnel, but there’s a ma-

jor difference between EAP-TTLS and EAP-PEAP: while EAP-PEAP only supports

EAP methods (e.g. EAP-MSCHAPv2, EAP-PWD, EAP-SIM, EAP-GTC, etc...),

EAP-TTLS supports both EAP and non-EAP methods (such as plain MSCHAPv2,

MSCHAPv1, PAP, ...). The main difference between EAP and non-EAP methods

is that, as said before, EAP methods carry messages containing EAP attributes,

while legacy methods usually carry messages containing RADIUS attributes. Inside

of EAP-TTLS, these are some of the authentication methods that can be used:

• Password Authentication Protocol (PAP). This simple protocol requires that

the supplicant provides the AS with the user’s password. The AS simply needs

to check if the password of the user in the database is the same as the one

provided. In PAP, the user’s password is sent as clear text to the AS, but since

it is wrapped in a TLS tunnel, it can only be decrypted by the AS, making

TTLS-PAP as strong as TLS;

• Microsoft Challenge Handshake Authentication Protocol (MS-CHAPv1). This

protocol, as indicated by the name, was developed by Microsoft and provides

one-way authentication. This protocol belongs to the challenge-response family

of authentication protocols. In MS-CHAP, the AS sends a challenge to the

16

supplicant, which derives a response based on the password, the username and

the challenge. Once received by the AS, it can compute the same quantity and

check if they are the same. If so, the supplicant is correctly authenticated;

• MS-CHAPv2. This new, strengthened version of MS-CHAP was still developed

by Microsoft and, unlike MS-CHAP, it provides mutual authentication, making

it more secure. As of today, it is one of the most used tunneled methods for

supplicants’ authentication, although being fairly insecure;

• EAP-GTC. This EAP method uses the Generic Token Card protocol developed

by CISCO for token cards. As a matter of fact, it is pretty similar to PAP or,

at least, it can be configured to mimic PAP in every aspect.

In EAP-PEAP, on the other hand, these are some of the most common authenti-

cation methods:

• EAP-MSCHAPv2. It is the same as MSCHAPv2, with the only difference

residing in the format of exchanged attributes;

• EAP-GTC. Identical to the one carried inside EAP-TTLS;

• EAP-PWD. The same method discussed previously, but this time it is used

inside a TLS tunnel;

• EAP-SIM. This method uses the same authentication scheme used in 2G mobile

networks and needs for the AS to be connected to the mobile network;

• EAP-AKA. Similarly to EAP-SIM, this method is the same used for authenti-

cation in 3G networks;

• EAP-AKA’. A variant of the previous method, used in mobile networks to allow

non-3GPP devices to connect to 3GPP networks.

17

As it can be seen, there is a pretty huge amount of authentication methods that

can be used in 802.1X authentications, some stronger than others. Any organization

can then choose the ones it wants to support, thus allowing supplicants to authenticate

only if they agree on using one of these methods.

18

4 Steps of 802.1X authentication

The authentication process is really important in WPA-Enterprise networks and its

fundamentals must be explained in order to understand part of the attacks that

will be shown later on. In this section, the authentication steps will be shown also

using a real life example with packets captured by tcpdump, a Linux command-

line tool that lets a user capture packets on network interfaces, and displayed in

WireShark, a tool for network packets analysis. The authentication process that is

shown in this section undergoes the assumption that either EAP-TTLS or EAP-PEAP

is used. The reason behind this is that eduroam, the network we put under attack,

generally supports these methods only, so we found it more interesting to discuss

this kind of authentications. As seen before, both EAP-TTLS and EAP-PEAP need

a phase 2 authentication method (e.g. PAP, MSCHAP, MSCHAPv2, EAP-GTC,

...). The specific phase 2 authentication method, which is the one needed to perform

supplicant-side authentication, is irrelevant in this context, as different universities

will enforce different phase 2 methods.

Since, in this section, it is assumed that a supplicant is configured to use EAP-

TTLS/EAP-PEAP plus a phase 2 authentication method, three ingredients are manda-

tory in order for a supplicant to perform authentication:

• Anonymous identity (also called outer identity). This attribute is used to

prevent the supplicant from disclosing the real username with non-trusted par-

ties, since it is sent in the clear and can be easily sniffed. The anonymous

identity is not mandatory and supplicants can be configured in order not to use

it;

• Identity (also called inner identity). This attribute represents the username of

the user inside its institution. It usually is something like ⟨name.surname⟩@⟨

institution-name⟩.TLD or ⟨identification-number⟩@⟨institution-name⟩.TLD, so

19

it is strictly tied to the user real identity and, for this reason, should only be

exchanged with trusted parties;

• Password. A password is needed in methods like PAP, MS-CHAPv2, EAP-

PWD and EAP-GTC, which are the most widely used in eduroam. Passwords

can have constraints imposed by the institution where the user is enrolled, with

the purpose of making some attacks harder to perform.

As mentioned earlier, EAP-PEAP also supports methods such as EAP-SIM, EAP-

AKA and EAP-AKA’. These authentication methods are the ones used in 2G and 3G

networks and, as such, don’t require username or password. However, since eduroam

networks generally do not support these methods, they will not be considered any

further.

4.1 Anonymous identity exchange

The first step of the 802.1X authentication sees the authentication server asking the

supplicant for its identity. This request is, of course, relayed to the supplicant by the

NAS. If the supplicant is configured with an anonymous identity, then it will send

it to the AS; otherwise, the real identity will be sent out in the clear instead of the

anonymous one.

This step always happens in the clear, so anyone within the supplicant and the

NAS has access to the outer identity. By using an anonymous identity, a user prevents

others from seeing when and where he is trying to authenticate, since the anonymous

identity is not related to the user in anyway, but only to the institution.

Upon receiving the outer identity, if the user belongs to that institution, the AS

will proceed with server-side authentication, otherwise it will proxy it to the right

AS. In either case, an AS must authenticate itself.

20

4.1.1 Step 1 - example

An example of a real life 802.1X authentication run is presented in the following

picture, which is a Wireshark screenshot of packets captured with tcpdump. In this

example, the user that wants to authenticate has the following credentials:

• Anonymous Identity = anonymous@unibs.it;

• Identity = m.rossi001@unibs.it;

• Password = password.

Figure 1: Exchange of the anonymous identity between supplicant and AS

As it can be seen from the picture, the first message is an EAP message sent

by the NAS to the supplicant requesting its identity. The supplicant answers with

an EAP message with code 0x01, meaning that it is an EAP-Identity message. Its

content is, of course, the outer identity, i.e. ”anonymous@unibs.it”. The content of

the message can be partially seen in the lower portion of the image.

4.2 Negotiation of the phase 1 method

Upon receiving the outer identity of the user, the negotiation of the phase 1 authen-

tication method starts. At this point, the AS sends to the supplicant the method it

21

prefers to use. The supplicant always has the last word in 802.1X, so, upon receiving

the phase 1 method advised by the AS, it has two choices:

• If the supplicant has been configured to use the same outer method as the

one advised by the AS, the supplicant will agree with the AS and start using

that authentication method. This, of course, can only happen if the supplicant

physically supports the advised authentication method, which is always the case

for both EAP-TTLS and EAP-PEAP;

• In case the supplicant has been configured to use another phase 1 method, then

it will send a message to the AS containing an EAP-NAK (Not AcKnowledged,

meaning that the supplicant does not want to use the advised method), plus

the EAP code of the method that the supplicant wants to use. In this second

case, if the method chosen by the supplicant is not supported by the AS, it will

answer with another EAP-NAK and the authentication will end with a failure,

otherwise the AS will start the selected authentication protocol.

At the end of this stage, both the supplicant and the AS have agreed on which

outer authentication method to use, which, in our case, can be either EAP-TTLS or

EAP-PEAP.

4.2.1 Step 2 - example

In order to make the example as complete as possible, the authentication run recorded

sees the AS proposing to do EAP-TTLS, while the supplicant is configured to do

EAP-PEAP.

Figure 2: Negotiation of the phase 1 authentication method

22

As it can be seen from the picture, packets 4 and 5 contain the proposal of the AS,

which is to do EAP-TTLS. Packets 6 and 7 contain an EAP-NAK and EAP-PEAP,

meaning that the supplicant is not willing to do EAP-TTLS and that it wants to do

EAP-PEAP instead. Packets 8 and 9 contain a confirmation by the AS that it is

willing to do what the supplicant asked for, i.e. EAP-PEAP.

4.3 Phase 1 authentication

Since both EAP-TTLS and EAP-PEAP need for a TLS tunnel to be built between the

supplicant and the AS, this step is the same for both methods. The TLS tunnel setup

is carried out according to the latest TLS version supported by both the supplicant

and the AS.

In order for this step to succeed, the AS sends its certificate to the supplicant. If

the supplicant trusts the certificate, supplicant and authentication server build the

TLS tunnel and proceed to agree a symmetric key used to guarantee confidentiality

between them.

Once the setup of the TLS tunnel has ended, the two parties will use the TLS

protocol to exchange messages, preventing eavesdropping by malicious users. Every

message sent inside the TLS tunnel is only visible to the supplicant and the AS.

4.3.1 Step 3 - example

After agreeing to do EAP-PEAP, a TLS tunnel must be established between the AS

and the supplicant. For this reason, the TLS protocol must be used at the layer 2 of

the TCP/IP stack.

23

Figure 3: Building of the TLS tunnel

The TLS handshake is not in the scope of this work, so it won’t be detailed

further. It is shown in this picture, however, that packet 13 contains the certificate of

the server, which is a keypoint for the authentication of the AS against the supplicant.

4.4 Inner identity exchange

Once inside the TLS tunnel, the supplicant has already authenticated the AS by

means of its certificate, thus being sure that it is talking to a trusted party. At

this point, the supplicant is free to disclose its inner identity, since it is end-to-end

encrypted with a trusted AS.

Similarly to the first step, the AS requests the inner identity to the supplicant,

which will be sent encapsulated in TLS packets. At this point, the AS knows which

user wants to authenticate.

4.5 Negotiation of the phase 2 method

Similarly to the second step, in this stage of the authentication process, the AS sends

to the supplicant its preferred phase 2 authentication method. Just like in the second

step, the supplicant can either agree with the server or disagree with it and specify

its own preferred method. As said before, it is always up to the supplicant to choose

the authentication method: if the AS supports it, then it must use the one chosen by

the supplicant, otherwise the authentication will fail.

24

4.6 Phase 2 authentication

Once the phase 2 authentication method has been agreed by both parties, the client-

side authentication can start. The AS will load the credentials of the user and proceed

with the authentication protocol negotiated.

This step only has two possible endings:

• Reject. In case the supplicant failed to authenticate itself, the AS will send an

Access-Reject packet. The authenticator will then forbid the supplicant from

joining the network;

• Accept. In case the supplicant successfully authenticated, the AS will send an

Access-Accept packet, letting both the supplicant and the authenticator know

that the supplicant can rightfully join the network.

4.6.1 Steps 4, 5 and 6 - example

What happens after the third step is all encrypted in the TLS tunnel, meaning that

its content cannot be trivially retrieved. For this reason, the exchange of the inner

identity, the agreement of the phase 2 method and the phase 2 authentication cannot

be easily seen in detail in Wireshark.

For this authentication run, the AS was configured to propose EAP-GTC to the

supplicant, while the supplicant was configured to do EAP-MSCHAPv2. The second

method provides mutual authentication and requires more messages, for this reason

the following screenshot contains many packets.

25

Figure 4: phase 2 method negotiation and subsequent authentication

The first portion of the image portrays the negotiation of the inner authentication

method, while the second one portrays the actual run of the authentication protocol,

which is, again, EAP-MSCHAPv2. The last packet is an EAP-Success, sent by the

NAS to the supplicant, signaling it that the authentication run terminated with a

success and the supplicant is now granted access to the network.

4.7 Four-way handshake

This step only happens if an Access-Accept has been fired by the AS in the previous

step and it is not part of the 802.1X authentication process, but it’s necessary in

order for the user to have access to the internet.

A Pairwise Master Key (PMK) is generated by the AS and sent to both

the supplicant and the authenticator. The PMK, which has the same role of the

shared password in WPA-Personal networks, is needed in order to perform the four-

way handshake. Since a different PMK is derived in each authentication process,

differently from WPA-Personal where the PMK is always the same, WPA-Enterprise

guarantees one of the most important features in cryptography, which is Perfect

26

Forward Secrecy (PFS). PFS means that, even if an attacker manages to discover

a PMK, it will be able to decrypt messages belonging to one and only one session.

Past and future sessions are protected by other PMKs, so the attacker should recover

them as well to decrypt the respective sessions.

The four-way handshake is carried out outside the TLS tunnel since it only involves

the authenticator and the supplicant. In order to perform this protocol, the EAPoL

protocol is used once again by the two parties.

Once the four-way handshake has terminated, the supplicant is properly authen-

ticated and possesses all the keying material to safely communicate with the access

point.

Outside of the authentication, the first thing that the supplicant will ask for is an

IP address, provided by a DHCP server. After receiving an IP address, the supplicant

will be able to navigate on the internet freely.

4.7.1 Step 7 - example

This final screenshot contains the four packets pertaining the four-way handshake.

The PMK generated by the AS is sent to the authenticator and the supplicant inside

the Access-Accept packet, which was shown in the last screenshot. After this step, it

can be seen that the supplicant almost immediately asks for an IPv4 address, using

the DHCP protocol. An IPv4 address is instantly provided by a DHCP server, that

in this case is running on the same physical machine where both the AS and NAS are

running.

Figure 5: Four-way handshake and IP retrieval

27

5 Eduroam - Education Roaming

Eduroam is a project supported by campuses and universities in more than 106 ter-

ritories worldwide, with more than 10,000 hotspots around the world. The purpose

of eduroam is to grant access to the internet to users belonging to institutions that

are part of the eduroam federation irrespectively of the campus they are visiting. A

basic example is that of Erasmus students that enrolled to a university, located in

their native country, but had to move to another country for study or research pur-

poses. If both the universities they attend are part of the eduroam federation, these

users will be able to use the eduroam network without needing new credentials by the

hosting university; instead, they will be able to use the network with the credentials

provided by their home institution. Eduroam is used without differences by students,

professors and academic staff that study or work for a university taking part to the

eduroam federation.

Figure 6: In blue, countries where universities take part to the eduroam federation.

Eduroam belongs to the WPA-Enterprise family of Wi-Fi networks. As said in

the previous chapters, WPA-Enterprise networks are characterized by the use of user

credentials such as username and password (or other identification data), in contrast

28

with WPA-Personal networks where each user needs to know the same secret password

in order to connect to the network. Moreover, as said before, WPA-Enterprise relies

on 802.1X authentication, where an authentication server, an authenticator and a

supplicant need to cooperate in order to grant access to the network to the user.

802.1X, if correctly used, provides a higher level of security with respect to WPA-

Personal; for this reason, and for another reason which will be shown soon, eduroam

is claimed to be top-notch for security aspects.

In order for a user to use the eduroam network in a foreign university, the authen-

tication process is pretty similar to standard 802.1X wireless authentication. There

is, however, an important difference that increases the security of the whole infras-

tructure: sensitive data, such as the username (identity) of the user and his password

are never exchanged in plain text with the RADIUS server of the hosting university,

meaning that this RADIUS server does not have access to these pieces of information.

Whenever the RADIUS server of the foreign university receives an access request by

a user that is not enrolled in that university, it will proxy the authentication request

to the home server, i.e. the one of the university where the user comes from. For

this reason, the authentication process sees the user’s supplicant and the home server

as end-points: everything in between (foreign authenticator, foreign authentication

server and the internet) is just a medium used to let the two end-points communicate.

This aspect of eduroam is of crucial importance, since it is responsible for letting a

user connect to eduroam hotspots with the credentials of his home university and,

moreover, makes it so that sensitive data can only be seen by the supplicant and the

server of the user’s home university.

To make the process clearer, let’s suppose that there exists a user, enrolled in the

University of Brescia, that has been provided with the following credentials:

• Identity: m.rossi001@unibs.it;

• Anonymous identity: anonymous@unibs.it;

29

• Password: password.

Let’s suppose now that this student is in the United States for a research project at the

Boston University. This university is part of the eduroam federation, meaning that

this user can use this network with his home institution’s credentials. In order to use

the internet, an authentication run needs to start, where, at first, the supplicant sends

the anonymous identity ”anonymous@unibs.it” to the Boston University’s RADIUS

server. Upon reading this anonymous identity, the Boston University’s RADIUS

server will understand that the home university of the user is not the University of

Boston, but it’s, instead, the University of Brescia. To understand this, the foreign AS

simply looks at what comes after the ”@” symbol; this portion of the identity is also

called ”realm” and every institution possesses at least one. Each AS of each university

that is part of the eduroam federation needs to know how to contact the RADIUS

servers responsible for the various realms. At this point, the Boston University’s

RADIUS server will forward this request to the University of Brescia’s RADIUS

server, which will be told by the supplicant both the true identity and the password.

Once the home RADIUS server has verified the credentials of the student, the Boston

University’s RADIUS server will be informed about the success, so that the supplicant

will be granted access to the network.

The following picture tries to briefly sum up the example proposed above. As

a disclaimer, the authentication scheme in the picture is not exactly right, but it is

useful to visualize the network architecture that lets a user authenticate to his home

institution from another hotspot.

30

Figure 7: Authentication of a supplicant from a remote institution.

As the developed attacks are targeting mainly mobile devices, in the following

subsections it will be shown how eduroam can be configured in both Android and iOS.

The configuration process on these operating systems needs to be shown in order to

understand which vulnerabilities we exploited to breach users’ security. We will see

how eduroam, and 802.1X networks in general, can be manually configured by users,

without using the eduroam Configuration Assistant Tool. This tool is really powerful

as it lets universities enforce precise security policies on any device; moreover, it can

be more practical for unskilled users than configuring the network manually. However,

not every university has configuration profiles available on the eduroam CAT website,

so not every user can use this tool. The eduroam CAT can, but not certainly does,

prevent many attacks that will be shown later, so it should be strongly advertised

and used by every university.

31

5.1 Eduroam configuration in Android

As said earlier in this document, 802.1X networks provide a really high level of security

to the users, far superior to WPA2-Personal ones. However, in order for them to

provide such level of security, the supplicants must be configured in the correct way.

Errors in the configuration of an 802.1X network can disrupt completely the security

principles offered by WPA-Enterprise.

Android, if compared to iOS, gives much more freedom to the user in terms of

configuration. Moreover, the configuration of an 802.1X network on an Android

device strongly depends on the Android version and on the ROM installed by the

manufacturer. As we tested smartphones from different brands, we noticed that

Samsung, Google, Huawei and Xiaomi devices all have different configuration windows

with different rules. In general, however, when setting up eduroam on an Android

phone, the user is prompted with the following fields:

• EAP Method. This field, which is generally set to PEAP as default, needs

to be set with the EAP method indicated by the home institution. Since uni-

versities generally use tunneled methods, this field should be set to PEAP or

TTLS;

• Phase 2 authentication. This field should contain the phase 2 authentication

method needed inside the TLS tunnel, e.g. MS-CHAPv2 for PEAP or PAP for

TTLS. In most Android devices, this field is left blank and marked as optional,

meaning that the phase 2 authentication method advised by the AS shall be

accepted by the supplicant. On newer Android versions, however, it is usually

set to MS-CHAPv2 by default;

• CA certificate. Here, the user has the possibility to tell the supplicant to

validate the AS certificate using:

– A trusted root CA certificate (such as one from DigiCert, VeriSign, Let’s

32

Encrypt!, etc...). This is the default option on many smartphones running

newer versions of Android;

– A user-installed root CA certificate, for example a self-signed one provided

by the university;

– No certificate at all. This means that the supplicant will trust any certifi-

cate given to it. This is the default option for most smartphones with old

Android versions and even for up-to-date Xiaomi ones;

• Identity. This, again, is the user’s identity shown before;

• Anonymous identity. This field, as explained before, contains the user’s

anonymous identity provided by the home institution. On Android it is marked

as optional since it is not strictly needed for the authentication to succeed, as

the real identity can be used in its place;

• Password. The user’s password, chosen by the user and stored in a home

institution’s database.

33

Figure 8: An example of the eduroam configuration screen of an Android smartphone

The first two fields, i.e. the phase 1 and phase 2 authentication methods, can be

changed according to the home institution’s directives. On older Android versions,

the phase 1 method is set to EAP-PEAP by default, while the phase 2 one is set

to None, meaning that any proposal by the AS will be accepted. On more recent

Android versions, instead, the phase 2 method is generally MS-CHAPv2 by default.

The ”CA certificate” field should always be set in such a way that the suppli-

cant validates the AS certificate. In 802.1X networks, self-signed CA certificates are

usually preferred; using a system certificate, i.e. a globally trusted CA’s certificate,

lets an attacker who possesses a valid certificate, signed for example by DigiCert,

to set up a rogue eduroam network where supplicants will connect, since they will

recognize DigiCert as a trusted CA. In other words, any certificate signed by a glob-

ally trusted CA will be automatically accepted by a supplicant. Newer versions of

Android mitigate this problem by adding a new field in the configuration process,

34

which is called ”Domain”; since the attacker has a certificate which is valid for a

specific DNS name (such as ”*.attacker.com”), while the university’s AS certificate

surely contains another DNS name (”radius.domain.TLD”, for example), the suppli-

cant verifies that the provided certificate also contains the domain specified by the

user, either in the commonName or subjectAlternativeName attributes of the cer-

tificate, thus rejecting the attacker’s certificate since it cannot contain that domain

name. Since users cannot know the value to type in this field, network administrators

should always disclose the DNS name contained in the AS certificate, otherwise users

won’t be able to connect to the network. If a self-signed certificate is used, which,

again, is the best choice for 802.1X networks as of now, the home institution should

always provide the root CA’s certificate to the users. Users should then download

the certificate, install it through system settings and configure the supplicant to use

that CA’s certificate when validating the server certificate exposed by the eduroam

hotspot. Some new Android smartphones have the option to specify a domain even

for certificates signed by a self-signed CA, so that the smartphone will only accept

one specific certificate signed by said CA. With self-signed CAs, domain isn’t usually

required as it is not as crucial as with globally trusted CAs, but we noticed that on

some devices, e.g. Samsung’s and Google’s, the domain is actually required even for

this kind of certificates.

Identity and password are provided to the user by the home institution. While the

password can and should be autonomously changed by the user, the identity cannot.

Finally, the anonymous identity should again be set according to a university guide

written by sysadmins or network managers. The anonymous identity can be any

string, even a random one, followed by the right realm. Some universities, however,

only accept some values as anonymous identities and not any possible string. An

example of an anonymous identity for a user belonging to the University of Brescia

could be anonymous@unibs.it. In general, this field is left blank because:

35

• Android marks it as optional, since it is not strictly necessary, thus making the

user think it is not useful too;

• Most universities explicitly tell their users to let this field blank or to fill it in

the same way as the identity field.

5.2 Eduroam configuration in iOS

As of today, iOS has a much simpler configuration window for 802.1X networks. This

configuration window lets the user type just two values: identity and password. Once

these fields have been filled by the user, he will be prompted with the AS certificate.

Basically every field of the certificate is shown to the user, who has two choices:

accept the certificate or reject it. After accepting the certificate, the user won’t be

prompted with the certificate until it deliberately chooses to forget the network or the

AS certificate changes, for example because it expired and needed to be signed again.

As it can be understood, it is up to the user to verify whether an X.509 certificate is

genuine or not.

36

Figure 9: The configuration window for eduroam in iOS.

Eduroam configuration in iOS is much simpler than in Android and certainly more

user friendly. However, the lack of freedom makes some attacks easier to mount, since

the user has no control on what the device does.

37

6 Vulnerabilities tied to eduroam in mobile OSs

Now that every aspect of 802.1X authentication and eduroam configuration has been

covered, the major flaws in eduroam’s security can be thoroughly discussed. As it

will be shown in the following subsections, most of them are related to a wrong

configuration of the network, be it for a user’s fault (Android) or for OS constraints

which don’t allow enough freedom during the configuration (iOS). The attacks that

will be shown in the following paragraphs can be done against any 802.1X network,

so they are not related to aspects unique to eduroam.

6.1 Lack of anonymous identity

The purpose of the anonymous identity is to guarantee to users that their true identity

will be disclosed to a trusted authentication server only, i.e. their home institution AS

in eduroam. As a matter of fact, once a supplicant receives beacons by an access point

advertising a known 802.1X network, it will for sure exchange at least its anonymous

identity, as it was shown in section 4.1. If an anonymous identity is not set, the real

user identity will be used in its place, thus compromising user’s privacy as he can

easily be tracked in space and time.

Anonymous identities should always be used to guarantee a certain level of privacy

to the users. However, most universities’ guides tell the users to leave this field blank.

Since 802.1X works fine without anonymous identities, network administrators too

tend to close an eye on this aspect.

As said in section 5.1, Android lets the user fill the anonymous identity field.

Again, this field is marked as optional, making the user think it is not useful, and

universities tell users to leave it blank intentionally. On the other hand, iOS doesn’t

let the user use an anonymous identity without a configuration profile. For this reason,

iOS devices will almost always disclose the real identity to any eduroam access point,

38

even rogue ones.

6.2 No server certificate validation

Among all of the vulnerabilities that will be discussed, this surely is the most dan-

gerous one, since many attacks can be carried out if this condition is met.

As mentioned before, in Android the user has the possibility to configure the

supplicant so that the server certificate is not validated at all. In this way, any digital

certificate exposed by an authentication server will be trusted by the supplicant, thus

making it establish a connection even with a non-trusted party.

As imposed by Google in December 2020, the option to not validate the server

certificate should not be present in Android starting from version 11. As of today, even

with Android 12, most of the Android smartphones still have this option available,

exception made for Google’s Pixels. What makes this problem even bigger is that

a great amount of universities, including ours, instruct the user to use the ”Do not

validate” option.

6.3 Manual validation of the server certificate

This kind of vulnerability only affects iOS devices, as they are the only ones asking

the user to approve or reject a certificate.

As said briefly before, the first time a user with an iOS device connects to eduroam

(or an 802.1X network in general), after confirming its credentials he will be prompted

with the server certificate. Here, the user can read most of the fields contained in the

X.509 certificate, such as the common name (CN), the state, region, city and other

parameters. What is expected from the user is a manual verification of the various

fields; if the user deems the certificate to be true, he should accept it, otherwise

he should reject it. The main problem here is that X.509 are easy to falsify by a

malicious user. For instance, every field of a real certificate can be copied and used

39

in another self-signed certificate, with the only main exceptions being the public key

(which can be falsified, but it makes no sense to do so since the attacker does not

possess the corresponding private key) and, of course, the signature of the certificate.

So, in order for a user to discriminate between a fake and a real certificate, he should

be able to remember by heart the public key of the original server certificate, which

is impossible.

In iOS, just like in Android, the user has the possibility to manually install a root

CA certificate on his device. However, even if the right root CA certificate is installed,

there’s no way to tell the device to use that certificate for an 802.1X network. In the

end, even if the user installs the root CA certificate, the server certificate will still be

prompted to him, awaiting for manual approval.

As it can be easily understood, a user prompted with a new certificate by an

eduroam hotspot can easily be tempted to accept it. The user may think that the

device forgot the network, or that the university’s network admins had to make an-

other certificate, for example because the previous one expired. A little bit of social

engineering and user inexperience play a big role in this context, but if iOS allowed

users to use a downloaded root CA certificate (or a globally trusted one) for automatic

validation it would be much more secure.

In sections 13 and 14 the genuine certificates are compared with the falsified ones.

As it can be seen, they are virtually identical, aside from some little details that

a human can hardly detect. Of course, the higher the similarity, the greater the

confidence of the user to accept the fake certificate as the real one.

6.4 Insecure implementation of MS-CHAPv2 in iOS

As already said before in this work, among the authentication protocols proposed here,

MS-CHAPv2 is one of the few that provides mutual authentication. This means that

the supplicant first proves to the AS that it knows the password; after that, it is the

40

turn of the AS to show the supplicant that it knows the password too. If the AS

answers with a wrong response to the challenge sent by the supplicant, or doesn’t

answer at all, the supplicant should refuse to go any further, as it means that the

AS doesn’t know the right password. Any supplicant we tested works as described

here: if we try to force an Access-Accept during an MS-CHAPv2 authentication,

it refuses it. However, we discovered that iOS devices, even with the most recent

iOS version, do not work this way: an Access-Accept packet will be accepted even

halfway through the MS-CHAPv2 run. This behaviour is a serious security threat as

a rogue authentication server can correctly authenticate iOS devices without knowing

the password and even steal sensitive, password-related data.

6.5 No phase 2 method configured

As it was shown in 4.5, after phase 1 authentication the server proposes an authen-

tication method to the supplicant. If the supplicant is not set with a specific phase

2 method, then it will accept what the AS proposed in the previous message. This

can pose a big threat to the users, as an attacker can set a weak method (e.g. EAP-

GTC) as default on his AS. Whenever the user decides to connect to the network,

if it proceeds until phase 2 authentication, it will be easy for the attacker to obtain

the password without any effort. On the other hand, setting the supplicant to use a

specific, stronger phase 2 authentication methods makes password stealing harder or

even infeasible.

Both Android and iOS devices can present this vulnerability. Older Android

devices, as shown in figure 8, have the phase 2 field set to ”None” by default. More

recent versions of Android, however, have this field set by default to ”MS-CHAPv2”,

which is the strongest among the most commonly supported EAP methods; unluckily,

albeit being one of the strongest, MS-CHAPv2 has been proven to be weak against

a variety of attacks. iOS devices, on the other hand, have both phase 1 and phase 2

41

authentication methods set to ”None” and they cannot be modified by the user. This

means that, without using external tools provided by Apple or eduroam CAT, every

iOS device will authenticate according to the methods proposed by the AS.

42

7 Attacks studied and tested

In this section, some possible attacks against the users of eduroam will be presented

and discussed. Beware that, although the network under attack was eduroam, all of

these attacks can be generalized to most of 802.1X network as they are not strictly tied

to eduroam, but rather to the 802.1X authentication process and to the configuration

of such networks on mobile devices.

The attacks shown here are just some of the possible ones that we intended to

investigate on. These attacks are the ones we developed and tested in a controlled

environment, just to understand under which conditions a user could fall into a spe-

cific trap. Despite having permissions granted by the ICT team of our university,

the attacks we decided to implement for a live testing with unaware users were pur-

posefully weakened, in order to demonstrate the feasibility of such attacks without

actually stealing sensitive data. Every detail regarding the live experiment that we

did will be thoroughly shown in section 8.

7.1 User tracking

As said before, the anonymous identity is used to prevent users from disclosing their

real identity to authentication servers different from their home institution’s one.

However, as already mentioned before, the use of an anonymous identity is generally

not endorsed by universities. This results in users disclosing their personal identity

with whatever access point advertising an eduroam network, since the inner identity

is sent in the first steps of the authentication process if no anonymous identity is

set. As already shown before, in eduroam networks the identity of a user usually

(but not always) has the form of ⟨name.surname@university.TLD⟩. This means that

the 802.1X identity usually contains enough pieces of information about the user to

let an attacker identify the user in the real world. If an attacker manages to set up

43

an access point advertising an eduroam network, nearby supplicants that have their

Wi-Fi on will try to connect to it. If the users did not set their anonymous identity,

the attacker has for sure access to the real identities of the users, thus giving him

knowledge of time and place where a user was located at.

Both Android and iOS are susceptible to this attack, with one main difference:

while iOS devices, as of now, cannot defend themselves against this attack since

there is no way to set the anonymous identity unless by means of eduroam CAT,

Android devices can. For Android devices to defend themselves, however, universities

would need to start endorsing the use of anonymous identities to their users. Since

anonymous identities are rarely advised by universities, Android devices are as likely

as iOS ones to fall in this attack.

7.2 Credential stealing

This attack has the goal to steal sensitive data from the users, such as usernames

and passwords. In most universities, these credentials are the same ones used for

accessing the online services provided by the university. In the case of the University

of Brescia, with these credentials a user can access its esse3 profile, an online service

where the student can pay taxes, subscribe to exams, look at their results, access

his e-mail account and so on and so forth. The same goes for professors, who have

access to many more institutional services. Moreover, since users tend not to diversify

their passwords among different services, it may happen that a user has his eduroam

password used for other services, like social media, money transfer applications, etc...

This is of course a major threat, as the attacker could then try, and maybe succeed,

to log in various services with malicious purposes.

This kind of attack can be carried out in a completely passive way (without user

interaction) and in an active way (with user interaction). If the attack is passive, then

only Android devices can fall into this kind of trap and only under these conditions:

44

• The device’s Wi-Fi is on;

• Automatic access to known networks is on;

• The user set his smart device with the ”Do not validate” option.

Under these conditions, the user’s device will go past the phase 1 authentication step,

since it doesn’t validate the certificate provided by the evil-twin, and will proceed with

phase 2 authentication.

Tunneled methods, i.e. methods which occur inside of a TLS tunnel, are known

to be problematic if the tunnel was set up with a non-trusted party. In more detail:

• PAP gives out the password in plain text, thus allowing the attacker to simply

catch it and store it;

• EAP-GTC, which is strongly based on PAP, shares with it the fact that the

password is sent out in the clear;

• MS-CHAPv1, although it sends a quantity which is password (and user) re-

lated, but not plain text, can be easily broken and many attacks to retrieve the

password were developed against it;

• MS-CHAPv2, which is a stronger version of the previous one, can be easily

broken too and breaking it has the same complexity as breaking a 56 bit DES

key, which is far too easy today. Among these methods, MS-CHAPv2 surely is

the most annoying one to deal with for an attacker, but this doesn’t mean that

the attacker cannot deal with it.

As a result, if a user’s Android device is misconfigured and is using one of these phase

2 authentication method, then the user’s password can be recovered by the attacker

with variable difficulty, depending on the phase 2 method set by the user.

As it was shown previously, 802.1X authentication requires that the authentication

server proposes both a phase 1 and phase 2 authentication methods, which can be

45

agreed or rejected by the supplicant. Since most of the Android devices, at least the

older ones, have the phase 2 authentication field which is set to ”None” by default,

it means that they will accept the phase 2 method proposed by the AS. For this

reason, in order to make the attack easier on the attacker side, the AS running on

the evil-twin can be set to propose EAP-GTC for phase 2. Proposing EAP-GTC for

phase 2 is the most interesting choice as it is supported both in EAP-TTLS and in

EAP-PEAP and, most importantly, gives the attacker the password in plain text. If

the supplicant has the phase 2 authentication method set to ”None”, the supplicant

will agree on using EAP-GTC, thus gifting the password to the attacker. On the

other hand, if the supplicant is set to use a specific phase 2 authentication method

(different from EAP-GTC), the AS cannot enforce EAP-GTC but, as said previously,

practically every other tunneled method is broken too so the password can still be

recovered.

Active attacks require for the user to interact with his device, unlike passive ones

where a user can have his smartphone locked in his pocket. In active attacks, the

user intentionally tries to connect to the rogue network, even if the smartphone did

not connect to it automatically. On a correctly configured Android phone, once the

AS provides its certificate to the supplicant, the supplicant will try to validate it and

fail, since the certificate provided by the AS was not signed by the same CA whose

certificate is installed on the smartphone. Some Android smartphones, however, show

this behaviour: other than showing the error message, they also give the option to

the user to ”Connect anyway”. If the user presses this button, the option to validate

the server certificate will be automatically downgraded to ”Do not validate”. This

results in the user being unable to connect at first, but succeeding the second time,

thus falling into the attack. iOS devices are only vulnerable to this kind of attack, as

if they sense a change in the server certificate accepted the first time by the user, they

don’t connect to the network and prompt the new certificate on screen to the user,

46

waiting for approval. However, since users cannot easily distinguish between a fake

and a real certificate as they can be way too similar, they might be tempted to accept

the new certificate and connect to the network. Moreover, since iOS devices always

do the phase 1 and phase 2 authentication methods advertised by the AS, setting the

AS with EAP-GTC as default method for phase 2 results in iOS users being forced

to disclose their passwords in plain text. Active attacks are harder to carry out as

they require for the user to be using his smartphone and actively looking for Wi-Fi

networks to connect to. However they shall still be considered as a threat.

7.3 User authentication without a priori knowledge

The authentication of a user on the evil-twin cannot be considered an attack per

se, but rather the starting point for a series of other attacks. If user authentication

succeeds, then the user will start using the rogue network, ultimately paying the

consequences.

Historically, attacks to 802.1X networks only aimed at stealing users’ sensitive

data, using the techniques explained in the previous attack. However, in order to pose

other threats to the users, we wanted to go further and see under which conditions a

user could be successfully authenticated. As a matter of fact, the only big difference

between the real eduroam hotspot and an evil-twin, besides the certificates, is that

the real eduroam hotspot has access to a database containing the passwords of the

users. When authentication starts, the AS can read those passwords and check if

the ones provided by the users correspond to the ones in the database. As attackers,

we don’t have this possibility, as we don’t know the passwords in advance, unless we

previously recovered them with a credential stealing attack. In some cases, however,

it is possible to both steal the password and guarantee access to the network in the

same authentication run, while in others it is only possible to do one of the two things.

In order to carry out this kind of attack, what matters is firing a forced Access-

47

Accept packet from the RADIUS server at the right time during EAP authentication.

If a supplicant receives an Access-Accept at the right time, it will think the authen-

tication was successful and it will connect to the network.

As already said previously, phase 2 authentication methods can provide either one-

way or mutual authentication. As a matter of fact, PAP, EAP-GTC and MS-CHAPv1

all are one-way authentication methods. This means that the supplicant computes

some quantity and sends it to the authentication server, then it waits for a boolean

response: accept or reject. These methods have shown to be particularly weak as

they let us both obtain the password and authenticate the user, thus maximizing the

damage. On the other hand, among the methods discussed previously, MS-CHAPv2

provides mutual authentication. In MS-CHAPv2, the supplicant receives a challenge

from the server, computes some quantity and sends it back to the AS along with

another challenge. Now, the supplicant does not wait for a boolean response only,

but it expects for the AS to compute the correct response based on the password, the

username and the challenge sent by the supplicant. For this reason, the supplicant

will reject an Access-Accept fired in the middle of an MS-CHAPv2 run. This makes

it impossible for us to both steal the password and authenticate the user at the

same time, unless the device runs iOS since, as it was shown in 6.4, iOS devices

do not validate the MS-CHAPv2 server response, thus letting the attacker steal both

sensitive data and force an Access-Accept. However, access to the network can still be

granted to the user: whenever the rogue AS sees that the supplicant wants to do MS-

CHAPv2, it can fire an Access-Accept before starting the authentication protocol.

In this case, the supplicant will accept it and the phase 2 authentication will be

completely bypassed. In summary, if a supplicant wants to do MS-CHAPv2, the

attacker can choose between catching sensitive data or authenticating the user, but

cannot do the two things in the same authentication run.

The outer authentication method should not be a concern. However, we found

48

out that FreeRADIUS behaves differently when using EAP-PEAP and EAP-TTLS. In

the first case there is a blatant negotiation stage, so that if MS-CHAPv2 is proposed

by the supplicant, the attacker can discover it before starting the authentication run

and fire the Access-Accept, thus resulting in a successful authentication. In EAP-

TTLS, instead, it seems that the supplicant starts the authentication run as soon as

it enters the TLS tunnel, thus giving no option to the AS but to proceed with the

authentication. This, of course, results in an error as the rogue AS does not know the

user’s password and cannot compute the cryptographic material needed for server-

side authentication. We weren’t able to bypass MS-CHAPv2 inside EAP-TTLS, but

this does not mean that it cannot be done. We know for sure that FreeRADIUS can

be tweaked to bypass phase 2 authentication in this case too, since the AS must send

a challenge first so it must be notified about which protocol needs to be run.

In summary, the following table shows which combinations of methods, according

to our tests and experiments, let the attacker steal the password (or quantities related

to it which can be broken), authenticate the user or both.

Methods combination Steal password? Authenticate? Both in a run?
PEAP + MS-CHAPv2 Yes Yes No (yes in iOS)

PEAP + GTC Yes Yes Yes
PEAP + PWD No Yes No
TTLS + PAP Yes Yes Yes
TTLS + GTC Yes Yes Yes

TTLS + MS-CHAPv1 Yes Yes Yes
TTLS + MS-CHAPv2 Yes No No (yes in iOS)

Table 1: Combinations of phase 1 and phase 2 authentication methods we tested and
if we could steal the password (or data related to it), authenticate the user or to do
both in the same authentication run.

49

7.4 Device de-anonymization

An attacker could be interested in having more pieces of information about the sup-

plicant itself, i.e. its hardware and software. A deeper knowledge of the supplicant

not only makes tracking attacks shown previously more reliable, but could potentially

make the attacker spoil vulnerabilities tied to the hardware or the OS version the sup-

plicant is running on. In order to do so, we discovered that this kind of information

can be potentially obtained by analysing:

• MAC address. This is doable even if the supplicant does not authenticate on

the evil-twin because it was correctly configured. However, the evil-twin will

know the MAC address of the supplicant because it can be caught during the

initial phases. If a randomized MAC address is used, then the attacker cannot

go back to the vendor of that device, otherwise it is totally possible and easy

to do so;

• DHCP lease. If the supplicant connected to the network, it surely asked for an

IPv4 address, which was then provided by the DHCP server running on the evil-

twin. Inside the IP leases file, some pieces of information provided by the DHCP

client on the supplicant can be found. These data can contain, for example, the

OS version of the supplicant and the hostname advertised by the supplicant

itself. The hostname field usually gives the attacker information about the

model of the smartphone and, possibly, of the user, as common hostnames have

the form of ”⟨smartphone model⟩ of ⟨user’s name⟩”;

• DNS queries. As soon as the supplicant connects to the rogue network, it will

start doing DNS queries to pre-defined servers. iOS devices start querying Apple

servers, Huawei devices do the same with Huawei servers (HiCloud), and so on

and so forth. By analysing the DNS queries, the attacker can go back to the

vendor of the device.

50

It can be easily seen that while a user does not connect to the evil-twin, as the

supplicant was correctly configured, the attacker cannot obtain data about that user’s

device for sure and if it can, it can only have knowledge of the vendor of the device. If

it authenticates to the evil-twin, instead, the attacker can usually determine vendor,

model and OS version of the smartphone used.

7.5 Traffic sniffing

Once the user is connected to the rogue network, its device will start exchanging

traffic with the rest of the internet. As the device is connected to the rogue access

point, all the traffic, be it exchanged with local devices or remote ones, passes through

the evil-twin. Packets can be easily logged by the attacker and analyzed later. The

most interesting data the attacker can collect surely are:

• DNS queries. The attacker has complete knowledge of which websites the user

under attack is visiting. Each time a user opens a link found on a search engine,

such as Google, the device will try to resolve the symbolic name of the website

into its IPv4 address by making a DNS query to a DNS server (which usually

is the access point). Moreover, installed apps such as Whatsapp, Instagram,

Facebook and TikTok will try to contact their respective servers, thus giving

the attacker knowledge of which applications a user has installed;

• HTTP traffic. Nowadays, most of web servers use HTTPS, meaning that any

data exchanged between a client and a server is end-to-end encrypted using

TLS. However, there are still websites that use plain HTTP, meaning that data

is exchanged in the clear between client and server and can be easily sniffed by

the evil-twin. This includes not only data contained in web pages, which may

not be interesting for the attackers, but also login credentials used by a user to

authenticate on a website.

51

Moreover, we noticed an interesting thing: while most of the smartphones’ browsers

contact servers using HTTPS (TCP port 433) by default, some of them use HTTP

instead (TCP port 80). This means that once a supplicant obtains the IPv4 of a web

server, it will try to connect to it via HTTP; if the web server supports both HTTP

and HTTPS, it will answer using HTTP as it is the protocol chosen by the client.

In this case, even if a website supports HTTPS as well as HTTP, the security of the

user will be compromised because of the policy of his browser.

To summarize, if a user connects to the evil-twin, many pieces of information can

be gathered by the attacker, such as:

• Websites visited;

• Applications installed;

• Data sent and received through HTTP.

7.6 DNS spoofing and phishing attacks

DNS spoofing is the act of intentionally translating symbolic names (such as www.google.com)

to IP addresses chosen by the attacker instead of the right ones. Whenever a user

wants to visit a website whose name’s translation is manipulated by the attacker,

there are two possible outcomes:

• The client queries the obtained IP address using HTTP. In this case, the user

will simply see the wrong website without errors;

• The client contacts the web server via HTTPS. In this case, things become

harder for the attacker, since the client expects a valid TLS certificate containing

the same symbolic name that the client wanted to resolve. A globally trusted

TLS certificate respecting this condition cannot be possessed by an attacker,

as globally trusted certification authorities won’t release one to the attacker

52

without proof that he is the owner of that particular domain. On the other

hand, the attacker could produce a self-signed certificate containing that domain

name; this certificate won’t be accepted by the client, as it is not signed by a

globally trusted CA, but the user can usually proceed anyways to its own risks.

During our tests, we discovered three categories of mobile OS browsers: ones that

use HTTP instead of HTTPS by default, ones who use HTTPS but let the user

proceed on a website even if the TLS certificate cannot be trusted and ones who use

HTTPS and forbid the user from stepping further, thus blocking him from falling into

the trap.

As it was made clear, nowadays DNS spoofing is pretty hard to carry out because

of the wide adoption of HTTPS in place of HTTP. This is a good thing, of course,

since users can browse the internet more safely. However, browser’s policies and

psychological factors can still pose a threat to the users.

Phishing attacks can come strictly paired with DNS spoofing attacks. The attacker

could redirect the user to a fake website, resembling the true one, but that is under

control of the attacker. Luring a user on a fake website can make him disclose secrets,

for example passwords, relying on the user inexperience and inattentiveness. Phishing

attacks heavily rely on the ability of the attacker to convince the user to give him

sensitive data, so the technical aspect has little-to-none importance in this context,

while the psychological aspect is, once again, predominant. As shown before, the

outcome of these attacks depends on the web browser too. If a browser uses HTTP

by default, then the user is strongly at risk, as the fake website will be presented

without warnings. On the other hand, a web browser that uses HTTPS but lets the

user open the website at his own risks shifts the responsibility on the user. Finally,

browsers that don’t let the user navigate on a website with a self-signed, non-globally

trusted certificate, surely make phishing attacks way too hard if not impossible to be

implemented.

53

8 Live experiment

After testing some attacks in a controlled environment, we wanted to do a live test

on the field. The purpose of this test was to effectively understand how many real-

world users were prone to falling in these traps. In the following subsection, we will

discuss the main goals of our live experiment, along with the hardware and software

used to carry it out. When talking about the software, some considerations about

their configurations will be made so that it will be easier to understand how these

programs can be tweaked to enable some attacks. We think it is important to show

how to use these tools to perform attacks, as literature is strongly lacking of proper,

deep explanations.

After consulting us with the ICT team of our university, we decided to put under

attack another network instead of eduroam. This network is called ”Studenti” (italian

for ”students”) and is the Wi-Fi network that can be used by students, who can login

with their credentials provided by our university. The main reasons behind this choice

are:

• We did not want to frighten foreign students who would have then contacted

their respective universities for clarifications, which did not know anything

about this experiment;

• There are very few foreign students in our university, so the users who use

eduroam are mainly users from our same university;

• Erasmus students are provided with credentials by our university, so they might

end up using Studenti too instead of eduroam;

• The students from our university generally use the network Studenti rather

than eduroam. The ICT team told us, by looking at real time data, that the

number of users using Studenti is ten times higher than the one of users using

54

”eduroam”. This means that we could have caught much more data attacking

the former instead of the latter.

To summarize, the users under attack would have been virtually the same in both

cases (Studenti or eduroam) with the main difference that there are far more students

in our university who use Studenti instead of eduroam, thus letting us catch more

data.

8.1 Goals

The main goal of our experiment was to see how many devices would fall into some

of the attacks discussed in the previous section. Catching data from real-world users

would give us a measure of effectiveness of the attacks we developed. Since we sup-

posed that a huge number would fall at least in some of the attacks we prepared, a

live experiment was the perfect tool to verify our hypothesis.

In detail, we wanted to investigate mainly two things:

1. How many users don’t use an anonymous identity, thus exposing themselves to

tracking attacks;

2. How many users would connect to the rogue network, be it for a bad config-

uration of their device or for explicit choice. Among these users, it was also

of our interest to analyze which phase 2 authentication method was set on

their devices, letting us know how easy for an attacker would be to steal their

passwords.

As it was shown in section 7, while collecting access attempts from users is a

fairly easy task, authenticating them is harder as it requires deeper knowledge and

tweaking of the programs used by the evil-twin. However, authenticating the users

was our biggest goal and so the part of the project where we concentrated the most. In

55

Appendix C (section 15) it can be seen how we modified FreeRADIUS to successfully

authenticate any user.

In order to grant anonimity to every user, we decided to hash the username in both

the anonymous and personal identity, but not the realm (if there was one). In order to

check whether a user was using an anonymous identity or not, we simply checked that

the hashed anonymous identity was different from the hash of ”anonymous” (or some

variations of it), which should be the value used worldwide for anonymous identities.

The hash function used to hash usernames is SHA256, which is, as of today, a strongly

secure hash function.

In order to carry out this live test, we decided to set up a number of different

evil-twins, all of them configured in the same way, and to place them around our

university to collect data. In the next paragraphs, the actual physical devices we

used as evil-twins along with the software needed to achieve our goals will be shown.

8.2 Hardware

In order to make the attacks easier to carry out and more appealing for an attacker,

hardware should be inexpensive, small in volume, lightweight and with little power

consumption. These features are wanted by the attacker in order to make the attacks

physically feasible. In order for the attacker to trap users on a vast area, more

access points are needed to cover it completely, so hardware should be inexpensive.

Moreover, small and lightweight hardware can be easily hidden in some places to be

retrieved later for data analysis. Since it can be assumed that the evil-twins are left

out in the wild or used outside of the attacker’s house, they need batteries or power

banks to work; for this reason, they should be less energy-intensive as possible, in

order not to burn out the energy supply too soon.

For this reason, the hardware used in our attacks consists of mainly two items:

• Raspberry Pis, in our case the 3 model B+;

56

• TP-Link Archer T2U network adapters.

Raspberry Pis provide enough computational capabilities to run the software

needed by the evil-twin to recreate the 802.1X network to attack. Moreover, as of

today, the advertised price for a recent model of Raspberry Pi sits around 40-50 euros,

thus making them pretty inexpensive. Raspberry Pis run Rasperry Pi OS (named

Raspbian OS before 2020), which is a Unix-like OS based on Debian, meaning that it

can be freely configured and there’s plenty of software for it to be installed. Raspberry

Pis are pretty small and lightweight. With a case on, a Raspberry Pi 3 model B+

measures around 9x7x3 centimeters, weighing about 105 grams. This means that it

can be easily hidden without it being noticed. As for the energy consumption, under

heavy workload a Raspberry Pi 3 model B+ should require around 5 watts of power.

This means that using a power bank with a capacity of 10000 (ten thousand) mAh,

a fully stressed Raspberry Pi 3 model B+ can be used for around ten hours. For our

tests, energy consumption was not a problem as we had the opportunity to plug the

Raspberry Pis to the power outlets of our university. As an attacker may not have

access to the university or to a power outlet in general, energy consumption becomes

a bigger concern as he has to rely on power banks, which have a limited power supply.

Since the aim of the attacks was to replicate an 802.1X hotspot, it is clear that

hardware capable of performing 802.1X authentication was needed. Unfortunately,

the Rasberry Pi integrated wireless interface cannot handle such kind of authenti-

cation on the server side as of now. For this reason, a USB wireless interface was

needed. Since it was assumed that this behaviour of the integrated wireless interface

was linked to its drivers (Broadcom), the TP-Link Archer T2U family of adapters

was an effective choice, since its drivers are provided by Realtek and they support

802.1X authentication. Even if these network adapters proved to be suited for this

work, the drivers provided by Realtek are not Linux compatible, so we had to resort

to third party drivers found on the internet. Resorting to other antennas, such as

57

ones powered by Atheros drivers, would have probably been an even better choice.

Again, the antennas we used cost between 10 and 15 euros on major e-commerce

platforms, so they are pretty inexpensive too.

Figure 10: The three Raspberry Pi 3 model B+ along with the three different TP-
Link Archer T2U dongles we used in our live test.

8.3 Software

Besides hardware, which is surely important for the feasibility of the attacks, software

plays a huge role too. To build a complete evil-twin, we had to work with a variety of

different software, each one of them playing an important role in the whole scheme.

All of the software presented here are free and open source, an important aspect since

an attacker has only to deal with hardware costs if he wants to set up one or more

evil-twins.

8.3.1 FreeRADIUS

The most important actor in 802.1X authentication surely is the authentication server,

usually known as RADIUS server since it generally uses the RADIUS protocol to carry

out authentications.

58

FreeRADIUS is a really famous software that can be used for this purpose and is

the one used all over the world for real eduroam hotspots.

In order to be fully functional and to make EAP-TTLS and EAP-PEAP usable

for 802.1X authentication, FreeRADIUS needs at least one X.509 certificate, i.e. the

server certificate. Since our university uses a self-signed X.509 certificate, we had

to generate two different certificates: one for the certification authority and one be-

longing to the authentication server. FreeRADIUS comes with some useful scripts

that make automatic certificates’ generation really easy, so we used them to make

our own certificates. The certificates generated by these scripts can be customized by

editing the corresponding configuration files. Our goal was to make our certificates

look as similar as the real ones, so that any user seeing the certificates would think

they were the genuine ones. In order to do so, we first took a look at the real certifi-

cates provided by our university, then we edited the configuration files accordingly.

In section 13 the certificate of the true root CA of our university is shown side by

side with the one we did generate. As it can be seen, other than some details, the

two are practically identical for a user. In section 14, instead, there is a side by side

comparison of the two server certificates, which are the ones actually presented to

the smartphone by the authentication servers. As it can be noted, these two also are

virtually identical.

The first modification we did to FreeRADIUS was intended to log every access

attempt happening outside the TLS tunnel, in the first phase of the 802.1X authen-

tication. Here, data such as current time, MAC address of the supplicant and the

anonymous identity were written to a log file to be analyzed later. This modifications

were intended to let us analyze whether a user was using an anonymous identity or

not.

Since our major goal was to authenticate as many users as we could on the evil-

twin, deeper modifications to FreeRADIUS were needed. Whenever a supplicant

59

passes phase 1 authentication, be it for wrong configuration of the device of for user

error, a TLS tunnel is built to encrypt data end-to-end between supplicant and AS.

To authenticate the users, we tweaked the portion of code that FreeRADIUS runs

inside the TLS tunnel in such a way that an Access-Accept packet is fired at the right

time. As mentioned before, Access-Accept packets fired at a wrong time make the

supplicant drop the connection, resulting in a failed authentication attempt. In order

to maximize the odds of correctly authenticating a user, we decided to propose EAP-

PEAP for phase 1 and EAP-GTC for phase 2 authentication. More details about

these choices can be found in sections 7.3 and 15. According to our modifications,

FreeRADIUS was set to:

• Fire an Access-Accept as soon as it could, if the supplicant was set to use

EAP-TTLS for phase 1;

• Propose EAP-GTC for phase 2, if the supplicant agreed on using EAP-PEAP.

Then:

– Do a legit run of EAP-GTC and then fire an Access-Accept, if the suppli-

cant agreed on doing EAP-GTC;

– Wait for an EAP-NAK+Desired-method and then force an Access-Accept,

if the supplicant did not agree on using EAP-GTC.

Basically, inside EAP-PEAP we were able to authenticate users with every kind of

phase 2 method, since we could either break EAP-GTC (in case the supplicant agreed

on using it) or bypass phase 2 (in case the supplicant wanted to use another EAP

method). Inside EAP-TTLS, things are quite different as it seems that we don’t

have time to negotiate the phase 2 method, so we forced an Access-Accept as soon

as we entered the tunnel, hoping for the supplicant to accept it. It must be noted

that in EAP-TTLS, only users who set MS-CHAPv2 as phase 2 method couldn’t

60

be authenticated, as all the other common methods inside EAP-TTLS (PAP, MS-

CHAPv1 and EAP-GTC) provide one-way authentication, thus will accept a forced

Access-Accept packet. Beware that in EAP-PEAP, when the supplicant first sends

its identity inside the tunnel, the AS can fire an Access-Accept as soon as it receives

the EAP identity. Doing this ensures that every phase 2 method inside EAP-PEAP

leads to a successful authentication run, but has a major flaw for our purposes: the

attacker cannot know which phase 2 authentication method was chosen by the user,

as phase 2 is completely bypassed before even negotiating a phase 2 authentication

protocol. One of our goals was to discover which authentication methods were used

by users, so firing an Access-Accept as soon as the inner identity was received was

not a good idea. We preferred, instead, to propose to the supplicant a method we

could break (EAP-GTC) so that we could either break it or know which method was

chosen by the supplicant and, only then, bypass it.

8.3.2 HostAP daemon

In order to make the Raspberry Pis advertise an 802.1X network with SSID ”Stu-

denti”, we installed and configured hostapd, a widely known software in the GNU/Linux

community. No special modification has been made to this software, as we were able

to configure it according to our needs by editing the configuration files. Here we spec-

ified the address and port of the RADIUS server, which would have been contacted

by hostapd to let supplicants perform 802.1X authentications.

Moreover, in order to forbid users from trying to authenticate too many times,

some scripts were written to populate a MAC address blacklist used by hostapd.

Whenever a supplicant reached the maximum number of authentication runs per-

mitted, its MAC address was inserted into the blacklist and dynamically reloaded

through hostapd cli, a hostapd command-line tool that lets other program interact

with hostapd.

61

8.3.3 ISC-DHCP-Server

In order to make the evil-twin look more like the a genuine hotspot, we needed to

provide our Raspberry Pis with a DHCP server. This program would be able to

provide supplicants with IPv4 addresses after authenticating, thus letting them use

the internet. As it was shown in subsection 4.7, as soon as the Four-Way Handshake

completes, the supplicant will ask the access point for an IPv4. If an IPv4 is not

provided by the access point, smart devices tend to disconnect from the network as

they cannot use the internet.

To achieve this goal, we installed the ISC-DHCP-Server software, which provides a

complete DHCP server. Then we defined an IPv4 address pool to take IPv4 addresses

from. In our case, this subnet was 172.16.33.0/24. The external network interface

of each Raspberry Pi was configured to use 172.16.33.1 as its own address and ISC-

DHCP-Server was set to listen for DHCP requests on the USB wireless interface.

8.3.4 Captive portal

Upon correctly authenticating to the rogue eduroam hostpot, we wanted to let the

users know that either their smartphones were badly configured or that they decided

to access an evil network. In order to do so, we decided to set up an informative

captive portal, i.e. a web page that forcefully opens after the user connects to a

certain network. Captive portals are widely used for hotspots in public places but

practically never used in 802.1X networks as authentication is performed at a lower

level.

In order to do so, we developed a small website in Python, using the micro-

framework Flask. This website would present the user a web page containing a

warning, plus some tips on how to configure the connection to the network to improve

the overall security. The web page is completely in italian, as the users under attack

belonged to our university.

62

To show the user this captive portal, we used dnsmasq to redirect specific DNS

query to the local hosted web server. At this point, whenever a user connected to the

network, he was prompted with the warning web page.

Figure 11: The informative captive portal shown to the users who successfully au-
thenticated on our evil-twins.

8.4 Outcomes

After deploying the evil-twins inside our university, we let them run for some days in

order to collect as much data as we could, then we retrieved the log files containing

the pieces of information we were interested in. By the time we are writing these

results, our three evil-twins have been active for around seven working days.

As we suspected, we were able to try to authenticate a big amount of users, despite

the fact that our evil-twins had far less powerful signal with respect to the genuine

63

access points. In total, 295 different users attempted to connect to our network at

least once. Among these, no one used ”anonymous” (or small variations of it) as

anonymous identity; this means that it is highly probable that everyone tried to

access the network disclosing their personal identity in the clear. As it turns out,

every user from our experiment is vulnerable to tracking attacks, thus confirming

our suspicions about the low adoption of anonymous identities by users. Moreover,

among the various access attempts, 109 devices (36.95%) did not use random MAC

addresses, thus compromising user’s privacy once again.

Coming to the users who completed the authentication against our evil-twins,

our data show that we were able to authenticate exactly 96 users. This means that

32.54% of the users (around one every three) who tried to connect to the network

completed the authentication, thus exposing themselves to harsher threats. Here, the

rate of non-randomized MAC addresses is way higher: 64 devices (66.67%) still use

the hardware MAC of the network interface. Previously, when talking about access

attempts in general, it was said that no user used ”anonymous” or some of its variants

as anonymous identity. However, we cannot conclude that no anonymous identity

was used, even if it is highly likely. Here, having access to both anonymous and real

identities, we can affirm that anonymous identities surely are not popular. Among

the users who authenticated, only two of them used different values for anonymous

identity and personal identity. However, these anonymous identities are different,

meaning that they are probably still tied to the user, and are of course different from

”anonymous” et similia. Again, virtually every user who authenticated does not use

an anonymous identity for sure, thus making us think that even the users who did

not completely authenticate were using their real username as anonymous identity.

Coming to the authentication methods, all of the 96 users who did authenticate used

EAP-PEAP for phase 1 authentication, while no one opted for EAP-TTLS. The phase

2 authentication method set on each smart device is more interesting as attackers, as

64

the difficulty of stealing a password is strongly related to the authentication protocol

used. The following table contains, for each phase 2 authentication method recorded

in our log files, the amount of supplicants that requested that authentication method.

Phase 2 method Amount (abs) Amount (%)
MS-CHAPv2 50 52.08%

PWD 29 30.21%
GTC 17 17.71%

Table 2: The phase 2 authentication methods chosen by the supplicants during our
attack. In the second column, how many times that authentication method has been
picked.

As it can be clearly seen, the vast majority of devices uses MS-CHAPv2 for phase

2 authentication, probably because of the fact that many modern Android devices

have this method set as default. As already said previously, it is not trivial for an

attacker to retrieve the password when the user authenticates with MS-CHAPv2, but

it can be done with enough computational capabilities. For this reason, users who

authenticated with MS-CHAPv2 are exposed to credential stealing attacks too. On

the other hand, it can be seen that some supplicants accepted to use GTC for phase

2 authentication, probably because no phase 2 method was set on the supplicant.

These users basically gift their password to the attacker, so they surely are the most

endangered ones. Finally, surprisingly enough there were many users who intended

to authenticate using PWD. As already said in 3.2, PWD is considered one of the

safest authentication methods since it provides mutual authentication and it is based

on discrete logarithms, a problem which is hard to solve as of today. These users

are the only ones, among those who authenticated, who can be considered safe from

having their password stolen.

As predicted during our laboratory experiments, only Android devices authenti-

cated against our evil-twins. This is due to the fact that iOS devices won’t connect

to an evil-twin without the user looking for Wi-Fi networks and accepting a new cer-

65

tificate, while Android smartphones can do so if misconfigured. Since our evil-twins

were placed inside the university, iOS devices could sense both the genuine network

and the evil one, preferring the first one as the certificate was already known by the

smart device. For misconfigured Android devices, instead, only the signal power mat-

ters in order to decide whether to connect to a known network or not. Since while

passing near the evil-twin its signal is stronger than that of the genuine network,

misconfigured devices opted for the rogue network instead of the genuine one. By

analyzing the data concerning the smartphones who connected to our rogue network,

we discovered that the devices which fell into the attack belonged to the following

brands:

Brand Amount (abs) Amount (%)
Samsung 28 29.17%
Huawei 24 25.00%
Xiaomi 16 16.67%
Other 28 29.17%

Table 3: The brands of the supplicants who successfully authenticated against our
evil-twins.

To clarify, the ”Other” category comprises devices from various other brands, such

as LG, Sony, OPPO, and devices that we were not able to identify. Since for each

one of these brands there were at most three devices recorded, we decided to group

them in a common category.

66

9 Defensive mechanisms

After discussing which vulnerabilities can be exploited to carry out several attacks, it

is mandatory to show how some of these security problems can be tackled on Android

and iOS devices.

Since the two most important vulnerabilities exploit the lack of anonymous iden-

tity and the fact that phase 1 authentication can easily succeed, be it for a wrong

configuration of the device or for a user action, we will discuss how users can stem

these problems. Credential stealing attacks, authentication of the user, traffic sniffing

and DNS spoofing all need for the phase 1 authentication to succeed, so if a user

manages to avoid stepping further in a conversation with a rogue AS, then he can

consider himself safe.

Concerning tracking attacks, as of today only Android users can defend them-

selves easily. In order to do so, every Android user should not leave the ”anony-

mous identity” field empty, but should, instead, fill it with something like anony-

mous@domain.TLD. To make an example, a user from the University of Brescia,

whose domain is ”unibs” and whose TLD is ”it”, should set this field with anony-

mous@unibs.it. Some universities may have policies that restrict the possible values

for anonymous identities to a certain set, so in this case users should also ask to the

network administrators of their universities for more details. In general, however, the

first portion of the anonymous identities can be any string, while the domain must

always be the right one. For iOS users, on the other hand, there is no easy solution as

of today. The only way to use an anonymous identity is by installing a configuration

profile, which can be created with specific programs or provided by the university,

for example via eduroam CAT. Unluckily, creating a configuration profile can be not

so easy for a user, so it should be up to each university to provide its users with

the right configuration profile, containing an anonymous identity. The only other

way for an iOS user to minimize the odds of being tracked is to turn off his Wi-Fi

67

when roaming in public. This does not prevent an attacker from tracking the user

nearby the university or the user’s house, where the Wi-Fi is most likely on, but the

attacker’s evil-twin has to compete with other Wi-Fi networks to successfully attack

the user.

The second major problem, as said before, is that some Android devices do not

validate the server certificate, while iOS devices require for a manual verification of it.

Again, at least for Android smartphones, universities are the ones responsible for the

lack of security in their users’ devices. To avoid a big amount of harmful attacks, we

encourage every user to ask for more detailed instructions to their university on how

to set up the eduroam network. In case a university uses a self-signed certificate, each

Android user should be able to find the right root CA certificate on a web page of his

university, download it, install it and use it in the ”CA certificate” field of the network

configuration. In case a university uses a certificate signed by a globally trusted CA,

instead, users must be provided with the right domain to look for in the certificate,

to make sure that the certificate exposed by the AS is the right one. For Android

smartphones in general, the option ”Do not validate” must never be used, even if

the university says so. On the other hand, iOS devices will always give a user the

option to accept a new certificate for eduroam, even by installing a trusted certificate

with a configuration profile. For this reason, iOS users in particular should set up the

connection to the network inside the university, where attacks are harder to carry out,

and then reject any new certificate, unless their university tells otherwise. Since both

Android and iOS devices generally give the option to the user to connect anyway,

either by tapping a ”Try again” button or by accepting a new certificate, universities

should teach their users to always step back from networks where something like this

occurs.

To summarize, concerning tracking attacks, Android users should always set the

anonymous identity so that it is really anonymous. iOS users, who don’t have this

68

possibility, can either ask their university for a configuration profile which uses an

anonymous identity or create one themselves. In case none of these options is avail-

able, turning off the Wi-Fi when away from safe places can limit, but certainly not

eliminate, the attacker’s odds of succeeding. On the other hand, regarding every

other attack, Android users must be able to properly configure their smartphone,

avoiding the ”Do not validate” option completely. iOS users, along with Android

users too, must be careful when something goes wrong with the eduroam network: a

new certificate prompted to an iOS user or a connection error on an Android device

most certainly mean that the network they tried to connect to is not genuine, so they

should step back.

69

10 Conclusions

In this work, we deeply discussed the most important aspects of 802.1X authentication

in WPA-Enterprise networks. As it was briefly said, WPA-Enterprise guarantees, as of

today, a higher level of security to end users with respect to WPA-Personal. However,

in order for a user to take full advantage of the security mechanisms provided byWPA-

Enterprise, he must be fully aware on how to properly configure his smart devices.

Even a small error in the configuration process can easily lead to harsh consequences.

In case of the eduroam network, which was the one we developed and tested at-

tacks against, it was shown how the threats to users privacy are generally tied to

wrong directives from universities. As a matter of fact, the vast majority of univer-

sities do not endorse anonymous identities, thus leaving users exposed to tracking

attacks, and some tell their users to skip one of the most important phases in 802.1X

authentication, which is server-side authentication.

If universities are the ones that must be blamed for downgrading their users’ pri-

vacy, Google, Apple and other smart devices manufacturers are also equally guilty.

On one hand, Google itself can be declared the safest among the various brands, as

Google’s Pixels are lacking, since the end of 2020, of the option to skip server-side

authentication, thus mandating the user to choose a way to validate the server cer-

tificate. Other Android devices, on the other hand, still have the option ”Do not

validate” available. Every Android ROM developer should be encouraged to follow

Google’s guidelines, for the sake of users’ security. Finally, Apple should automatize

the verification of certificates as it happens on Android devices. Prompting a certifi-

cate to the end user is not a wise choice, as users are not generally able to distinguish

between a fake and a genuine certificate, and it is a task they should never perform.

Among the attacks presented in this work, we can safely say that user tracking is by

far the easiest one to perform. What we hope is for universities to start considering

this kind of attack as a serious threat to users’ privacy. Universities should start

70

adopting anonymous identities as soon as possible, make sure that their users use

them and make available configuration profiles for any device, so that both Android

and iOS devices can be put at safety.

The results of our experiments are clear: almost every user can easily be tracked in

space and time by an attacker because of the low-to-none adoption rate of anonymous

identities. The number of different users who successfully authenticated against our

evil-twins is not that low, as it can be clearly seen that around one in three students

actually authenticated himself; this is not a positive datum for our university or any

other one that instructs its users to use the ”Do not validate” option. These results

should strongly encourage universities in changing their security policies and start

using every 802.1X security mechanism at its best, for the sake of users’ privacy.

In general, with a mixed action by both universities and smart devices manu-

facturers, users could eventually make the most out of the security tools provided

by WPA-Enterprise. Without the will to change things as they are now, from both

perspectives of universities and manufacturers, users will continue to be threatened

by many attacks which are easy to set up and really harmful.

71

11 Acknowledgements

327640385b5e800294e3084d6f51fb9fd6e2d185e104b91826755e461867c8fc

72

12 Sommario

Le reti Wireless LAN, comunemente chiamate reti Wi-Fi, hanno ormai una lunga sto-

ria. Sin dagli albori di queste reti di comunicazione, ingegneri e accademici da svariate

branche dell’informatica, dell’elettronica e delle telecomunicazioni hanno tentato di

rendere queste reti il più sicure possibile. Per raggiungere questo scopo, sono stati in-

ventati e implementati molti strumenti che mirano a difendere gli utenti della rete da

molti possibili attacchi alla loro sicurezza. Uno sforzo cos̀ı grande si è reso necessario

a causa della natura di queste reti, in quanto scambiando informazioni nell’etere sono

intrinsecamente meno sicure delle reti cablate.

Tra le varie famiglie di reti Wi-Fi, una si è sempre distinta per l’elevato livello

di sicurezza che è in grado di fornire ai suoi utenti, impareggiato almeno fino alle

seconda generazione inclusa. Questa famiglia di reti WLAN è generalmente chiamata

WPA-Enterprise, WPA-EAP o anche semplicemente 802.1X. Le reti WPA-Enterprise

non sono certamente comuni quanto le reti WPA-Personal, che sono ormai presenti

in ogni abitazione, ma si trovano molto spesso in contesti dove un elevato numero di

utenti deve avere accesso a una stessa rete.

All’interno della famiglia WPA-Enterprise, una particolare rete svetta sulle altre in

fatto di diffusione. Si tratta della rete ”eduroam”, ovvero una rete Wi-Fi supportata

da un enorme numero di università in tutto il mondo. Dato che le università possono

contare migliaia di studenti, centinaia di docenti e un gran numero di membri del

personale in generale, è immediato capire come questa rete abbia un numero di utenti

enorme. Purtroppo, un altrettanto grande numero di università continua a istruire in

maniera incorretta i suoi utenti su come configurare l’accesso a questa rete, rendendoli

cos̀ı vulnerabili a una più o meno lunga serie di attacchi.

La rete eduroam, cos̀ı come in generale le reti WPA-Enterprise, ha una lunga storia

di attacchi alle spalle. Alcuni di questi attacchi sono ben noti dalla comunità, mentre

altri sono o meno noti, o meno considerati o ancora considerati non particolarmente

73

dannosi. Inoltre, durante lo studio e la ricerca di alcuni attacchi a questo tipo di reti,

ci siamo resi conto di come per molti di essi manchi sufficiente documentazione per

replicarli o per poterli comprendere appieno.

Il nostro obiettivo principale è stato quello di studiare, sviluppare e inscenare vari

attacchi agli utenti di questa rete mediante l’utilizzo di uno o più gemelli malvagi.

Un gemello malvagio è un dispositivo, nel nostro caso un dispositivo di rete, che

replica i comportamenti di un dispositivo genuino, ma con intenzioni malevole. Nel

caso in esame, il gemello malvagio ha lo scopo di replicare un access point per la

rete eduroam in grado di permettere agli utenti di tale rete di autenticarsi presso di

esso, in modo da poter poi effettuare una serie di attacchi che minano alla privacy

degli utenti, rubando informazioni di interesse. Forte interesse è stato posto anche

nel comprendere sotto quali condizioni un certo dispositivo smart possa cadere in un

attacco tra quelli sviluppati e, viceversa, sotto quali ipotesi tale dispositivo può dirsi

al sicuro.

Relativamente agli attacchi che abbiamo studiato, sviluppato e implementato, pos-

siamo dire che a seconda della configurazione di un dispositivo smart, la piattaforma

di attacco a disposizione dell’attaccante può essere più o meno ampia. Tra gli attacchi

che abbiamo testato in laboratorio, i più importanti sono sicuramente:

• Tracciamento dell’utente. Ciò rende possibile a un attaccante sapere con più

o meno precisione la posizione di un utente all’interno del campo della rete

malevola. A causa di come la rete eduroam viene gestita dalla stragrande mag-

gioranza delle università, praticamente ogni utente è vulnerabile a questo at-

tacco;

• Furto delle credenziali di accesso. Questo attacco è più difficile del precedente

da attuare, ma ancora una volta è permesso in genere da errate istruzioni delle

università relativamente la configurazione della rete. Se, inoltre, l’utente non

diversifica le password, la password rubata potrebbe garantire all’attaccante

74

l’accesso ad altri servizi;

• De-anonimizzazione del dispositivo. Se l’utente si autentica presso la rete

malevola, l’attaccante può ottenere un gran numero di informazioni relative

al dispositivo utilizzato, che possono poi permettergli di inscenare altri attacchi

che sfruttano vulnerabilità di certi dispositivi o versioni dei sistemi operativi;

• Sniffing del traffico. Dato che il dispositivo smart utilizza l’evil-twin come punto

di accesso al web, tutto il traffico internet che il dispositivo invia o riceve deve

passare per l’evil-twin, che quindi ha accesso a queste informazioni. L’attaccante

può quindi vedere quali siti vengono visitati dall’utente, spesso quali applicazioni

ha installato sul suo dispositivo e, in rari casi, anche quali dati scambia con i

siti web;

• Spoofing del DNS. Dato che il traffico passa per il gemello malvagio, il dis-

positivo dell’utente si rivolgerà ad esso per la risoluzione di nomi simbolici in

indirizzi IP, utilizzando il gemello malvagio come resolver DNS. Ciò implica

che in alcuni casi l’attaccante può dirottare le richieste per un certo sito web

su di un altro sito, magari controllato dall’attaccante stesso, che può quindi

procedere con un attacco di tipo man-in-the-middle o phishing. Come spie-

gato nella sezione dedicata, oggi questi attacchi sono più difficili da inscenare

grazie all’elevata adozione del protocollo HTTPS rispetto ad HTTP. In ogni

caso, esistono browser per smartphone che utilizzano di default HTTP invece

di HTTPS, rendendo questi attacchi molto pericolosi per alcuni utenti.

In generale, tolto il primo attacco tra quelli elencati, tutti gli altri richiedono che

l’utente abbia configurato in maniera marcatamente errata lo smartphone oppure che

si sia volontariamente connesso alla rete, nonostante gli errori di connessione o gli

avvertimenti presentati dallo smartphone.

75

I dispositivi in questione possono essere divisi in due ampie classi, ovvero i dispos-

itivi Android e i dispositivi iOS. I primi sono generalmente più propensi a cadere nei

vari attacchi, in quanto lasciano più libertà di configurazione all’utente, spesso presen-

tando opzioni di default molto insicure. Google ha imposto che, a partire da Dicem-

bre 2020, alcune opzioni di configurazione debbano essere rimosse in quanto possono

degradare eccessivamente la sicurezza degli utenti sulle reti 802.1X; purtroppo però,

ad oggi ancora moltissimi dispositivi Android possono essere configurati con queste

opzioni. I dispositivi iOS, invece, lasciano molta meno libertà in fase di configurazione

e si sono dimostrati più resistenti ad alcuni attacchi che abbiamo sviluppato. In ogni

caso, nei dispositivi Apple più che in quelli Android, se l’utente decide attivamente

di collegarsi alla rete malevola, confondendola con quella genuina, può sottoporsi a

danni maggiori rispetto a un dispositivo Android. In linea di massima, possiamo af-

fermare che i dispositivi Android possano fornire maggiore sicurezza rispetto a quelli

iOS ma, nonostante ciò, risultino più insicuri sia a causa di errori degli utenti, sia

a causa delle università che istruiscono in maniera errata gli utenti relativamente la

configurazione della rete. I dispositivi iOS, invece, risultano meno vulnerabili, ma

comunque non completamente sicuri a causa di vincoli imposti dal sistema operativo

e, soprattutto, fortemente indeboliti da semplici errori dell’utente.

Per meglio comprendere quanto questi attacchi siano fattibili in pratica, al di fuori

di test controllati in laboratorio, abbiamo organizzato un esperimento sul campo, con

l’obiettivo di capire quanti utenti reali potessero cadere nelle varie trappole predis-

poste. Effettuare un test live è di fondamentale importanza per capire quanti utenti ef-

fettivamente siano esposti alle minacce che abbiamo studiato, cos̀ı da darci una misura

di applicabilità ed efficacia di tali attacchi. L’altro scopo di punta dell’esperimento,

oltre a raccogliere dati dagli utenti, era quello di avvertirli qualora questi si fossero

effettivamente connessi alla rete malevola e di spiegare loro come risolvere questo

importante inconveniente. Ciò è stato possibile tramite la realizzazione di un captive

76

portal informativo, che spiega all’utente le possibili ragioni per cui può essere caduto

nella trappola e indica a questo delle guide per poter risolvere questi problemi. Il

captive portal realizzato, visionabile in figura 11 (paragrafo 8.3.4), è scritto intera-

mente in italiano in quanto gli utenti sotto attacco erano principalmente studenti della

nostra università. L’esperimento che abbiamo svolto sul campo è stato concordato

in ogni aspetto con il team ICT della nostra università, il quale ci ha dato tutti i

permessi per svolgere il nostro test. Su loro consiglio, abbiamo deciso di attaccare la

rete interna della nostra università, chiamata ”Studenti”, invece della rete eduroam.

Questa scelta è stata presa considerando i seguenti aspetti:

• Sarebbe stato opportuno evitare di allarmare studenti stranieri, i quali avreb-

bero contattato le loro università per avere delucidazioni. Queste, a loro volta,

non sarebbero state a conoscenza dell’esperimento e quindi avrebbero potuto

segnalare la cosa ad autorità competenti;

• La nostra università vanta un numero piuttosto basso di ospiti, quindi gli utenti

della rete eduroam sono praticamente gli stessi della rete Studenti;

• Gli studenti Erasmus presso la nostra università vengono spesso forniti di cre-

denziali legate strettamente alla nostra università, quindi tendono ad utilizzare

la rete Studenti piuttosto che eduroam;

• Stando ai dati real-time che ci sono stati forniti dal team ICT, gli utenti con-

nessi alla rete Studenti sono circa dieci volte di più rispetto a quelli connessi a

eduroam. Ciò significa che attaccando la rete Studenti avremmo potuto ottenere

un quantitativo molto più grande di dati.

Per effettuare questo test, abbiamo configurato tre Raspberry Pi 3 Model B+ con

alcune antenne Wi-Fi (visionabili in figura 10, paragrafo 8.2) e con tutti i software

necessari per ricreare la rete Wi-Fi in esame. I software utilizzati sono stati modifi-

cati in maniera più o meno ampia in modo da permetterci di raggiungere gli obiettivi

77

prefissati. Una volta pronte e ricevute tutte le autorizzazioni da parte degli enti com-

petenti della nostra università, abbiamo provveduto a nascondere le tre Raspberry in

punti diversi della nostra università, in modo da raccogliere quanti più dati possibili.

I dati sono stati anonimizzati in modo da non poter risalire agli utenti reali; per anon-

imizzare le identità degli utenti, abbiamo utilizzato la funzione di hashing SHA256,

che ad oggi è considerata fortemente sicura. A fine esperimento, abbiamo raccolto

e analizzato i file di log per poter estrarre le informazioni d’interesse. Al momento

della stesura di questo documento, i nostri gemelli malvagi sono stati operativi per

circa sette giorni lavorativi.

Stando ai risultati del nostro esperimento, abbiamo potuto notare come la stra-

grande maggioranza degli utenti non faccia uso di identità anonima, esponendosi

quindi ad attacchi di localizzazione. In particolare, su 296 tentativi di accesso alla

rete da utenti distinti, nessun è stato eseguiti con identità anonima uguale a ”anony-

mous” o sue comuni varianti (e.g. ”Anonymous”, ”ANONYMOUS”, ”anonimo”, ...).

Possiamo quindi immaginare senza troppa fantasia che le identità scambiate in chiaro

dagli utenti siano proprio i loro username. Per tutti questi utenti, quindi, risulta ba-

nale per un attaccante conoscere la posizione dell’utente in un certo istante di tempo.

Inoltre, è interessante notare come una percentuale piuttosto alta dei tentativi di ac-

cesso, nello specifico il 36.95%, sia avvenuto tramite dispositivi con indirizzo MAC non

casuale; tali dispositivi sono per natura tracciabili con facilità. Per quanto riguarda

i tentativi di autenticazione che hanno avuto successo, invece, ne abbiamo registrati

96 in totale (32.54% sul totale, circa un utente ogni tre). Se prima non era possi-

bile dire con certezza se gli utenti utilizzassero un’identità anonima, qui è possibile in

quanto disponiamo di dati in più. Per ogni run di autenticazione, infatti, possediamo,

per ogni dispositivo, sia l’hash dell’identità anonima, sia l’hash dell’identità vera. Di

ogni autenticazione compiuta, solo 2 su 96 riportano due hash distinti per identità

anonima e personale; entrambe le identità anonime sono però differenti, il che ci fa

78

pensare che siano comunque in qualche modo collegate all’utente, e sono ovviamente

diverse da ”anonymous” et similia. Ciò ci porta quindi a pensare che anche gli utenti

non autenticati in realtà usino la loro identità personale al posto di una anonima.

Parlando di metodi di autenticazione scelti, tutte le autenticazioni sono avvenute uti-

lizzando EAP-PEAP come metodo di fase 1. Il metodo di fase 1 non è di cruciale

importanza per un attaccante, bens̀ı è il metodo di fase 2 ad essere più interessante

in quanto la facilità con cui l’attaccante può rubare la password dell’utente è forte-

mente dipendente da questo metodo. Nel caso del nostro esperimento, in tabella 2

(paragrafo 8.4) sono riportati i metodi di autenticazione di fase 2 richiesti dai dispos-

itivi degli utenti congiuntamente al numero di volte che sono stati richiesti. Nel caso

del metodo GTC, cioè quello che viene proposto al dispositivo da parte del nostro

gemello malvagio, la difficoltà nel rubare la password è praticamente nulla, in quanto

questa viene consegnata in chiaro. Il metodo MS-CHAPv2, invece, è sicuramente

più resistente e rende il recupero della password più difficile, ma ad oggi ampiamente

fattibile. Infine, il metodo PWD è sicuramente il più resistente in termini di furto

della password, in quanto si basa sugli stessi principi matematici su cui è basato lo

scambio di chiave Diffie-Hellman (difficoltà nel risolvere i logaritmi discreti). Stando

al nostro esperimento, dunque, possiamo affermare che una quantità molto consis-

tente di utenti è soggetta al tracciamento nello spazio, a causa del mancato utilizzo di

un’identità identità anonima. Per quanto riguarda gli utenti che si sono autenticati

completamente presso i nostri gemelli malvagi, è possibile notare come questi siano

una frazione abbastanza consistente di tutti quelli che hanno tentato la connessione

(come detto prima, circa un utente su tre). Per questo motivo, il fatto che un numero

non trascurabile di utenti si sia connesso, esponendosi quindi a una serie di attacchi

dannosi per la loro sicurezza, non è sicuramente un dato incoraggiante per la nostra

università.

Bisogna augurarsi che, in futuro, tutte le università del mondo inizino a istruire

79

gli utenti a utilizzare le identità anonimizzate per l’autenticazione alla rete eduroam

o alle reti 802.1X di ateneo in generale, in quanto ad oggi praticamente ogni utente di

ogni università può essere localizzato nello spazio da un attaccante, proprio a causa

del mancato utilizzo di questo strumento. Inoltre, è anche necessario che le università

dedichino più attenzione ad istruire tutti gli utenti, al di là del livello di esperienza,

su come configurare correttamente le connessioni alla reti sui propri telefoni. Ad oggi,

infatti, ancora molte guide universitarie riportano informazioni errate e fortemente

dannose per la privacy utenti.

80

13 Appendix A - CA certificates

In this section, we will show the root CA certificate of our university and compare it

with the fake one we crafted. Our purpose was to make the rogue one look as similar

as the genuine one, in order to possibly trick users into accepting ours instead of the

right one.

The following figure shows how similar a root CA certificate and a counterfeit one

can be. This picture shows every possible field but the signature and the certificate

itself, which will be shown in another picture. As it can be seen, in this picture only

the modulus of the public key is different, while every other field is identical in both

certificates.

Figure 12: On the left, data contained in the genuine UniBs root CA certificate. On
the right, data contained in the counterfeit root CA certificate.

For the sake of completeness, the following picture shows the two fields missing

in the previous one: the signature and the certificate itself, encoded in Base64. Since

the public key of our root CA is different from the original one, the private key is

different too. Because of the difference of both public and private keys, the signature

81

is different, as a different public key was signed with a different private key. The

certificate itself is different too, as it contains a different signature and a different

public key.

Figure 13: On the left, signature and certificate of the genuine root CA. On the right,
signature and certificate of the forged one.

82

14 Appendix B - Server certificates

In this section, similarly to the previous one, the certificate of the real eduroam

hotspot of our university will be presented along with the one we created. A smart

device that receives a counterfeit certificate should be able to validate it and fail, as

it was not signed with the right private key. However, if a user has the chance to take

a look at the certificate itself, as it happens on iOS devices, he may not notice the

differences.

This first pictures portrays what the user sees after inspecting the server certifi-

cate’s details. This screenshots collage shows, side by side, the first fields of the

real UniBs RADIUS server certificate and the ones contained in the fake certificate,

residing on our evil-twin.

83

Figure 14: On the left, identification data contained in the real RADIUS server
certificate. On the right, the data contained in the counterfeit one.

As it can be easily seen, this first portion of both certificates is identical, meaning

that by looking at these fields a user cannot distinguish between the right certificate

and the wrong one. For this reason, even by taking a look at the details of the

certificate, a user belonging to the University of Brescia could be easily tempted to

accept the fake certificate mistaking it for the real one.

The differences between the two certificates reside, once again, in the RSA public

key and, of course, in the signature of the certificate, for the same reasons explained

in 13. The following picture portrays the remaining fields of the certificate as it is

84

shown to the user.

Figure 15: On the left, public key contained in the certificate of the real RADIUS
server. On the right, the public key of the rogue one.

85

Figure 16: On the left, signature of the certificate of the real RADIUS server. On the
right, the signature of the rogue one.

Again, discriminating between a real and a fake certificate by looking at the data

contained inside them is quite hard, as it can be understood from the pictures above.

For this reason, iOS users could be easily fooled into connecting to a rogue network.

86

15 Appendix C - Main modifications to FreeRA-

DIUS

In this appendix, we will show and discuss the major modifications to FreeRADIUS

that let us perform authentication of the users without knowing their passwords. As

already said, we needed to alter the normal FreeRADIUS’ operative flow, as otherwise

every authentication attempt would have failed, since we don’t know the password

of any user. The modifications we made to achieve this goal mainly regard one

specific file, called ”inner-tunnel” in FreeRADIUS. In the following picture, the major

modifications are shown.

Figure 17: The most important modifications to the ”inner-tunnel” file.

As shown in the picture above, the portion that needs to be modified to allow

us to authenticate a user forcing an Access-Accept is the ”authorize” section of the

87

inner tunnel.

As it can be seen in the first few lines, the directive ”ok = return” inside inner-eap

needs to be commented out, otherwise the authentication server will instantly jump

to the ”authenticate” section once it receives a packet containing an EAP-Message

attribute, leaving no room for us to do our own logic.

The remaining portion of code is structured to always log authentication data,

that will be analyzed later. Since our AS proposes EAP-PEAP+EAP-GTC for phase

1 and phase 2 authentication, the authentication process can end up in one of three

main branches:

• The user chose EAP-TTLS for phase 1 and any other method but EAP-GTC for

phase 2. In this case, since we don’t have time to negotiate the phase 2 method,

we simply log data about the authentication and then fire an Access-Accept as

soon as we receive the first message inside the TLS tunnel;

• The user chose EAP-PEAP for phase 1 and any other method but EAP-GTC

for phase 2. In this case, our AS will propose EAP-GTC to the supplicant,

but will receive an EAP-NAK plus the code of the EAP method desired by

the user. Once the AS knows which protocol the supplicant wants to use, it

fires an Access-Accept before starting that authentication protocol. Doing so

ensures us that the supplicant will accept the Access-Accept packet, as we are

not stopping an authentication protocol in the middle. Notice that we could

fire the Access-Accept as soon as the supplicant sends the identity inside the

TLS tunnel, but this would prevent us from knowing which phase 2 method was

configured on by the user, an information we were really interested in;

• The user set the phase 2 method to ”None” or ”EAP-GTC”. This means that,

upon receiving the proposal by the AS, the supplicant will instantly start to use

EAP-GTC, sending its password encapsulated inside an EAP message.

88

The last branch is surely the most interesting one as, by default, the EAP-GTC

module would reject the user since the AS doesn’t know the password. Without

tweaks, if the supplicant agrees on doing EAP-GTC, the authentication run would

fail inside the inner-eap module, as the AS doesn’t know the right password. In

order to compare the password stored in the database with the one sent by the sup-

plicant, FreeRADIUS first looks for the user with that identity inside the database,

then it loads the corresponding password in the ”Cleartext-Password” attribute of

the ”control” list, which is a list of attributes used to control the flow of the au-

thorization process. Once the password has been retrieved from the database, the

EAP-GTC module will be started. Here, the two passwords (the one contained in

control:Cleartext-Password and the one contained in the EAP message sent by the

supplicant) will be compared. In order to make the EAP-GTC module succeed, we

wrote a Python script that takes the EAP message sent by the supplicant, retrieves

the password contained in it and returns it to FreeRADIUS, which will update the

value of control:Cleartext-Password with the value returned by the script. Doing so

ensures us that EAP-GTC will succeed, as control:Cleartext-Password surely contains

the same value contained in the EAP message, as it was retrieved from that same

message.

Extracting the clear text password from an EAP message is fairly easy once the

format of an EAP message is known. To clarify the next steps, this picture shows the

format of an EAP packet.

Figure 18: Format of an EAP packet.

89

To make an example, let’s say that a supplicant sent the following EAP message,

taken from a real-life authentication run we did on our evil-twin:

0x026f000a0668656c6c6f

This message can be decoded as follows:

1. 0x. It simply means that the message is in hexadecimal base;

2. 02. It means that this message is a response (requests have code 01, successes

have code 03, failures have code 04, ...);

3. 6f. This is the identifier of the packet, which lets the supplicant and the AS

identify this specific message among the ones sent during this authentication

run;

4. 000a. This is the length, in bytes, of the whole EAP message. In this case, the

length of the packet is 10 bytes. The message, as it can be seen, contains 20

hexadecimal characters (besides the initial 0x, which is not part of the packet),

which are equivalent to 10 bytes;

5. 06. This is the numerical code assigned by IANA to EAP-GTC. Each EAP

method has its own, unique code;

6. 68656c6c6f. This last portion contains the clear text password of the user. The

password is UTF-8 encoded, so we simply need to convert the hexadecimal value

to it binary representation and then read it according to UTF-8 encoding rules.

In this case, the hexadecimal string translates to ”hello” in UTF-8.

Looking at the whole message, in order to extract the password we need to discard

the first 5 bytes, as the first four ones contain meta-data about the packet, while the

90

fifth one always contains the identifier of the EAP method (06 for EAP-GTC). The

remaining bytes of the packet all belong to the password, so they need to be decoded

according to UTF-8 rules.

To summarize the scenario where a supplicant agrees to do EAP-GTC, we simply

wait for it to send the EAP message containing the password, retrieve the pass-

word from the EAP packet (knowing which bytes to read it from), store it in the

right FreeRADIUS’ control variable and then normally launch the EAP-GTC mod-

ule, which will now succeed for sure.

91

16 References

[1] S. Brenza, A. Pawlowski, and C. Pöpper. A practical investigation of identity theft

vulnerabilities in eduroam. In Proceedings of the 8th ACM Conference on Security

and Privacy in Wireless and Mobile Networks (WiSec’15), 2015.

[2] T. Perković, A. Dagelić, M. Bugarić, and M. Cagalj. On wpa2-enterprise privacy

in high education and science. Security and Communication Networks, 2020, Sept.

2020.

[3] B. Altinok. eduroam: Collect, track, hack. https://medium.com/

@besimaltnok/eduroam-collect-track-hack-183e843f7efc, Last accessed on 2022-03-

15.

[4] A. Bartoli, E. Medvet, and F. Onesti. Evil twins and wpa2 enterprise: A coming

security disaster? Computers and Security, 74:1–11, 2018.

[5] A. Bartoli, E. Medvet, A. De Lorenzo, and F. Tarlao. (in) secure configuration

practices of wpa2 enterprise supplicants. In Proceedings of the 13th International

Conference on Availability, Reliability and Security (ARES), 2018.

[6] V. Ramachandran. Cracking wpa/wpa2 personal and enterprise for fun and profit.

In Hacktivity Conference, 2012.

[7] M. Ghering. Evil twin vulnerabilities in wi-fi networks. Bachelor’s thesis, 2016.

[8] I. Palamà, A. Amici, F. Gringoli, G. Bianchi. ”Careful with that Roam, Edu”:

experimental analysis of Eduroam credential stealing attacks. In Proceedings of the

17th Wireless On-demand Network systems and Services Conference, 2022.

[9] WEP vs. WPA vs. WPA2 vs. WPA3: Wi-Fi Security Types Explained,

https://www.makeuseof.com/tag/wep-wpa-wpa2-wpa3-explained, last visited:

2022-01-04

92

[10] Public key cryptography,

https://www.ibm.com/docs/en/ztpf/1.1.0.14?topic=concepts-public-key-

cryptography, last visited: 2022-02-17

[11] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile,

https://datatracker.ietf.org/doc/html/rfc5280, last visited: 2022-01-04

[12] Extensible Authentication Protocol (EAP),

https://datatracker.ietf.org/doc/html/rfc3748, last visited: 2022-02-20

[13] RFC 5931 - Extensible Authentication Protocol (EAP) Authentication Using

Only a Password,

https://datatracker.ietf.org/doc/html/rfc5931, last visited: 2021-01-28

[14] RFC 5216 - The EAP-TLS Authentication Protocol,

https://datatracker.ietf.org/doc/html/rfc5216, last visited: 2022-01-28

[15] Extensible Authentication Protocol Tunneled Transport Layer Security Authenti-

cated Protocol Version 0 (EAP-TTLSv0),

https://datatracker.ietf.org/doc/html/rfc5281, last visited: 2021-02-16

[16] [MS-PEAP]: Protected Extensible Authentication Protocol (PEAP),

https://docs.microsoft.com/en-us/openspecs/windows protocols/ms-

peap/5308642b-90c9-4cc4-beec-fb367325c0f9, last visited: 2022-02-16

[17] Overview of TLS-Protected EAP Methods,

https://www.interlinknetworks.com/app notes/eap-peap.htm, last visited: 2022-

02-18

[18] Eduroam’s official website, https://eduroam.org/, last visited: 2022-02-19

93

[19] Eduroam CAT’s official website, https://cat.eduroam.org/, last visited: 2022-02-

19

[20] PSA: Android 11 will no longer let you insecurely connect to enterprise WiFi

networks,

https://www.xda-developers.com/android-11-break-enterprise-wifi-connection/,

last visited: 2022-12-12

[21] Extensible Authentication Protocol (EAP) Registry,

https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml, last visited:

2022-02-18

94

	Introduction
	Basics of WPA-Enterprise
	Actors in WPA-Enterprise
	802.1X, EAP and RADIUS

	Authentication tools in 802.1X
	Server-side authentication: digital certificates
	Supplicant-side authentication: EAP methods

	Steps of 802.1X authentication
	Anonymous identity exchange
	Step 1 - example

	Negotiation of the phase 1 method
	Step 2 - example

	Phase 1 authentication
	Step 3 - example

	Inner identity exchange
	Negotiation of the phase 2 method
	Phase 2 authentication
	Steps 4, 5 and 6 - example

	Four-way handshake
	Step 7 - example

	Eduroam - Education Roaming
	Eduroam configuration in Android
	Eduroam configuration in iOS

	Vulnerabilities tied to eduroam in mobile OSs
	Lack of anonymous identity
	No server certificate validation
	Manual validation of the server certificate
	Insecure implementation of MS-CHAPv2 in iOS
	No phase 2 method configured

	Attacks studied and tested
	User tracking
	Credential stealing
	User authentication without a priori knowledge
	Device de-anonymization
	Traffic sniffing
	DNS spoofing and phishing attacks

	Live experiment
	Goals
	Hardware
	Software
	FreeRADIUS
	HostAP daemon
	ISC-DHCP-Server
	Captive portal

	Outcomes

	Defensive mechanisms
	Conclusions
	Acknowledgements
	Sommario
	Appendix A - CA certificates
	Appendix B - Server certificates
	Appendix C - Main modifications to FreeRADIUS
	References

