
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale
in Communication Technologies and Multimedia

Bluetooth Security Evolution

Supervisor: Prof. Francesco Gringoli
Co-rapporteur: Dott. Marco Cominelli

Author:
Mohamed Yousif Elamin Abdelrahman

Matricola n. 730194

Anno Accademico 2021/2022

Abstract

Bluetooth is a popular wireless technology that comprises two different standards, Blue-
tooth Basic Rate/Enhanced Data Rate (BR/EDR) and Bluetooth Low Energy (BLE).
Bluetooth BR/EDR remains the effective connectivity technology for applications requir-
ing high data rates, such as audio voice calling and streaming. On the other hand, BLE had
remarkable success thanks to its low power requirements and its ubiquitous availability.
BLE also enabled many new product types. Devices such as smartwatches and healthcare
appliances would not be possible without such technology. Bluetooth 5.3 is the most recent
version of the specification, a work resulting from various revisions, each one improving
the available features and adding new characteristics and abilities, including more secure
and robust pairing methods, like Secure Connection Pairing. Security was considered from
the birth of Bluetooth and is being improved with each specification version.

In this thesis, we aim to extend the current body of knowledge regarding Bluetooth
security. We first present a quick overview of both BR and BLE. Then, we present a more
comprehensive description of BR and BLE security and privacy properties. We discuss
several known vulnerabilities and attacks to both Bluetooth technologies. Finally, we
validate a Man-in-the-Middle attack by experimenting with a Micro:bit-based sniffer that
can monitor real-time BLE traffic. We show that, despite the limited funcionality, even a
low-cost sniffer can easily detect active BLE sessions and infer their properties, including
Access Addresses, CRC values, and hopping sequences.

i

Acknowledgements

Prophet Muhammad, peace and blessings be upon him, said, ”He who does not thank
people, does not thank Allah.”
First and foremost, ”Alhamdulillah.” All praise is for Allah—Lord of all worlds, the Most
Compassionate, and Most Merciful. For this blessing and all blessings.

My sincerest thanks to my supervisor Francesco Gringoli, and my co-rapporteur Marco
Cominelli, without whom this work would not have been possible. Thank you for your
supervision, guidance, and patience.
My big thanks to the University of BRESCIA for honoring me with this opportunity and
opening my eyes to broader horizons.

Furthermore, I am so grateful to all my dear FRIENDS. You guys have made this journey
smooth and remarkable. I am so lucky to have you. ”Love you all <3.”

Finally and most importantly, I thank my FAMILY for their love, patience, and sup-
port through this long and arduous journey. I can never pay back.

To be continued...

ii

Table of Contents

1 Introduction 1
1.1 Thesis Objectives . 1
1.2 Thesis Structure . 1
1.3 Bluetooth Technology Overview . 1
1.4 Brief History of Bluetooth . 2

2 Bluetooth BR/EDR: Architecture and Operations 3
2.1 Bluetooth BR/EDR overview . 3
2.2 Bluetooth BR/EDR Architecture . 3

2.2.1 Controller . 4
2.2.2 Host Controller Interface (HCI) . 5
2.2.3 Host . 6

2.3 Bluetooth Network Topology . 6

3 Bluetooth LE: Architecture and Operations 8
3.1 What is Bluetooth Low Energy? . 8
3.2 BLE Architecture . 8

3.2.1 Physical Layer (PHY) . 9
3.2.2 Link Layer . 10

4 Bluetooth BR/EDR Security 12
4.1 BR/EDR Security Overview . 12
4.2 BR/EDR Security Modes . 13

4.2.1 Security Mode-1 . 13
4.2.2 Security Mode-2 . 13
4.2.3 Security Mode-3 . 13
4.2.4 Security Mode-4 . 13

4.3 Pairing . 14
4.3.1 PIN/Legacy Pairing . 14
4.3.2 Secure Simple Pairing . 14

4.4 Link Key Establishment . 15
4.4.1 Legacy Pairing/PIN . 15
4.4.2 Secure Simple Pairing SSP . 16

4.5 Authentication . 23
4.5.1 Legacy Authentication . 23
4.5.2 Secure Authentication . 24

4.6 Confidentiality . 26
4.6.1 E0 Encryption Algorithm . 27
4.6.2 AES-CCM Encryption Algorithm 28

iii

TABLE OF CONTENTS

5 Bluetooth LE Security 30
5.1 BLE Security Overview . 30
5.2 BLE Security Modes . 31
5.3 Pairing . 31

5.3.1 Phase-1 . 32
5.3.2 Phase-2 . 33
5.3.3 Phase-3 . 42

5.4 Confidentiality . 43
5.4.1 Encryption . 44

5.5 Cross-Transport Key Derivation (CTKD) 46
5.5.1 BR/EDR link key from BLE LTK 46
5.5.2 BLE LTK from BR/EDR link key 46

5.6 Privacy . 47

6 Vulnerabilities and Attacks 48
6.1 Vulnerabilities . 48

6.1.1 BR/EDR . 48
6.1.2 BLE . 49
6.1.3 Other Vulnerabilities . 49

6.2 Attacks . 50
6.2.1 Unauthorized Acquisition of Data 50
6.2.2 Spoofing . 50
6.2.3 Denial of Service (DoS) . 51
6.2.4 Privacy attacks . 52

7 Sniffing BLE connections with Btlejack 53
7.1 Introduction . 53
7.2 BLE Advertising Packets . 53

7.2.1 BLE Advertising PDU Header . 54
7.3 BLE Advertising State . 54

7.3.1 ADV IND . 55
7.4 BLE Scanning State . 56

7.4.1 Scanning Parameters . 56
7.5 BLE Connection State . 57

7.5.1 CONNECT IND . 57
7.6 Btlejack . 58

7.6.1 Experimental setup . 58
7.7 Sniffing with Btlejack . 59

7.7.1 Sniffing new connections . 60
7.7.2 Sniffing an ongoing connection . 61

8 Conclusion and Prospective 62
8.1 Conclusion and Prospective . 62

iv

List of Figures

2.1 BR/EDR system architecture. 4
2.2 Bluetooth BR Packet Format . 5
2.3 Bluetooth BR Packet Header . 5
2.4 Bluetooth Networks (Multiple Scatternets) 7

3.1 BLE Protocol Stack . 9
3.2 BLE frequency spectrum and RF channels 9
3.3 Link Layer States . 10

4.1 Link Key Generation from PIN (Legacy Pairing) 17
4.2 Link Key Establishment for Secure Simple Pairing 18
4.3 Authentication stage1: Numeric Comparison 19
4.4 Authentication stage1: PassKey Entry . 20
4.5 Authentication stage1: Out of Band . 21
4.6 Authentication Stage2 SSP . 23
4.7 Bluetooth BR Legacy Authentication . 24
4.8 Bluetooth BR Secure Authentication[15] 25
4.9 Bluetooth E0 Encryption Procedure . 27
4.10 Stream ciphering for Bluetooth with E0. 28
4.11 Generating the encryption key using E3 . 28
4.12 Bluetooth AES-CCM Encryption Procedure 29

5.1 BLE Pairing Phases . 32
5.2 SMP Pairing Request/Response PDU . 32
5.3 Authentication requirements flags . 33
5.4 BLE Public key exchange . 37
5.5 BLE Authentication stage-1: Numeric Comparison 38
5.6 BLE Authentication stage-1: Passkey Entry 40
5.7 BLE Authentication stage-1: Out Of Band 41
5.8 BLE Authentication stage-2 and LTK calculation 41
5.9 BLE Phase-3 key distribution . 43
5.10 BLE Encryption Procedure. 45
5.11 BLE Encrypted PDU . 46

7.1 Link Layer packet format for the LE Uncoded PHYs 54
7.2 BLE Advertising PDU structure . 54
7.3 Fields of the BLE Advertising PDU Header 54
7.4 Connection-oriented vs. connectionless transmissions 55
7.5 ADV IND PDU Payload . 55

v

7.6 ADV IND PDU Payload Advertised Data 56
7.7 BLE Scanning Types . 56
7.8 BLE Scanning Parameters . 57
7.9 CONNECT IND Payload Fields . 58
7.10 CONNECT IND LLData Field Structure 58
7.11 Btlejack Experimental Setup . 59
7.12 Captured Packets for Heart-Rate Sensor 60
7.13 Finding Existing Connections . 61
7.14 Btlejack Connection Lost Message . 61

List of Tables

5.1 TK value based on the association model. 34

vi

List of Abbreviations

8DPSK 8-Phase Differential Phase-Shift Keying

ACL Asynchronous Connectionless

ACO Authenticated Ciphering OffseT

AES Advanced Encryption Standard

AFH Adaptive Frequency Hopping

ARQN Automatic Repeat Request Number

BLE Bluetooth Low Energy

BR Basic Rate

CBC Cipher Block Chaining

CCM Counter with CBC-MAC mode

CE Common Era

CLK Clock

COF Ciphering Offset Number

CRC Cyclic Redundancy Check

CSRK Connection Signature Resolving Key

CTKD Cross-Transport Key Derivation

DHkey Diffie-Hellman Key

DoS Denial of Service

DQPSK Differential Quaternary Phase-Shift Keying

DTM Direct Test Mode

ECDH Elliptic-Curve Diffie-Hellman

EDIV Encrypted Diversifier

EDR Enhanced Data Rate

vii

LIST OF ABBREVIATIONS

FEC Forward Error Correction

FHHS Frequency Hopping Spread Spectrum

FIPS Federal Information Processing Standards

FM Frequency Modulation

GAP Generic Access Profile

GATT Generic Attribute Profil

GFSK Gaussian Frequency-Shift Keying

GHz Giga Hertz

HCI Host Controller Interface

HEC Header Error Check

HMAC Hash-based Message Authentication Code

I/O Input-Output

IBM International Business Machines

IEEE Institute of Electrical and Electronics Engineers

ILK Intermediate Link Key

ILTK Intermediate Long Term Key

IoT Internet of Things

IP Internet Protocol

IRK Identity Resolving Key

ISM Industrial Scientific Medical

IV Initialization Vector

JW Just Works

L2CAP Logical Link Control and Adaptation Protocol

LC Link Control

LE Low Energy

LL Link Layer

LMP (Link Manager Protocol

LSB Least Significant Bit

LT ADDR Logical Transport Address

viii

LIST OF ABBREVIATIONS

LTK Long Term Key

MAC Message Authentication Code

MAC [address] Media Access Control [address]

MHz Mega Hertz

MIC Message Integrity Check

MITM Man-in-the-Middle

MSB Most Significant Bit

NFC Near Field Communication

NIST National Institute of Standards and Technology

OOB Out of Band

PC Personal Computer

PDU Protocol Data Unit

PHY Physical Layer

PIN Personal Identification Number

PK Public Key

PKE Passkey Entry

PSK Phase-Shift Keying

Rand Random Number

RF Radio Frequency

RFC Request for Comment

RFU Reserved For Future

SC Secure Connection

SCO Synchronous Connection Orientated

SDP Service Discovery Protocol

SDR Software Defined Radio

SEQN Sequence Number

SHA Secure Hash Algorithm

SIG Special Interest Group

SK Secure Key

ix

LIST OF ABBREVIATIONS

SKD Security Key Diversifier

SM Security Manager

SMP Security Manager Protocol

SRES Signed Response

SSP Secure Simple Pairing

STK Short Term Key

TDD ime Division Duplex

TK Temporary Key

UUID Universally Unique Identifier

WPAN wireless personal area networks

x

Chapter 1

Introduction

1.1 Thesis Objectives

This thesis aims at reviewing Bluetooth’s security features, thus making the learning curve
less steep for people who need to use such features and understand how they work. More-
over, in this thesis we want to test with a simple experiment the feasibility of breaking
those security features using a low-cost Bluetooth sniffer.

1.2 Thesis Structure

The document is subdivided into seven chapters. The first chapter is this introduction.
Chapter 2 delivers a quick overview of Bluetooth Classic (Basic Rate and Extended Data
Rate, BR/EDR). Chapter 3 introduces Bluetooth Low Energy (BLE), its architecture,
characteristics, and operation. Chapters 4 and 5 detail security measures and procedures
(pairing, authentication, and encryption) for Bluetooth BR/EDR and BLE, respectively.
Chapter 6 shows the possible attacks and vulnerabilities of Bluetooth BR/EDR and Blue-
tooth LE. Chapter 7 provides a detailed structure of the Bluetooth LE advertising packet
and the feasibility of breaking the BLE security using BtleJack. In Chapter 8, we conclude
our thesis and provide some recommendations.

1.3 Bluetooth Technology Overview

Bluetooth is a short-range radio frequency (RF) communication standard. It is a low-cost,
low-power technology, mainly used to establish wireless personal area networks (WPANs)
to replace the cables connecting devices. Bluetooth is used in many business and con-
sumer devices, including cell phones, laptops, automobiles, keyboards, printers, headsets,
and, more recently, medical appliances and personal devices (such as smartwatches, music
speakers and home appliances). Bluetooth users can form ad-hoc networks between various
devices to transfer both data and voice. Bluetooth devices incorporate to establish small
wireless networks on an ad-hoc basis, known as Piconets.

Bluetooth is being managed by the Bluetooth Special Interest Group (SIG), which
has over 35,000 member companies in telecommunication, computing, networking, and
consumer electronics. Bluetooth technology has two forms: Basic Rate (BR) and Low
Energy (LE). Both systems utilize device discovery, connection establishment, and connec-
tion mechanisms. Bluetooth Basic Rate (BR) includes an optional Enhanced Data Rate

1

Introduction

(EDR) extension. Chapter 2 provides an overview of Bluetooth BR/EDR, where Chapter
3 discusses the Bluetooth Low Energy (BLE) case. Bluetooth 4.0 and later versions may
have both BR/EDR and Low Energy as a “Dual Mode” Bluetooth device.

1.4 Brief History of Bluetooth

Ericsson initially conceived Bluetooth in 1994. It was named after King Harald “Blue-
tooth” Gormsson of Denmark, who helped unify warring factions in the 10th century CE
[6]. Later, Ericsson, IBM, Intel, Nokia, and Toshiba formed what is known today as the
Bluetooth Special Interest Group (SIG), a not-for-profit trade association developed to
drive Bluetooth products’ development and serve as the governing body for Bluetooth
specifications.

Bluetooth is standardized within the IEEE 802.15 Working Group for Wireless Personal
Area Networks that was formed in 1999 as IEEE 802.15.1-2002.4 [15]. Bluetooth Low
Energy was introduced in Bluetooth version 4.0 and released in 2010. The latest Bluetooth
core specification 5.3 combines the specifications of both Bluetooth BR/EDR and BLE.

2

Chapter 2

Bluetooth BR/EDR: Architecture
and Operations

In this chapter, we present some details regarding Bluetooth Basic Rate technology that
will be referenced in the remainder of the thesis. Here, we describe the architecture and
operation of Bluetooth Basic Rate.

2.1 Bluetooth BR/EDR overview

Bluetooth versions 1.1 and 1.2 introduced what is known as Bluetooth Basic Rate (BR),
supporting transmission speeds up to 1 megabit per second (Mbps) and achieving a payload
throughput of roughly 720 kilobits per second (kbps). In Bluetooth 2.0, the Enhanced Data
Rate (EDR) was introduced to provide data rates up to 3 Mbps and a payload throughput
of approximately 2.1 Mbps. Bluetooth BR utilizes a binary Gaussian Frequency-Shift
Keying (GFSK) modulation; on the other hand, EDR can use a π/4-rotated Differential
Quaternary Phase-Shift Keying (DQPSK) and a 8-Phase Differential Phase-Shift Keying
(8DPSK) modulation. EDR is supported in Bluetooth 2.0 and backward compatible with
later versions. EDR support is not required for devices that comply with Bluetooth 2.0
specifications or later. Accordingly, some devices might be “Bluetooth 2.0 compliant” and
others “Bluetooth 2.0 + EDR compliant.”

2.2 Bluetooth BR/EDR Architecture

Bluetooth devices only communicate by establishing ad-hoc networks. Ad-hoc networks
allow easy connection between devices in the same physical area without using any infras-
tructure. A Bluetooth Client is a device with a Bluetooth radio and software incorporating
the Bluetooth protocol stack and interfaces. The Bluetooth specification conceptually de-
fines a Host and a Controller, separating their duties to perform different stack functions.
The Host handles the higher layer protocols, such as Logical Link Control and Adaptation
Protocol (L2CAP) and Generic Access Profile (GAP). On the other hand, the Controller
handles the lower layers, including the Radio, Baseband, and Link Control/Management.
The Host and the Controller exchange data and commands using standardized commu-
nications over the Host Controller Interface (HCI). Figure 2.1 depicts BR/EDR system
architecture [9].

3

Bluetooth BR/EDR: Architecture and Operations

Figure 2.1: BR/EDR system architecture.

2.2.1 Controller

The Bluetooth Controller contains the radio frequency components that enable a Bluetooth
device to transmit and receive data over the 2.4 GHz frequency band. In addition, it also
performs cryptographic procedures. It will have access to physical sources of randomness
and contain an encryption engine to enable the transmission of encrypted or authenticated
data. Architecture-wise, the Controller comprises the Radio Layer, the Baseband Layer,
Device Manager, Link Manager, and the Link Controller.

2.2.1.1 Radio Layer

Bluetooth operates in the 2.4 GHz ISM (Industrial Scientific Medical) band; the frequency
range goes from 2400 MHz to 2483.5 MHz. RF channels are divided into 79 orthogonal
narrow-band channels spaced 1 MHz. Bluetooth Radio utilizes a FHSS (Frequency Hopping
Spread Spectrum) technique to reduce interference and fading, where it hops through
the full spectrum of 79 channels using a pseudorandom hopping sequence. The Radio
Layer has two modulation schemes: for Basic Rate, it uses a Gaussian-shaped, binary FM
modulation to minimize transceiver complexity; for the Enhanced Data Rate, two types of
PSK modulation are used: π/4-DQPSK and 8DPSK. The symbol rate for all modulation
modes is 1 Msym/s. Thanks to the different modulation schemes, the data rate is 1 Mb/s
for Basic Rate, 2 Mb/s for Enhanced Data Rate using π/4-DQPSK, and 3 Mb/s using
8DPSK. A Time Division Duplex (TDD) scheme is used in all modes.

2.2.1.2 Baseband Layer

The Baseband Layer performs several essential tasks to enable Bluetooth functionality.
Some of the responsibilities of the Baseband Layer include defining packet structure, ad-
vertising, device discovery, connection initiation and management, and data transmission
and reception to and from a connected device.

Packet structure: As shown in Figure 2.2 Bluetooth BR packet has three main fields.
Every packet starts with an Access Code. If a packet header follows, the access code is
72-bits long; otherwise, the access code is 68-bits long and is known as a shortened ac-
cess code. Its value differs across different connections, and it is used for synchronization
and connection identification. The Header is 18-bits containing the Link Control (LC)
information and comprises six fields shown in Figure 2.3 and detailed below.

4

Bluetooth BR/EDR: Architecture and Operations

Figure 2.2: Bluetooth BR Packet Format

Figure 2.3: Bluetooth BR Packet Header

• LT ADDR: 3-bits indicates the Peripheral source/destination of a Central-Peripheral
transmission.

• Type: is a 4-bits that identifies the type of the packet.

• FLOW : implements the flow control of the packets over the ACL transport.

• ARQN: a 1-bit field to report a successful transfer of payload data with the CRC.

• SEQN : a 1-bit field to provide a sequential numbering scheme to order the data
stream.

• HEC : 8-bits to check the packet header integrity.

The Header is encoded with a rate of 1/3 FEC—Forward Error Correction. The Payload
contains the actual data and can fit up to 2790-bits of data of different packet types.

Asynchronous and Synchoronous Links: The Baseband layer provides adequate
mechanisms for the data transfer over a Bluetooth link; the standard has several protocols
and different links to ensure that the Bluetooth link is managed most effectively. Mainly
there are two link types: the Asynchronous Connectionless communications link (ACL) and
the Synchronous Connection Orientated communications link (SCO). ACL is the main link
type, and it’s used for exchanging framed data. An ACL link creates a packet-switching
connection between the connection pair; packets are exchanged sporadically and only when
data are available to be sent from the top levels of the Bluetooth stack. The slots are given
to satisfy the quality of service requirement of each ACL. On the other hand, SCO is used
to stream data through a symmetrical link between a connection pair; This data is typically
an encoded voice stream. The data is transferred periodically in reserved time slots to be
streamed without delay. Because voice transmissions are time-dependent, SCO packets are
never retransmitted, so any packet that is not received correctly is lost.

2.2.2 Host Controller Interface (HCI)

The HCI layer is an element of the Bluetooth specification that allows the host layer to
communicate with the controller layer. These two layers could exist in separate chipsets
or live in the same chipset. The HCI provides interoperability between the two layers, so
a device developer can choose two different Bluetooth-certified chipsets to implement the
controller and the host, and be 100% confident that they are compatible with each other.
The HCI layer has to be implemented over a physical communication interface if the host
and controller are in separate chipsets. The HCI layer will be a logical interface if the host

5

Bluetooth BR/EDR: Architecture and Operations

and the controller exist on the same chipset. The HCI layer relay commands from the host
to the controller and sends events from the controller to the host.

2.2.3 Host

The Host is responsible for the following tasks: security, multiplexing, and disclosing a de-
vice’s state data. It is composed of different protocols such as the Logical Link Control and
Adaptation Protocol (L2CAP), the Attribute Protocol (ATT), and the Service Discovery
Protocol (SDP). It also contains one main profile: the Generic Access Profile (GAP). We
will see later that while the Controller operations are different in Bluetooth BR/EDR and
BLE, the Host is roughly similar in BR/EDR and in BLE.

2.2.3.1 Logical Link Control and Adaptation Protocol (L2CAP) Layer

The Logical Link Control and Adaptation Protocol (L2CAP) layer is a protocol multiplex-
ing layer. It takes multiple upper layers protocols and places them in standard Bluetooth
packets passed to the lower layers. The L2CAP layer also fragments the larger upper lay-
ers packets so they can fit into the maximum-allowed payload size. On the receiver side,
it takes multiple packets and combines them into one packet that the upper layers can
handle.

2.2.3.2 Attribute Protocol (ATT)

In Bluetooth, the data is stored as discrete values called attributes and accessed through
the Attribute Protocol (ATT). A Bluetooth device can use the ATT Protocol to read or
write this data. The ATT uses a client-server model, in which the client accesses attributes
from the server. Both the Master (Central) and the Slave (Peripheral) can act as both
client and server. Each attribute consists of a value and its three properties: attribute type,
attribute handle, and access permissions. The attribute type is described by a universally
unique identifier (UUID). These UUIDs are specified either by the Bluetooth SIG or by the
manufacturer. An attribute handle is a 16-bit number, which allows the client to specify the
attribute in requests. An attribute’s access permissions describe how the associated value
can be accessed, e.g., if reading or writing is allowed. Security features like encryption,
authentication, or authorization cannot be queried directly by the ATT.

2.2.3.3 Generic Access Profile

The Generic Access Profile (GAP) represents the base functionality of all Bluetooth de-
vices. It describes profile roles and defines modes and procedures for the discoverability,
connection, and security of Bluetooth devices. GAP utilizes the features provided by the
other layers of the stack and guarantees interoperability between devices of different man-
ufacturers.

2.3 Bluetooth Network Topology

Bluetooth devices are provided with point-to-point or point-to-multipoint, wherein the
physical channel will be shared among the connection partners. Devices sharing the same
physical channel form what is called a Piconet. Only one device will be the Piconet
Central (which controls the channel access), whereas the other devices (up to seven) act as

6

Bluetooth BR/EDR: Architecture and Operations

Figure 2.4: Bluetooth Networks (Multiple Scatternets)

Peripherals. All the Piconet devices communicate on the same channel by synchronizing to
a common clock and hopping sequence. A Bluetooth device can participate concurrently
in two or more Piconets “acting as a Peripheral” utilizing a time-division multiplexing
basis. However, it can never be a Central in more than one piconet. More than two
connected Piconets form what is known as a Scatternet. Figure 2.4 shows an example
of three connected Piconets in which they form a Scatternet. Devices from Piconet 3 can
communicate to devices in Piconet 2 through Piconet 1 [15].

7

Chapter 3

Bluetooth LE: Architecture and
Operations

In this chapter, we present details regarding Bluetooth Low Energy (BLE). We describe
its architecture and operation.

3.1 What is Bluetooth Low Energy?

Bluetooth Low Energy (BLE) is a new technology that has been designed as complementary
to Bluetooth BR/EDR. Although it uses the Bluetooth brand and borrows much technology
from its parent, Bluetooth Low Energy is in fact a different technology, addressing different
design goals and different market segments [7]. BLE was introduced as Bluetooth v4.0 in
2010, but it was formerly known as “Wibree” and “Ultra Low Power Bluetooth”. BLE
is more prominent in applications where power consumption is critical (such as battery-
powered devices) and small amounts of data are transferred infrequently (such as in sensor
applications).
The two types of Bluetooth devices are incompatible even though they share the same
brand and specification document. A Bluetooth BR/EDR device cannot communicate
(directly) with a BLE device. That is why some devices, such as smartphones choose
to implement both types (also called Dual Mode Bluetooth devices), allowing them to
communicate with both types of devices. The key technology goals of BLE (compared with
Bluetooth BR/EDR) include lower power consumption, reduced memory requirements,
efficient discovery and connection procedures, short packet lengths, and simple protocols
and services [15]. Like Bluetooth BR/EDR, BLE operate in the 2.4 GHz ISM (Industrial,
Scientific, Medical) frequency spectrum [6].

3.2 BLE Architecture

Figure 3.1 shows the different layers within the architecture of BLE [6]. The three main
layers in the architecture of a BLE device are the Application, the Host, and the Controller.
The Host can be the same for BR/EDR and BLE, but the lowest layers of the stack shown
in Figure 3.1 are not compatible with BR/EDR. For this reason, in this chapter we will
briefly review only the link layer and physical layer definitions. A more detailed operational
description of the connection procedure will be presented later in chapter 7.

8

Bluetooth LE: Architecture and Operations

Figure 3.1: BLE Protocol Stack

Figure 3.2: BLE frequency spectrum and RF channels

3.2.1 Physical Layer (PHY)

The physical layer (PHY) refers to the radio hardware used to communicate and modulate/de-
modulate the data. BLE operates in the 2.4 GHz ISM band, which is segmented into 40 RF
channels, each separated by 2 MHz (center-to-center), as shown in Figure 3.2: Three of the
40 channels are named the Primary Advertising Channels, while the remaining 37 channels
are used for Secondary Advertisements and data transfer during a connection. BLE em-
ploys Frequency Hopping Spread Spectrum (FHSS), which allows the two communicating
devices to switch to randomly (agreed-on) selected frequencies for exchanging data. This
dramatically improves reliability and allows the devices to avoid frequency channels that
may be congested and used by other devices in the surrounding environment.
The minimum transmit power is 0.01 mW (-20 dBm) in all Bluetooth versions, where the
maximum is 100mW (+20 dBm) starting from version 5 and later versions; and 10mW
(+10 dBm) for v4.2 and older versions. BLE data rate was fixed at 1 Mbps in older
versions of Bluetooth (4.0, 4.1, and 4.2); in this case, the physical layer radio (PHY) is
the 1M PHY and is mandatory in all versions, including Bluetooth 5. With Bluetooth 5,
however, two new optional PHYs were introduced: 2Mbps PHY, which achieves twice the
speed of earlier versions of Bluetooth, and the Coded PHY to be used for longer-range
communication.

9

Bluetooth LE: Architecture and Operations

Figure 3.3: Link Layer States

3.2.2 Link Layer

The Link Layer (LL) defines the interface to the physical layer (radio). It provides the
higher-level layers an abstraction and a way to interact with the radio (through the inter-
mediary layer HCI—Host Controller Interface—which is on top of the Link Layer, while
the radio (physical) is below the LL as shown in Figure 3.1). The Link Layer manages the
radio’s state and the timing requirements necessary for satisfying the BLE specification. It
is also responsible for managing hardware-assisted operations such as CRC computation,
random number generation, and encryption. A BLE device operates in three main states:
Advertising state, Scanning state and Connected state. An advertising device allows
other scanning devices to find it. If the advertising device allows connections and a scan-
ning device decides to connect to it, they both enter into the connected state. Figure 3.3
shows how the Link Layer manages the different states of the radio.

• Standby is the default state in which the radio does not transmit or receive data.

• Advertising is the state in which the device sends out advertising packets for other
devices to discover and read.

• Scanning is the state in which the device scans for devices that are advertising.

• Initiating is the state in which a scanning device decides to establish a connection
with a device that is advertising.

• Connected is the state where a device has an established link with another device
and regularly exchanges data with another device. This applies to both a device in
the advertising state or one scanning for advertisements and then deciding to initiate
a connection with the advertising device. In this connected state, the device that
initiates the connection is called the master, and the advertising device is now called
the slave.

10

Bluetooth LE: Architecture and Operations

BLE defines two transmission types: data and advertising. Three of BLE’s 40 channels are
dedicated to advertising (i.e., channels 37, 38, and 39), known as the Primary Advertising
Channels, and they can fit up to 31-bytes of data. On the other hand, the remaining 37
channels, known as the Secondary Advertising Channels, can be used for data transmis-
sion and advertising; the transmitted data on these channels can be up to 254-bytes. All
peripherals must go through advertising mode, whether sending beacons (e.g., transmit-
ting location, weather, or other data) or a device (i.g., smartwatch) making a long-term
connection with a host (e.g., phone).
The Link Layer maintains a unique device identifier (i.e., Bluetooth Device Address, or
BD ADDR), which distinguishes different communication partners, as we will see in the
next section.

3.2.2.1 BLE Address

All Bluetooth devices (BR/EDR and BLE) are identified by a 48-bit address, similar to
a MAC address. There are two main types of addresses: Public Addresses and Random
Addresses. Bluetooth manufacturers have a choice of what type of address to use.

3.2.2.1.1 Public Address

It is a factory-programmed address. It is a fixed address and must be registered with the
IEEE (similar to the WiFi and Ethernet device MAC address).

3.2.2.1.2 Random Address

A random address is either programmed on the device or generated at runtime. Ran-
dom addresses are more popular than public addresses since they do not require IEEE
registration. It can be one of two sub-types:

Static Address: It can be used as a replacement for Public addresses; it can be
generated at boot up OR stay the same during the lifetime, and it cannot change until a
power cycle.

Private Address: This type of address is grouped into two additional sub-types:

• Non-resolvable Private Address: Is random and temporary (for a specific amount
of time). Not even paired devices can determine the corresponding identity address
when in use, meaning that privacy is protected even from trusted devices. This type
of address is not commonly used.

• Resolvable Private Address: Used for privacy, generated using Identity Resolving
Key (IRK) and a random number. Changes periodically (even during the lifetime
of the connection). This type is used to avoid being tracked by unknown scanners.
Trusted devices (or Bonded) can resolve the address using the previously stored IRK
(The procedure is detailed in Chapter 5, Section 5.6).

11

Chapter 4

Bluetooth BR/EDR Security

Security has always been one of the main concerns for technology manufacturers [1]. In
this chapter, we summarize the Bluetooth BR/EDR security mechanisms as described in
Volume 2, Part H of the Bluetooth Core Specifications [16], aiming to provide a better
understanding to the reader.

4.1 BR/EDR Security Overview

Both Bluetooth BR/EDR and BLE offer some important security services, like:

Pairing/Bonding: The process of creating one or more shared secret keys and stor-
ing those keys to be used in subsequent connections to form a trusted device pair.

Authentication: Verifying that the connection pair have the right keys and verifying
their identity based on the Bluetooth address.

Authorization: Controlling the resources by authorizing the right users to access the
right services.

Confidentiality: Guaranteeing data delivery without a third (unauthorized) party be-
ing able to view its content.

Integrity: Guaranteeing that the message between the connection pair has been trans-
mitted and received without being altered by forgeries.

Privacy: Privacy is indicated by how private the communication is, the identity of the
communication pair, and whether the Bluetooth address is traceable.

In the following sections, we will only detail the most common Bluetooth security services,
i.e., Pairing, Authentication, and Confidentiality. Bluetooth BR/EDR security services
and modes of operation are explained in the following sections. Unfortunately, Bluetooth
does not support audit and non-repudiation. Hence, if required, it has to be provided by
other means.

12

Bluetooth BR/EDR Security

4.2 BR/EDR Security Modes

The Bluetooth BR/EDR security model introduces the concept of security modes (from
Mode 1 to 4). Each Bluetooth device must operate in one of these modes. These modes
indicate when and how a Bluetooth device initiates security[15].

4.2.1 Security Mode-1

In this mode, security features (including authentication and encryption) are disabled.
The device is considered non-secure and can participate in any connection. Mode-1 is
supported up to version 2.0. From v2.1, Bluetooth devices can operate in Security Mode-1
for backward compatibility.

4.2.2 Security Mode-2

It is a service-level-enforced security mode. Security is initiated after link establishment but
before logical channel establishment. The link manager maintains policies for access control
and interfaces with other protocols and device users, granting access to some services and
denying access to other services (authorization). Similar to Mode-1, Security Mode-2 is
supported up to v2.0. From v2.1, Bluetooth devices use Security Mode-2 for backward
compatibility.

4.2.3 Security Mode-3

Security Mode-3 is the link-level-enforced security mode. Bluetooth devices initiate se-
curity before the physical link is fully established. Authentication and Encryption are
mandatory for all connections. Therefore, even service discovery cannot be held until au-
thentication and Encryption have been initiated. All Bluetooth v2.0 and earlier versions
support Security Mode-3, while v2.1 and later only keep it for backward compatibility.

4.2.4 Security Mode-4

Similar to Security Mode-2, it’s a service-level-enforced security mode. The difference is
that Security Mode-4 uses Secure Simple Pairing (SSP), in which ECDH key agreement is
used for link key generation (see Section 4.4.2). Until Bluetooth v4.0, Elliptic Curve P-192
is used for the link key generation. Bluetooth v4.1 introduced the Secure Connections
Pairing method, where the Elliptic Curve P-256 is used for link key generation. In v4.1,
the authentication algorithm is upgraded to the FIPS-approved (HMAC-SHA-256). The
encryption algorithm is also upgraded to the FIPS-approved (AES-CCM), which provides
message integrity. Security requirements for services protected by Security Mode-4 are
classified in different levels:

• Level-0: No security required. (Only allowed for SDP–Service Discovery Protocol)

• Level-1: No security required

• Level-2: Unauthenticated link key required

• Level-3: Authenticated link key required

• Level-4: Authenticated link key using Secure Connections required

13

Bluetooth BR/EDR Security

4.3 Pairing

Pairing is the process of creating a shared secret key (the link key) between two Bluetooth
devices that will be used to mutually authenticate the devices and establish the encryption
key. Bluetooth BR/EDR can perform pairing in two ways:

• Personal Identification Number (PIN) Pairing (Legacy Pairing).

• Secure Simple Pairing (SSP).

4.3.1 PIN/Legacy Pairing

PIN/legacy pairing is used in Security Modes 2 and 3. Two Bluetooth devices simultane-
ously derive and agree on a link key when the user(s) enter an identical secret PIN into one
or both devices. The key derivation will be discussed in more detail in Section 4.4.1. The
PIN length varies between 1 to 16-Bytes. If the PIN is less than 16-Bytes, the initiating
device will add its BD ADDR to the PIN value to generate the initialization key.

4.3.2 Secure Simple Pairing

Secure Simple Pairing (SSP) (i.e., Mode-4) was first introduced in Bluetooth v2.1 and
then improved in v4.1. Compared to PIN/Legacy Pairing, SSP simplifies the pairing pro-
cess by providing four flexible association models that translate the device input/output
capabilities. SSP also improves security by adding ECDH public key cryptography (P-192
or P-256) for protection against passive eavesdropping and Man-in-the-Middle (MitM) at-
tacks during pairing. SSP association models are Numeric Comparison, Passkey Entry, Out
of Band, and Just Works.

4.3.2.1 Numeric Comparison

Numeric Comparison is designed for scenarios where both devices have a display and are
capable of entering “yes” or “no.” An example of this model is the cell phone /PC scenario.
The user is shown six numeric digits on both displays and asked whether the numbers are
identical. If “yes” selected on both devices, the pairing is successful, otherwise failed.
Numeric Comparison provides protection against the MitM attack.

4.3.2.2 Passkey Entry

Passkey Entry is designed for scenarios where one of the connection pairs has only input
capability (i.e., keyboard) and the other peer has only a display. The user is shown a
six-digit number on the device with the display and is asked to enter it in the device with
the input capability. If the value matches, the pairing is successful, otherwise failed.

4.3.2.3 Out of Band “OOB”

OOB is designed for scenarios where an Out of Band mechanism (e.g., Near Field Com-
munication (NFC)) is used to discover the devices and exchange cryptographics values
used in the pairing process. When NFC is in use, OOB model allows devices to pair by
just “tapping” one device on the other, followed by the user accepting the pairing via a
single push button. The OOB technology should be designed and configured to thwart
eavesdropping and MitM attacks.

14

Bluetooth BR/EDR Security

4.3.2.4 Just Works

As the name suggests, Just Works (JW) is the simplest and weakest association model.
It’s primarily designed for scenarios where one of the two devices does not provide either a
display or keyboard. Just Works operating procedure is similar to the Numeric Comparison
one, but the user is never shown a number and must accept the connection without verifying
the calculated values on both devices. An example of this model is the cell phone/headset
scenario, where most headsets do not have IO capability. (JW) does not offer protection
against the MitM attack.

“Secure Connection”-Only Mode

A BR/EDR device using SSP is said to be in Secure Connection mode when it is re-
quired only to use FIPS-approved algorithms. The user is forced to use Elliptic-curve
Diffie–Hellman (ECDH) P-256 algorithm during pairing. On the BR/EDR physical trans-
port, secure authentication sequences are used, and AES-CCM is used for encryption.
Secure Connections Only Mode is also called a “FIPS Mode.”

4.4 Link Key Establishment

In section 4.3, we have seen that a link key is generated as a result of a successful pairing.
The link key is a 128-bit random number that is shared between two or more Bluetooth
devices and is known to be the base for all security transactions between these parties. In
the following sections, we will have more details on how the link key is generated using the
two pairing methods.

4.4.1 Legacy Pairing/PIN

In the case of Legacy Pairing, the link keys are either semi-permanent or temporary. A
semi-permanent key is saved in the device memory and can be used for several sessions,
while the temporary is only used in one session. The link key can be sorted into one of
three types:

• Combination key KCOMB: is derived from information related to a pair of devices,
Device1 and Device2. It is derived for every new combination of two devices.

• Temporary key Ktemp: only used during the current session. It temporarily replaces
the original link key (e.g., to broadcast data).

• Initialization key Kinit: is used as the link key only during the initialization process,
when the combination key is not yet generated, or a link key has been lost.

4.4.1.1 Generation of the initialization key Kinit

The initialization key is derived using the E22 algorithm from a 128-bit random number
IN RAND and a PIN code of L bytes. The E22 algorithm is a custom version of the SAFER+
block cipher, which has a block size of 128-bit keys. PINs with a length L shorter than the
key length will be augmented using the least significant bits of the BD ADDR, thus making
PIN′ with the size of 128-bits.

15

Bluetooth BR/EDR Security

Kinit = E22(PIN
′, IN RAND, L) (4.1)

4.4.1.2 Generation of a combination key

The key combines two numbers generated in Device1 and Device2, respectively. The
process starts with both devices generating a random number LKRAND1 and LKRAND2 ;
those values are going to be XORed with the initialization key (Kinit) that have been
shared in the preceding stage in both devices. The result will be KCOMB1 and KCOMB2 .

KCOMB1 = Kinit ⊕ LKRAND1 (4.2)

KCOMB2 = Kinit ⊕ LKRAND2 (4.3)

Since the initialization key is already shared between the pair, so to know each other
random number (LKRAND). The devices will exchange their KCOMB securely so that both
of them will be able to extract LKRAND as follows:

LKRAND1 = Kinit ⊕KCOMB1 (4.4)

LKRAND2 = Kinit ⊕KCOMB2 (4.5)

Then, utilizing E21 algorithm (E21 is custom algorithm based on SAFER+ for link key
derivation, used when generating a key from the 48-bit address) with the two random
numbers and their own BD ADDRs, the following values are:

K1 = BD ADDR1 ⊕KCOMB1 (4.6)

K2 = BD ADDR2 ⊕KCOMB2 (4.7)

The pair knows the Bluetooth Device Address of each other. Thus, both devices can re-
compute K1 and K2. Hence, the final step will be generating the combination key (i.e.,
the link key), resulting from XORing both K1 and K2.

KLINK = K1 ⊕K2 (4.8)

If KLINK is identical in both devices, then the devices should terminate the process of
generating the combination key. After link key generation is complete, the devices complete
pairing by mutually authenticating each other to verify that they have the same link
key. The old link key shall be discarded after successfully exchanging a new combination
key. The message flow between Device1 and Device2 and the principle for creating the
combination key illustrated in Figure 4.1.

4.4.2 Secure Simple Pairing SSP

The Secure Simple Pairing procedure is an alternative and significantly more secure ap-
proach for pairing Bluetooth BR devices. Secure Simple Pairing (i.e., link key derivation)
is carried out in four phases as follows:

• Phase-1: Public key exchange

16

Bluetooth BR/EDR Security

Figure 4.1: Link Key Generation from PIN (Legacy Pairing)

• Phase-2: Authentication stage-1

• Phase-3: Authentication stage-2

• Phase-4: Link key calculation

The steps to generate the link key in Secure Simple Pairing (using ECDH public/private
key pairs) are illustrated in Figure 4.2.

4.4.2.1 Phase-1: Public key exchange

• Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-
private key pair.

• Pairing is initiated by the initiating device (Device1) sending its public key (PK1)
to the responding device (Device2).

• Device2 has to respond with its public key (PK2). all the public keys must be
validated against the correct curve (P-192 or P-256).

4.4.2.2 Phase-2: Authentication stage-1

Authentication stage-1 proceeds according to the association model: Numeric Comparison,
Out-of-Band, and Passkey Entry. The Just Works association model shares the Numeric
Comparison protocol and does not have a particular one. The association model is selected

17

Bluetooth BR/EDR Security

Figure 4.2: Link Key Establishment for Secure Simple Pairing

based on the IO capabilities of the two devices. In this section we will refer to Device1 as
DeviceA and Device2 as DeviceB.

Authentication stage-1: Numeric Comparison

Numeric Comparison is secure from MitM and passive eavesdroppers that may have been
present during the pairing. Figure 4.3 depicts the details of the Numeric Comparison
association model.

• After public keys exchange, each device selects a random 128-bit nonce (Na and Nb).
The value should be fresh with each instantiation of the pairing protocol.

• Using the f1 function the responding device (DeviceB) computes a commitment (Cb)
as in EQ 4.9. For details of f1 function, see Bluetooth Core Specification, Vol 2, Part
H, Section 7.7.1 [16].

Cb = f1(PKb, PKa, Nb, 0) (4.9)

• The commitment is then transmitted to the initiating device (DeviceA). The com-
mitment prevents an attacker from changing these values at a later time.

• DeviceA and DeviceB exchange their nonce values (Na and Nb).

• DeviceA confirms the commitment by recomputing Cb. A failure at this point causes
the protocol to abort.

• A successful check at DeviceA results in both devices will use the g function to
compute a 6-digit confirmation value (Va and Vb) to be displayed to the user in both

18

Bluetooth BR/EDR Security

Figure 4.3: Authentication stage1: Numeric Comparison

devices. The user checks and confirms if the value matches on both devices. If not,
the protocol aborts. For details of fg function, see Bluetooth Core Specification, Vol
2, Part H, Section 7.7.2 [16].

Va = g(PKa, PKb, Na, Nb) (4.10)

Vb = g(PKa, PKb, Na, Nb) (4.11)

• When Just Works, the checks are not performed, and the user is never shown the
6-digit values.

Authentication stage-1: Passkey Entry

The Passkey Entry protocol is used when LMP–Link Manager Protocol– IO capability
indicates that Passkey Entry shall be used. The user might enter the same six-digit Passkey
into both devices, or one device displays a six-digit random number, and the user enters it
into the other device. The Passkey will be the basis of the authentication of both devices.
The steps of the link derivation are shown in Figure 4.4.

• The user enters an identical Passkey into both devices.

• A 6-digit Passkey is 20-bits long represented with ra for DeviceA which is the con-
catenation of the 20-bits rai . For DeviceB it’s rb and it’s the concatenation of the
20-bits of rbi .

19

Bluetooth BR/EDR Security

Figure 4.4: Authentication stage1: PassKey Entry

• Then, both devices will generate a nonce denoted by Nai and Nbi .

• After, DeviceA and DeviceB will calculate the commitment values Cai and Cbi .
DeviceA and DeviceB exchange their Cai and Cbi respectively.

Cai = f1(PKa, PKb, Nai , rai) (4.12)

Cbi = f1(PKb, PKa, Nbi , rbi) (4.13)

• DeviceA sends it’s Nai , while DeviceB checks Cai and if check succeed it replies with
it’s Nbi .

• As a final step DeviceA checks the received Cbi .

• The steps are repeated 20 times as the Passkey is 20-bits. At the end of this stage,
Na is set to Na20 and Nb is set to Nb20 to be used in Authentication stage-2.

Authentication stage-1: Out of Band

The Out-of-Band protocol is used when at least one of the devices indicates the presence
of the OOB parameter in the LMP–Link Manager Protocol– IO capability. In OOB,
the discovery of the peer device is carried out in-band, and authentication parameters
are transmitted through the OOB interface. Figure 4.5 shows the sequence diagram for
Authentication stage1 for Out of Band.

20

Bluetooth BR/EDR Security

Figure 4.5: Authentication stage1: Out of Band

21

Bluetooth BR/EDR Security

• Each device generates a random number, (ra and rb), and set the other pair random
number equal to zero (rb = 0 in DeviceA and ra = 0 in DeviceB).

• They each calculate a commitment value,(Ca and Cb) as follows:

Ca = f1(PKa, PKa, rb, 0) (4.14)

Cb = f1(PKb, PKb, ra, 0) (4.15)

• DeviceA now sends its Bluetooth device address (A) (that will be used when in-band
pairing proceeds) together with ra and Ca to DeviceB through OOB.

• DeviceB sends it’s corresponding data values (Bluetooth device address (B), Cb, and
rb) back to DeviceA.

• In this step, the connection pair communicate through In-Band, and they share their
public keys (PKa, and PKb) in public.

• Both devices will use the received values Out-of-Band and In-Band. DeviceA recom-
pute Cb and DeviceB recompute Ca as in EQ 4.14, and 4.15. If the values are equal
to what they have received, they authenticate each other; otherwise, the process is
aborted. As a result of successful authentication, they generate new random numbers
(Na and Nb) and exchange them for later procedures.

When only one device has OOB authentication data available, the communication of au-
thentication data will be from one device to the other and not in the other direction. If
both devices can transmit or receive data over an OOB channel, mutual authentication
will be based on the commitment values (Ca and Cb) exchanged in OOB Authentication.

4.4.2.3 Phase-3: Authentication stage-2

In Authentication Stage-2, further checks are made to ensure that the exchange of pub-
lic keys, random numbers, and device addresses was completed correctly in the earlier
steps. This stage is identical in all the association models. The the sequence diagram for
Authentication stage-2 is shown in Figure 4.6.

• Each device will employ the f3 function to compute a new confirmation value (Ea and
Eb) that includes the previously exchanged values and the newly derived shared key.
For details of f3 function see Bluetooth Core Specification, Vol 2, Part H, Section
7.7.4 [16].

Ea = f3(DHKey,Na, Nb, rb, IOcapA,A,B) (4.16)

Eb = f3(DHKey,Nb, Na, ra, IOcapB,B,A) (4.17)

• DeviceA transmits Ea to Deviceb, where it is being checked. If this check fails, it
indicates no pairing, and the process is aborted.

• Deviceb then transmits its confirmation value Eb, which is checked by DeviceA. If
this check fails, it indicates no pairing, and the process is aborted.

22

Bluetooth BR/EDR Security

Figure 4.6: Authentication Stage2 SSP

4.4.2.4 Phase 4: Link Key Calculation

Now both devices are paired with each other. As a final pairing step, the link key is
computed using the f2 function with the Diffie-Hellman shared key and the exchanged
data. f2 function uses the AES-CMAC algorithm with DHKey as its 128-bit key. The link
key will be calculated in the same order on both sides as in EQ 4.18.

KLINK = f2(DHkey,Na, Nb, “btlk”, BD ADDRA, BD ADDRB) (4.18)

4.5 Authentication

BR/EDR authentication procedure is of two types; either Legacy Authentication (Section
4.5.1) or Secure Authentication (Section 4.5.2). If the authentication fails, a Bluetooth
device waits an interval of time before making new attempts. This time interval increases
exponentially to prevent intruders from repeating the authentication procedure with differ-
ent keys (bruteforce attack). This technique does not provide any security against offline
attacks attempting to know the link key using eavesdropped pairing frames and exhaus-
tively guessing PINs[16].

4.5.1 Legacy Authentication

Legacy Authentication is used when at least one device does not support Secure Con-
nections. The devices interacting in an authentication procedure are referred to as the
claimant and verifier. Legacy Authentication uses the challenge-response scheme in which
the verifier checks the claimant’s knowledge of a secret key in a 2-move protocol using sym-
metric secret keys. The LM will be the responsible entity processing the authentication
preferences from the application layer to determine in which direction the authentication
takes place. Legacy Authentication is used when either Legacy Pairing or Secure Simple
Pairing with the P-192 Elliptic Curve has been used to generate the link key[15]. Figure

23

Bluetooth BR/EDR Security

Figure 4.7: Bluetooth BR Legacy Authentication

4.7 summarize the Legacy Authentication scheme.
The steps in order to authenticate users in Legacy Authentication are:

1. The verifier generates and transmits a 128-bit random challenge (AU RAND) to the
claimant.

2. The claimant utilizes the E1 algorithm (SAFER+ algorithm) to compute an authen-
tication response (SRES) using his or her unique 48-bit Bluetooth device address
(BD ADDR), the link key (which has been shared between the devices in the pairing
stage), and the AU RAND (received from the verifier) as inputs.

3. The verifier performs the exact computation. As a result, only the 32-MS-bits of
E1 output are used for authentication purposes. The remaining 96-bit of the 128-bit
output is known as the Authenticated Ciphering Offset (ACO) value, which will be
incorporated later in the encryption key generation.

4. The claimant returns the 32 Most Significant bits of the E1 output as the computed
response, the Signed Response (SRES), to the verifier.

5. The verifier compares the SRES from the claimant with the value it computed.

6. If the two 32-bit values are equal, the authentication is considered successful. Oth-
erwise, the authentication fails.

4.5.2 Secure Authentication

Secure Authentication is used when both devices support Secure Connections. Secure Au-
thentication is mutual; hence, the challenge-response scheme will be in the way that both
devices act as a verifier and claimant in the same sequence where the knowledge of a secret

24

Bluetooth BR/EDR Security

Figure 4.8: Bluetooth BR Secure Authentication[15]

key is checked through a 4-move protocol using symmetric secret keys. Secure Authenti-
cation is used when Secure Simple Pairing with the P-256 Elliptic Curve has been used
to generate the link key. Since both devices are the claimant and verifier, for better un-
derstanding in the upcoming sections, we will refer to the authentication pair as a master
and slave (in [16], the terms Central and Peripheral have been used instead of master and
slave). Figure 4.8 summarize the Secure Authentication scheme.

Since the authentication is mutual in Secure Authentication, the connection pair have
to authenticate each other; Therefore, the following steps will be generated on both sides.
We will explain the case when the master initiates the authentication, and it is the same
when the slave initiates the authentication, except that the first two steps are swapped.

1. The slave initiates the authentication by generating and transmitting a 128-bit ran-
dom challenge (RAND S) along with the Bluetooth device address (ADDR S) to the
master.

2. The master does the same by generating and transmitting a 128-bit random challenge
RAND M along with its Bluetooth device address (ADDR M) back to the slave.

3. The pair will use h4 and h5 algorithms to to compute their authentication responses
SRES S and SRES M using the following as inputs:

25

Bluetooth BR/EDR Security

• the 48-bit Bluetooth device address of the master ADDR M,

• the 48-bit Bluetooth device address of the slave, ADDR S,

• the shared link key,

• the RAND M,

• the RAND S.

As a result, only the 32-Most Significant bits of h5 output is used for authentication
purposes. The remaining 96-bits of the 128-bit output are known as the Authenti-
cated Ciphering Offset (ACO) value, which will be incorporated later in the encryption
key generation.

4. The slave returns the 32-MS-bits of the h5 output as its computed response SRESslave
to the master.

5. After receiving SRESslave, the master returns the 32-MS-bits of his h5 output as the
computed response SRESmaster, back to the slave.

6. The master and slave now will compare the received SRES from each other with the
value that they have computed.

7. If the two 32-bit values are equal on both sides, the authentication is considered suc-
cessful. If the two 32-bit values are different on one or both sides, the authentication
fails[15].

4.6 Confidentiality

In Section 4.2, we have seen the Security Modes of Operation for Bluetooth to provide
pairing and authentication. Bluetooth provides Encryption to address the need for confi-
dentiality by thwarting attackers and forgeries. Bluetooth offers three encryption modes
as follows:

• Encryption Mode 1: No encryption at all.

• Encryption Mode 2: Individually addressed traffic is encrypted, while broadcast traf-
fic is not encrypted.

• Encryption Mode 3: All traffic is encrypted.

Encryption

Encryption is the general application of cryptography. Using encryption, one can encode
information so that an unauthorized third party in possession of the encoded data cannot
decode it and access the original information [6]. Bluetooth protects users’ information
by encrypting the packet payload. Bluetooth payload Encryption is handled in one of two
ways:

• A stream cipher encryption algorithm E0

• AES-CCM encryption algorithm

26

Bluetooth BR/EDR Security

Figure 4.9: Bluetooth E0 Encryption Procedure

4.6.1 E0 Encryption Algorithm

E0 is a stream cipher that generates a sequence of pseudo-random numbers and combines
it with the payload data using the XOR operator. E0 is used for Encryption when the
device only offers Legacy Pairing or Secure Simple Pairing with ECDH P-192. The cipher
is symmetric, meaning the decryption will be exactly as the Encryption using the same
key. Figure 4.9 Summarize the Bluetooth E0 Encryption procedure.

4.6.1.1 Encryption Concept

E0 will cipher Bluetooth payload data. The payload is ciphered after the CRC bits have
been appended and before the FEC encoding. E0 uses four linear feedback shift registers
(LFSR1, ..., LFSR4) whose output will be combined using a 16-states finite state machine
(known as the summation combiner[20]). The output of the summation combiner is the
keystream sequence. E0 takes the following as its input:

• The Central’s Bluetooth Device Address (BD ADDRC) (in previous sections, DeviceA,
Device1 or the initiating device).

• The second input is 26-bits of the Central real-time clock (CLK): the clock will be
incremented for each slot. Using CLK, at least one bit is changed between two
transmissions. Thus, a new key stream is generated after each re-initialization.

• The encryption key Kenc: derived from the current link key, COF, and a random
number EN RANDC . EN RANDC will be issued by the Central before entering
encryption mode and transmitted in plain text. The key length used in Bluetooth is
set to be 128-bits.

Within the E0 algorithm, the encryption key K enc is modified into another key denoted
Ksession in which its size varies between 8 to 128-bit. For packets covering more than a
single slot, the Bluetooth clock in the first slot will be used for the entire packet. E0

perform the Encryption procedure in three phases as follow:

• Firstly, it performs the initialization phase, in which it combines the input bits in an
appropriate order, giving an output known as session key (Ksession).

• In the second phase, the output of the first phase will be fed into the four LFSRs,
where the keystream bits will be generated (keystream generator).

27

Bluetooth BR/EDR Security

Figure 4.10: Stream ciphering for Bluetooth with E0.

Figure 4.11: Generating the encryption key using E3

• The third phase performs encryption/decryption by XORing the key stream bits with
the plain text/cipher text. Figure 4.10 shows the detailed ciphering procedure with
E0.

4.6.1.2 Generating the encryption key

The encryption key Kenc is derived from the current link key using the algorithm E3. The
key length produced is 128-bits. However, before E0, Kenc is shortened to the agreed
encryption key length. The function is constructed as in Figure 4.11:

Kenc = E3(EN RAND,LinkKey, COF) (4.19)

COF value is set to one of two values:

• If the current link key is a temporary link key: COF = BD ADDR ∥BD ADDR.

• Otherwise COF = ACO.

4.6.2 AES-CCM Encryption Algorithm

AES-CCM is used for encryption in the case of Secure Simple Pairing with ECDH P-256.
More details about the AES-CCM Encryption procedure are in Request for Comment
(RFC) 5048 and 3610. Bluetooth AES-CCM encryption function takes the following as
inputs:

• The encryption key kenc

• The encryption nonce, which is one of two: either the payload counter format in the
case of ACL packets or the clock format in the case of eSCO packets

28

Bluetooth BR/EDR Security

Figure 4.12: Bluetooth AES-CCM Encryption Procedure

• The payload bits

AES-CCM output will be the Encrypted text/Plain text. When AES-CCM encryption is
enabled, ACL packets are included with a 4-Byte Message Integrity Check (MIC). while
eSCO packets do not[15]. Figure 4.12 shows the procedure of Bluetooth encryption using
AES-CCM.

4.6.2.1 AES encryption key generation

The key is created using the AES encryption key generation function h3. the function (h3)
makes use of the Message Authentication Function HMAC-SHA256 which is denoted as
(HMAC SHA 256T) where T is 128-bit link key. The inputs to h3 are the following:

• A1, The BD ADDR of the Central (Noted as Master in Figure 4.12)

• A2, The BD ADDR of the Peripheral (Noted as Slave in Figure 4.12)

• 64-bit of ACO (the output of h5 in Secure Authentication procedure)

• T , the 128-bit Bluetooth Link Key (derived from f2 in Secure Authentication)

The output of the h3 function is:

AES Kenc = HMAC SHA 256T (Link key ∥ A1 ∥ A2 ∥ ACO) (4.20)

The output is 256-bit, AES kenc will be shortened, and only the most significant 128-bits
will be considered the AES key.

29

Chapter 5

Bluetooth LE Security

BLE security concept is relatively similar to Bluetooth BR/EDR. However, the methods
and operations are somehow different from Bluetooth BR/EDR security. In this chapter,
we will go through the security and privacy features defined within the BLE specification.

5.1 BLE Security Overview

Version 4.0 of Bluetooth specification has seen for the first time the introduction of Ad-
vanced Encryption Standard–Counter with CBC-MAC (AES-CCM) encryption, which pro-
vides strong encryption. Up to Bluetooth v4.1, there was only one pairing mechanism:
Low Energy Pairing. Version 4.2 was a security mutation for BLE, where BLE Pairing
can be handled in two methods. The first is Legacy Pairing (referring to the old Low En-
ergy Pairing), whereas the second method is a new introduction to BLE, known as Secure
Connection. The newly added Secure Connection utilizes FIPS-approved algorithms (AES-
CMAC and Elliptic curve P-256). Version 4.2 also added a feature of reusing/sharing the
encryption keys generated by either BLE or Bluetooth BR/EDR if operating together in
the same device. The BR/EDR link key can be derived from the BLE Long Term Key, and
BLE Long Term Key can be derived from the BR/EDR Link key. Thus, the user pairing
to one physical transport can be connected to the other automatically[[15]. The Security
Manager Protocol (SMP) handles the BLE security procedure, setting and defining the
algorithms and protocols for the main security procedure (e.g., generating and exchanging
keys between BLE devices). BLE security is detailed in Bluetooth Core Specification, Vol
3, Part H, Sections 2 and 3 [16].

Similar to Bluetooth BR/EDR, BLE offers the main security services when requested,
as discussed in Section 4.2. Unlike BR/EDR, BLE handles the authentication procedure
as one of its stages and does not have an individual procedure. BLE Pairing is the main
security procedure, where the device gets paired, bonded, and authenticated. The link
encryption starts at the end of the Pairing procedure, but it does have a separate procedure.
The Pairing is discussed in more detail in section 5.3.

30

Bluetooth LE Security

5.2 BLE Security Modes

The security modes and levels refer to a combination of security attributes and require-
ments, where services and service requests of BLE will have their security requirements.
A device will follow the mode and level that meets its security requirements. More robust
security requirements prevail in the case of a service request and the associated service
having different security requirements. BLE has two security modes:

• BLE Security Mode-1: has four different encryption levels as follows:

– Level-1: No security (No authentication and no encryption)

– Level-2: Unauthenticated pairing with encryption

– Level-3:Authenticated pairing with encryption

– Level-4: Authenticated Secure Connections pairing with encryption

• BLE Security Mode-2: is in two levels of data signing:

– Level-1: Unauthenticated pairing with data signing

– Level-2: Authenticated pairing with data signing

BLE security Mode-1 Level-4 is the most secure of all modes/levels since it offers Secure
Connections authenticated pairing and encryption using AES-CMAC and Elliptic Curve
P-256, for v4.2 or later devices[15].NIST recommends the use of Mode-1 Level-4 if possible.
For version 4.1 devices and earlier versions, NIST recommends using Mode-1 Level-3. BLE
security Mode-1 Level-1 is the least secure and should be avoided. Security Mode-2 does
not provide encryption, and it’s only meant with data signing.

5.3 Pairing

Pairing is the foundation of BLE security, where devices form a secure, trusted relationship.
The devices are said to be bonded if they agree to store the shared keys at the Pairing
procedure for future reuse. If not bonded, the devices have to go through the Pairing
procedure every time they reconnect. Pairing is established to generate different keys, and
one of those keys shall be used to encrypt the shared link. BLE Pairing is established in
three phases as follows:

• Phase-1: Pairing Feature Exchange

• Phase-2:

– Legacy Pairing: Short Term Key (STK) Generation

– Secure Connections: Long Term Key (LTK) Generation

• Phase-3: Keys Distribution

BLE pairing Phase-1 and 3 are identical in both Legacy Pairing and Secure Connection.
The only difference is in Phase-2. Figure 5.1 shows the different Pairing phases.

31

Bluetooth LE Security

Figure 5.1: BLE Pairing Phases

Figure 5.2: SMP Pairing Request/Response PDU

5.3.1 Phase-1

Phase-1 is the base for the BLE Pairing procedure. The procedure starts with the Initiating
device sending an SMP Pairing Request to the Responder device; the Responder replies
with an SMP Pairing Response. This step is called the Pairing Feature Exchange. The
exchange provides the devices with the information needed to Decide/Determine:

• The Pairing method, whether Legacy Pairing or Secure Connections.

• The association model, whether Just Work, OOB, Passkey Entry, or Numeric Com-
parison (in Secure Connection Only).

• The device authentication and what form the authentication step should take.

• Key types to be generated and distributed.

• The encryption key length (Long Term Key).

Pairing Feature Exchange

The Initiator starts the Pairing Feature Exchange by sending a Pairing Request command
to the responding device. Figure 5.2 shows the Pairing Request/Response fields.

• IO Capability: where the devices acknowledge their input and output capabilities as
follows:

32

Bluetooth LE Security

Figure 5.3: Authentication requirements flags

– DisplayOnly: The device can display numbers or text but cannot accept input.

– KeyboardOnly: The device can accept text or numeric input from the user.

– DisplayYesNo: The device allows the user to respond with YES or NO.

– KeyboardDisplay: The device has both keyboard and display.

– NoInputNoOutput: The device has neither input nor output capabilities.

More details about the IO Capability are found in Bluetooth Core Specification, Vol
3, Part H, Section 2.3.5.1 [16].

• OOB data flag: Defines whether or not the device is supporting OOB. If OOB is
present, the flag is set to 1; otherwise, it is 0. In legacy Pairing, the two devices
should support OOB to use this feature. In Secure Connection, if only one of the
pairs has set the flag to 1, then OOB can be used.

• Responder/Initiator Key Distribution: The field indicates the requested keys by Re-
sponder/Initiator from the other pair to be generated and distributed in Phase-3.

• Maximum key size: This field defines the maximum encryption key size that the
device can support, which is between 7 to 16-Bytes.

• AuthReq: Contains the requested security properties and is composed of the following
sub-fields:

– Bonding Flag: Used to indicate whether the device wishes to bond (i.e., storing
the keys for later use.) or not.

– MITM: Is set to 1 if the user requests Man In The Middle protection. If one
or both devices set the flag to 1, MitM protection will be provided by any
association model except Just Work.

– SC: Is the most important field, where setting the flag to 1 in both devices means
that the pair will use Secure Connection as the Pairing method. Otherwise, it
is Legacy Pairing.

Figure 5.3 shows how AuthReq flag is composed.

5.3.2 Phase-2

Phase-2 proceed based on the information provided in Phase-1 Feature Exchange. As
mentioned previously, Phase-2 differs on which method is selected for the Pairing: Legacy
Pairing or Secure Connection.

33

Bluetooth LE Security

Association Model TK Value
Just Work 128-bits of Zeros.

Passkey Entry The 6-digit passkey is 20-bits, will be
padded with leading zeroes to give a

128-bits.
OOB 128-bit value is generated and

exchanged Out-Of-Band between the
devices.

Table 5.1: TK value based on the association model.

5.3.2.1 Phase-2 Legacy Pairing

Legacy Pairing Phase-2 is concerned with two main points:

1. To generate a key known as Short Term Key (STK), which will be used in link
encryption to securely distribute other encryption materials in Phase-3.

2. To offer protection against MitM attacks by authentication.

Legacy Connection is selected if one or both devices have set the SC (Secure Connections)
flag equal to zero. Phase-2 proceeds in four steps:

Step-1: Generating a Temporary Key (TK)

The Temporary Key (TK) is a 128-bit that will be used to derive the Short Term Key
(STK). The method to generate TK depends on the selected association model in Phase-1
based on both devices’ IO capabilities at the Feature Exchange. The association models
have been discussed in Section 4.3.2

• Just Work: Will be selected if:

– Both devices have set the MITM (Man In The Middle) flag to 0

– Or, Both devices set the OOB Data Flag to 0. Furthermore, one or both devices
have set the MITM flag to 1. Moreover, IO capabilities indicate that passkey
entry cannot be supported.

• Passkey Entry: Will be selected if:

– Both devices set the OOB Data Flag to 0. Furthermore, one or both devices
have set the MITM flag to 1. Moreover, IO capabilities indicate that passkey
entry can be supported.

• OOB: Will be selected if both devices have set the OOB Data Flag to 1.

TK value is different in each of the association models. Thus, each device will calculate
TK as explained in Table 5.1, and the value is never shared over the air.

34

Bluetooth LE Security

Step-2: Authentication

Up to the previous point, both devices have the same Temporary Key (TK). TK will be
part of a new value that both devices will use to authenticate each other. The value is
128-bits, known as confirm value (LP CONFIRM) generated using the c1 algorithm. See
Bluetooth Core Specification, Vol 3, Part H 2.2.3 for details of s1 [16]. The input to the c1
algorithm is as follows:

• k: 128-bits TK value

• r: 128-bits random number (LP RANDI and LP RANDR) generated by both devices

• preq: 56-bits Pairing Request command

• pres: 56-bits Pairing Response command

• iat: 1-bit initiating device address type

• rat: 1-bit responding device address type

• ia: 48-bits initiating device address

• ra: 48-bits responding device address

• padding: 32- bits of zeros

The initiating device calculates the 128-bit confirm value (LP CONFIRMI) as follows:

LP CONFIRMI = c1(k, rI , prq, pres, iat, rat, ia, ra) (5.1)

While the Responder device will generate the 128-bits confirm value (LP CONFIRMR) as
follows:

LP CONFIRMR = c1(k, rR, prq, pres, iat, rat, ia, ra) (5.2)

After both devices have derived their confirmation value, they will start the Authentication
procedure by exchanging the values as follows:

1. The initiating device transmits LP CONFIRMI to the responding device.

2. Upon reception, the responding device transmits LP CONFIRMR to the initiating
device.

3. When the initiating device receives LP CONFIRMR, it transmits LP RANDI to the
responding device.

4. The responding device verifies the LP CONFIRMI by repeating the process, using
the received LP RANDI .

5. If the values do not match, the pairing process shall be aborted.

6. If the values match. The responding device authenticated the initiating device.
Upon authentication, the responding device transmits LP RANDR to the initiating
device.

35

Bluetooth LE Security

7. The Initiating re-calculates LP CONFIRMR value and compares it with the value it
previously received. If they match, then the initiating device has authenticated the
responding device.

Authentication has been achieved, and both devices have proved their knowledge of the
TK. This stage ends here, and the devices will proceed to the next step, where they will
generate the STK.

Step-3: Generating a Short Term Key (STK)

The STK is a 128-bits value to be used in encrypting the link. STK will be generated using
the key generation function s1. See Bluetooth Core Specification, Vol 3, Part H 2.2.4 for
details of s1 [16]. s1 takes the following input:

• k: 128-bits TK value

• r1: 128-bits random number (LP RANDR) generated by the responding device

• r1: 128-bits random number (LP RANDI) generated by the initiating device

STK = s1(k, r1, r2) (5.3)

Step-4: Encrypting the link

The last step of Legacy Pairing Phase-2 is that the initiating device uses STK to encrypt
the link. After link encryption, the pair will derive a session key as in EQ 5.18 in Section
5.4.1.1, to be used in the following sessions as the link key. From this point, all the packets
are encrypted at the BLE Link Layer.

5.3.2.2 Phase-2 Secure Connection

Secure Connection (SC) is the alternative method in BLE Pairing. As the name suggests,
Secure Connection is more secure than Legacy pairing because it added the Elliptic Curve
Diffie-Hellman (ECDH) public key cryptography. Secure Connection Phase-2 is concerned
with the following:

• To generate a key known as the Long Term Key (LTK), which will be used to encrypt
the link for secure key distribution in Phase-3 and forthcoming sessions.

• To provide protection against MitM attacks by offering two steps authentication.

Secure Connection is the Pairing method if both devices set the SC (Secure Connections)
flag to 1. Secure Connections Phase-2 breaks down into steps:

Step-1: Public Key Exchange

• Each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private
key pair. Public keys are denoted (Pk), and Private/Secret keys are denoted (SK).

• The initiating device (DeviceA) sends its public key (PKa) to the responding device
(DeviceB).

36

Bluetooth LE Security

Figure 5.4: BLE Public key exchange

• The responding device replies with its public key (PKb). The two keys should not
be identical. Otherwise, the process fails.

• Both devices validate the received public keys on the right curve (P-256). An invalid
check leads to a process failure.

• After the exchange, both devices generate a DHkey where each device uses its private
key (SK) and the public key (PK) of the other device.

DHkeya = P256(SKa, PKb) (5.4)

DHkeyb = P256(SKb, PKa) (5.5)

Figure 5.4 shows the procedure have been followed in the public key exchange.

Step-2: Authentication Stage-1

Authentication in Secure Connection Pairing is one of its strengths. Thus, it is being es-
tablished in a long and complicated procedure, making it more difficult for the attackers
to compromise the shared information. Authentication stage-1 proceeds according to the
selected association model in Phase-1 Feature Exchange.

Just Works, and Numeric Comparison: Both Just Works and Numeric Compari-
son share the same protocol. Numeric Comparison is considered the most secure among
Secure Connection and Legacy Pairing association models. Just work will be selected as
described in Section 5.3.2.1 (Just Work). While Numeric Comparison will be selected if
one or both devices set the MITM flag to 1, OOB is not supported by both devices, and
both devices have indicated in their IO capabilities DisplayYesNo. The authentication
procedure goes as follows:

• After a successful public key exchange, both device generates a random 128-bit nonce
(Na and Nb). The values should be fresh with each instantiation of the pairing
procedure.

• The responding device (DeviceB) computes a commitment value (Cb) using a function
named f1. See Bluetooth Core Specification, Vol 2, Part H 7.7.1 for details of f1 [16].

Cb = f1(PKb, PKa, Nb, 0) (5.6)

37

Bluetooth LE Security

Figure 5.5: BLE Authentication stage-1: Numeric Comparison

• (DeviceB) transmits Cb to the initiating device (DeviceA). The commitment prevents
an attacker from altering any value at a later time.

• DeviceA and DeviceB exchange their nonce values (Na and Nb).

• DeviceA confirms the commitment by recomputing Cb. A failure at this point causes
the procedure to abort.

• A successful check at DeviceA results in both devices computing a 6-digit confirma-
tion value (Va and Vb) displayed to the user on both devices. The value is generated
using the Bluetooth g2 function. See Bluetooth Core Specification, Vol 3, Part H
2.2.9 for details of f1 [16]. The user checks and confirms if the values match in both
devices. If not, the procedure is aborted.

Va = g2(PKa, PKb, Na, Nb) (5.7)

Vb = g2(PKa, PKb, Na, Nb) (5.8)

• When Just Works, the checks are not performed, and the user is never shown the
6-digit values.

Figure 5.5 depicts the details of the Just Work and Numeric Comparison association mod-
els. After both devices are authenticated, the procedure continues at Authentication Stage-
2.

38

Bluetooth LE Security

Passkey Entry: In Passkey Entry, The user can be in one of two situations: Either
the user enters an identical Passkey into both devices. Alternatively, the Passkey is gen-
erated and displayed on one device, and the user enters it into the other device. Passkey
Entry will be selected as described in Section 5.3.2.1 (Passkey Entry).
The 6-digits (20-bits) Passkey will be the basis of the authentication of the devices. The
procedure goes as follows:

• The user enters an identical Passkey into both devices. A 6-digit Passkey is 20-bits
long represented with ra for DeviceA which is the concatenation of the 20-bits rai .
For DeviceB it’s rb and it’s the concatenation of the 20-bits of rbi .

• Then, both devices generate a random 128-bits nonce (Nai and Nbi).

• Each device compute a commitment value (Cai and Cbi) and exchange it with each
other. The commitment value is generated using the f4 function. f4 uses the AES-
CMAC algorithm with the nonce as its 128-bit key, where the input is the concate-
nation of the other function arguments (PKa,PKb, and rai/rbi).

Cai = f4(PKa, PKb, Nai , rai) (5.9)

Cbi = f4(PKb, PKa, Nbi , rbi) (5.10)

• DeviceA sends it’s Nai to DeviceB. Upon reception of DeviceB checks Cai and if
check succeed DeviceB replies with it’s Nbi .

• As a final step DeviceA checks the received Cbi . If the check fails, the procedure is
aborted.

• The steps are repeated 20 times as the Passkey is 20-bits. At the end of this stage,
Na is set to Na20 and Nb is set to Nb20 , which will be used in Authentication stage-2.

The iterative procedure used in generating the commitment value in Passkey Authentica-
tion is known as Gradual Disclosure, where an MitM attacker cannot receive more than
1-bit during each exchange and has to guess the remaining bits, making it more difficult
in practical terms for the attackers. Figure 5.6 shows the sequence diagram for Passkey
Entry Authentication stage-1.

OOB: The Out-of-Band protocol is used when one device sets the OOB Data Flag to
1. In OOB, the discovery of the peer device is carried out in-band, and authentication
parameters are transmitted through the OOB interface. The procedure is detailed below:

• Each device generates a random number, (ra and rb), and set the other pair random
number equal to zero (rb = 0 in DeviceA and ra = 0 in DeviceB).

• They each calculate a commitment value (Ca and Cb) as follow:

Ca = f4(PKa, PKa, ra, 0) (5.11)

Cb = f4(PKb, PKb, rb, 0) (5.12)

39

Bluetooth LE Security

Figure 5.6: BLE Authentication stage-1: Passkey Entry

• DeviceA now sends its Bluetooth device address (A) (to be used with the in-band
part) together with ra and Ca to DeviceB through OOB.

• If DeviceB supports OOB, it sends its corresponding data values (Bluetooth device
address (B), Cb, and rb) back to DeviceA.

• In this step, both devices communicate using the In-Band and share their public keys
(PKa, and PKb) in public.

• Both devices will use the received values Out-of-Band and In-Band. DeviceA recom-
putes Cb, and DeviceB recompute Ca as in EQ 5.11 and 5.12. If the values are equal
to what they have received, they authenticate each other; otherwise, the process is
aborted. Successful authentication results in both devices generating new random
numbers (Na and Nb) and exchanging them to be used in later procedures.

Figure 5.7 shows the sequence diagram for OOB Authentication stage-1.

Step-3: Authentication Stage-2

In Authentication Stage-2, more checks will be carried out to ensure the exchange of the
public keys and other values from earlier steps. Furthermore, two important keys will be
generated in this stage: The Long Term Key (LTK) and another key known as the Mackey.
This stage is identical in all the association models. The procedure is shown in Figure 5.8
and illustrated below:

40

Bluetooth LE Security

Figure 5.7: BLE Authentication stage-1: Out Of Band

Figure 5.8: BLE Authentication stage-2 and LTK calculation

41

Bluetooth LE Security

• The procedure starts with both devices utilizing the f5 function to generate the exact
value of LTK and Mackey as in EQ 5.13. f5 uses the AES-CMAC algorithm with
DHKey as its 128-bit key.

MacKey ∥ LTK = f5(DHkey,Na, Nb, A,B) (5.13)

• Then, each device uses the f6 function to compute a new confirmation value (Ea and
Eb) that includes the previously exchanged values and the newly derived key (i.e.,
Mackey). f6 uses the AES-CMAC algorithm with MacKey as its 128-bit key.

Ea = f6(MacKey,Na, Nb, rb, IOcapA,A,B) (5.14)

Eb = f6(MacKey,Nb, Na, ra, IOcapB,B,A) (5.15)

• DeviceA transmits Ea to Deviceb where it is checked. If the check fails, pairing is
aborted.

• Deviceb then transmits its confirmation value Eb, which DeviceA checks. If the check
fails, pairing is aborted.

As a final step in Authentication Stage-2, the initiating device will start encrypting the
link using the lately derived LTK. Later, in Phase-3, LTK will contribute to creating a
session key to be used in the upcoming sessions.

5.3.3 Phase-3

Phase-3 is known as the key distribution phase. Similar to Phase-1, Phase-3 is identical in
both Legacy Pairing and Secure Connection and is considered an optional phase (only if
the pair wish to bond). The keys to being distributed in the two pairing methods might
not be the same. Phase-3 will proceed on an encrypted link, as the link has been encrypted
in Phase-2 using either STK for Legacy Pairing or LTK for Secure Connection.

5.3.3.1 Legacy Pairing

In Legacy Pairing, the Central and the Peripheral will exchange the following keys:

• LTK, EDIV, and Rand

– LTK: Long Term Key is a 128-bits used to generate the session key for session
encryption.

– EDIV: Encrypted Diversifier is a 16-bits key used as an index to identify the
LTK when stored in the database. It’s only used in Legacy Pairing. EDIV is
generated each time an LTK is distributed and is transmitted in clear text.

– Rand: Random Number is a 64-bits key used to identify the LTK. It’s only
used in Legacy Pairing. Rand is generated each time an LTK is distributed
and is transmitted in clear text.

• IRK: Identity Resolving Key is a 128-bit key used to generate and resolve random
addresses.

42

Bluetooth LE Security

Figure 5.9: BLE Phase-3 key distribution

• CSRK: is a 128-bit key used to sign data and verify signatures on the receiving device.

Once the exchange is successful, the distributed keys will be linked to the Bluetooth Device
Address.

5.3.3.2 Secure Connection

Secure Connection exchanged keys are different from Legacy Pairing. The LTK will not
be distributed this time; once it is generated, it will be stored locally by both devices.
After that, the link is encrypted using an encryption key derived from the LTK. Thus,
EDIV and Rand values will be set to zero, and the Bluetooth Device Address will identify
the LTK. The Central and the Peripheral will only exchange IRK and CSRK.

In both cases (Legacy Pairing and Secure Connection), the keys are only distributed if
requested in the “Initiator/Responder Key Distribution” field. Figure 5.9 summarizes the
keys distribution procedure.

5.4 Confidentiality

BLE devices exchange data with each other in the form of attributes. This data should
not be accessible by unauthorized entities, especially if the data is sensitive (e.g., about
a user’s health or lifestyle, or relating to security or safety). So far, we have seen BLE
Pairing, a long and complicated procedure. The LTK has been generated or exchanged
in Pairing phase-3, allowing the user to activate the link encryption using this key. Unlike
Pairing, BLE encryption is a Link Layer task.

43

Bluetooth LE Security

5.4.1 Encryption

Even though BR/EDR uses AES-CCM as the encryption algorithm in the case of Secure
Simple Pairing with ECDH P-256, the E0 remains the main encryption algorithm. In con-
trast, BLE uses AES-CCM with a 128-bit key for all encryption operations. The encryption
procedure is initiated after connection establishment at Pairing Phase-2. The Central Host
will request its Controller to start the encryption on the link. The Peripheral will trigger
the encryption in one of the following possibilities:

• Sending an SMP Security Request to the Central.

• Attempting to access an attribute with encryption security requirements.

The encryption is enabled by the Link Layer through the Encryption Start Procedure, as
detailed in the following section.

5.4.1.1 Encryption Start Procedure.

The procedure starts with both the Central and Peripheral exchanging two parameters
known as:

• IV: Initialization Vector

• SKD: Security Key Diversifier

IV and SKD will be exchanged in LL ENC REQ and LL ENC RES PDUs. If the bond-
ing flag was set to 1 in Pairing Feature Exchange, EDIV and Rand values would also be
exchanged as an identifier for the LTK. Following the parameters exchange, The Periph-
eral Host will notify the Link Layer to prepare for the link encryption. The encryption
procedure will be finalized in a three-way handshake using LL START ENC REQ and
LL START ENC RSP PDUs.The procedure goes as follows:

1. The Central generates its part of IV (IVC a 32-bits random number) and SKD (SKDC

a 64-bits random number).

2. The Central transmit LL ENC REQ contains IVC , SKDC , EDIV, and Rand to the
Peripheral.

3. Upon reception, the Peripheral generates its part of IV (IVP a 32-bits random num-
ber) and SKD (SKDP a 64-bits random number).

4. The Peripheral transmit LL ENC RES contains both IVP and SKDP to the Central.

5. Each device’s Link Layer will generate the following:

SKD = SKDP ∥ SKDC (5.16)

IV = IVP ∥ IVC (5.17)

6. One or both devices have derived the Long Term Key in Pairing Phase-3. Thus, the
LTK will be passed from the Host to the Link Layer, where the session key will be
generated as follow:

44

Bluetooth LE Security

Figure 5.10: BLE Encryption Procedure.

• The Link Layer will utilize the Bluetooth security function e, which uses the
AES-128 encryption algorithm to generate the 128-bits encrypted data from the
128-bits key and 128-bits plaintext.

• The input key will be the LTK/STK, and SKD will be used as the plaintext.

Ksession = e(LTK/STK, SKD) (5.18)

7. Three-way hand-shake starts from this point. The Peripheral transmits an unen-
crypted LL START ENC REQ.

8. Upon reception, the Central sends an encrypted LL START ENC RES.

9. The Peripheral then responds with an encrypted LL START ENC RES.

10. When the central receives the last LL START ENC RES, the connection will be
encrypted. Figure 5.10 shows the sequence diagram of the BLE encryption procedure
[18].

Encryption is only applied to data when in a connection. Connectionless sessions do not
get encrypted. Once the link is encrypted, all the PDUs are appended by Message Integrity
Code (MIC). The receiving device will decrypt the MIC and verify the message’s genuinity.
Figure 5.11 shows (in Red color) the encrypted part of BLE packet[6].

45

Bluetooth LE Security

Figure 5.11: BLE Encrypted PDU

5.5 Cross-Transport Key Derivation (CTKD)

We have seen in both Chapters [4 and 5] the Pairing procedure ends with a key (i.e.,
Link Key or LTK) that is used in the encryption procedure. Those keys can be derived
from each other. A device supports Bluetooth BR/EDR and BLE, and both support
secure connection on a transport; the device can generate the encryption key for the other
transport. There are two scenarios: either the Pairing procedure have been initiated in the
BLE, then the BR/EDR link key will be derived from LTK, or vice versa. Both scenarios
are discussed in the following sections.

5.5.1 BR/EDR link key from BLE LTK

BR/EDR Link Key is derived from the LTK in two steps as follows:

1. First, generating a new value known as the Intermediate Link Key (ILK), by utilizing
the h7 function (AES-CMAC-128), by providing the LTK as the key and an extended
ASCII key identifier (keyID) of “tmp1” as the input.

ILK = h7(LTK, “tmp1”) (5.19)

2. The Bluetooth Link Key is derived using the h6 function (AES-CMAC-128), using
the ILK as the key and keyID of “lebr” as input.

KLink = h6(ILK, “lebr”) (5.20)

5.5.2 BLE LTK from BR/EDR link key

LTK is derived from BR/EDR Link Key as follows:

1. A new value known as the Intermediate Long Term Key (ILTK) is computed using
the h7 function (AES-CMAC-128) by providing the BR/EDR link key as the key and
the extended ASCII key identifier (keyID) of “tmp2”.

ILTK = h7(KLink, “tmp2”) (5.21)

2. BLE LTK will be derived through the h6 function (AES-CMAC-128), giving the
ILTK and keyID of “brle” as inputs.

LTK = h6(ILTK, “brle”) (5.22)

46

Bluetooth LE Security

5.6 Privacy

In telecommunications and security, privacy ensures that the users and their corresponding
devices cannot be tracked by unauthorized parties [6]. The Bluetooth device’s identity is
BD ADDR, and it appears over the air in several scenarios.

• when scanning: in the ScanA field.

• when advertising: in the AdvA field.

• when it is a directed advertisement: in the TargetA field.

Unlike Bluetooth BR/EDR, BLE has a unique feature (i.e., Private Address), as we
mentioned in Chapter 3, Section 3.2.2.1, that helps to form a periodically changing address,
which will help protect the users’ privacy and mislead the attackers. The privacy feature
allows the Bluetooth device to have two types of addresses. One is the identity address (i.e.,
BD ADDR), a static address. The new one is the private device address, which changes
periodically. When Bluetooth activates, the private address is said to be in privacy mode.
The Link Layer is the entity controlling the address change. Thus, there is a timer between
1 second and 11.5 hours. The link layer generates a new private address when the timer
expires. The Bluetooth core specification recommends 15 minutes for the timer. The
private address is either resolvable or non-resolvable. A resolvable address is used only if
the connection pair decides to distribute the keys in the pairing procedure. IRK will be
used to create and resolve the private address. Other devices will see a train of different
BD ADDR over different periods. In the non-resolvable case, no one (even a paired device)
can determine the device’s identity.

47

Chapter 6

Vulnerabilities and Attacks

In previous chapters, we have seen all about Bluetooth BR/EDR and Bluetooth LE se-
curity. Despite all these measures, Bluetooth has been vulnerable to many attacks. This
chapter describes the most common vulnerabilities and attacks against Bluetooth BR/EDR
and Bluetooth LE.

6.1 Vulnerabilities

In this section, we will summarize the major Bluetooth’s vulnerabilities and threats.
The work in this section is referred to the National Institute of Standards and Tech-
nology “NIST” [15]. The following sections will overview some vulnerabilities in the latest
Bluetooth versions related to pairing, authentication, key, and encryption in Bluetooth
BR/EDR and BLE.

6.1.1 BR/EDR

1. Devices with Security Mode-1 do not initiate any security mechanisms;
thus, it is recommended to use Security Mode-3 for Bluetooth v2.0 devices and earlier
versions.

2. The use of short PINs in v2.0 and earlier versions. Short PINs can be guessed
easily.

3. The encryption keystream is repeated every 23.3 hours in Bluetooth v2.0
and earlier versions. One of the parameters used as input to the key-stream
generator is the master’s clock (CLK). If a connection lasts more than 23.3 hours,
the CLK value will be repeated, resulting in a series of repeating keystreams, allowing
the attacker to guess the plaintext.

4. Just Works does not offer MitM protection during pairing, Resulting in
an unauthenticated link key. It’s highly recommended to reject Just Work pairing
requests.

5. The use of weak and static ECDH key pairs. Weak keys downgrade eavesdrop-
ping protection in SSP, allowing attackers to guess the link keys. Devices are urged
to generate strong ECDH key pairs changing periodically.

48

Vulnerabilities and Attacks

6. Static Passkeys are prone to MitM attacks. MitM protection during pairing
can be provided using fresh and random Passkeys for each pairing procedure.

7. Security Mode-4 devices (v2.1 or later) are backward compatible with
other security modes when connecting to devices do not support Security
Mode-4 (v2.0 and earlier versions). Falling back to Security mode-1, the device
would be stripped of protection. It’s recommended to only fall back to Security
mode-3; otherwise, never.

8. The secret key is shared amongst all Piconet devices. High risk of imperson-
ation attacks when sharing the secret keys amongst more than two devices.

9. BR/EDR encryption algorithm E0 is relatively weak. It is recommended to
use FIPS-approved algorithms, as in the case of SSP with ECDH P-256; AES-CCM
is used as the encryption algorithm.

10. BR/EDR device privacy is compromised if BD ADDR is captured. Know-
ing the full BD ADDR of a specific device allows lifetime tracking of its location and
activity.

6.1.2 BLE

1. BLE legacy pairing provides no protection against passive eavesdropping.
A successful eavesdropping attack during the pairing process can capture the shared
secret keys (i.e., LTK, CSRK, IRK).

2. BLE Security Mode-1 Level-1 is a no-security mechanism. It is similar to
BR/EDR Security mode-1. It’s recommended to use Mode-1 Level-4 for high security.

3. Just Works does not offer MitM protection during pairing; like in BR/EDR,
rejecting Just Works pairing requests is highly recommended.

4. There is a design flaw in Feature Exchange during Pairing Phase-1: The
exchanged features are not authenticated. This allows a MitM attacker to perform
the pairing procedure using different IO capabilities (e.g., forcing one side to use NC
and the other side to use PKE with the same value) [18].

6.1.3 Other Vulnerabilities

1. Negotiating encryption key length. In BR/EDR, the key can be negotiated up
to 1-Byte. Whereas in BLE, the minimum key length is 7-Bytes. It’s recommended
to use Secure Connection mode in BR/EDR and BLE, in which the key size is 128-bit.

2. Bluetooth does not support audit and non-repudiation. If such a service is
required, it should be provided by other security means.

It is important to notice that a BLE device which supports also BR/EDR might be vul-
nerable through its BR/EDR interface.

49

Vulnerabilities and Attacks

6.2 Attacks

In this section, we mainly focus on the attacks implemented against BLE, but we also
refer to some attacks against Bluetooth BR/EDR. As there are an enormous number of
Bluetooth attacks, we will group the attacks into four main sub-categories in the subsequent
sections.

6.2.1 Unauthorized Acquisition of Data

This type of attack happens when an unauthorized party accesses Bluetooth characteristic
data values communicated between two Bluetooth devices. This usually happens through
passive eavesdropping, also known as sniffing.

Sniffing

Sniffing refers to only listening to ongoing communication without intervening in the con-
nection. A Bluetooth sniffer is a combination of software and radio hardware. BLE sniffing
won’t require a high capabilities tool; the attacker has only to monitor the three primary
advertising channels where all connections are initiated. After that, the attacker must
follow the connection hopping sequence and hopping interval related to a specific packet’s
access address of the connection events to capture packets correctly.
To detect the start of a Bluetooth packet in the middle of a connection data stream. One
has to recognize the packet preamble and the unique access address (AA), as every Blue-
tooth packet starts with them. The easiest way to sniff a packet is to be present at the
time of the connection initiation because a packet’s preamble and access address are only
sent during the connection setup. Otherwise, capturing the packet of an already estab-
lished connection is complicated but possible. In order to sniff ongoing connections, one
has to recover the Access Address, CRCInit, hopping interval, and hopping sequence. An
enormous number of empty packets is being exchanged between a connection pair—those
empty packets can be utilized to filter correct Access Addresses. To verify each packet’s
CRC, one must recover the CRCInit (initialization value for CRC). The CRC calculation
is reversible, so the correct CRCInit value can be identified with enough valid packets.
The hop interval can be recovered by waiting on one channel and estimating the period
between possible connection events [18]. One of the available tools to capture ongoing and
upcoming connections is the modified version Ubertooth project by Mike Ryan in 2013 [14].
A few years later, in 2018, Damien Cauquil presented another similar project “Btlejack”,
to sniff the ongoing connections [3].

6.2.2 Spoofing

Spoofing is that type of attack when a legitimate device is spoofed due to authentication
failure, and the other side of the connection is deceived into accepting the spoofed device
as the legitimate peer. A spoofing attack is possible if the attacker can clone the victim’s
Bluetooth device address, the victim’s list of services and characteristics, and the BLE
data (i.e., characteristics values) [17]. One or two of the mentioned possibilities would be
enough depending on the attack’s purpose. The most known attack in this category is the
MitM attack.

50

Vulnerabilities and Attacks

MitM

A successful MitM attacker has the capability to sniff, forward, and tamper with the
Bluetooth connection. The attacker is impersonating two legitimate Bluetooth devices
at the same time (i.e., Central and Peripheral). The victim unknowingly connects to
the malicious device, which relays the connection to the other legitimate device. Thus,
the attacker can drop or inject some data into the devices. In 2016, at the DefCon 24
conference, Damien Cauquil published the famous “BTLEjuice” [5] as a BLE MitM tool.
In the same year, Slawomir Jasek presented another MitM tool known as GATT-Tracker
[8]. Both tools roughly have the same functionality. Mainly and most importantly, they
clone the victim’s BD ADDR and its Peripheral characteristics and services, broadcasting
advertising packets that are indistinguishable from the legitimate ones.

6.2.3 Denial of Service (DoS)

It is that type of attack denying the legitimate device from connecting to its peer, tem-
porarily or permanently. DoS can be in one of the following forms:

• Both devices are up but cannot communicate because the attacker blocks the con-
nection channel (e.g., jamming);

• Making one of the devices unavailable by exhausting its capabilities/resources (e.g.,
battery drain, crashing);

• Dropping the packets during a MitM attack.

DoS, in its simplest form, is known by the jamming attacks, which we will see in the next
section.

Jamming

Bluetooth utilizes the free, unlicensed, and crowded ISM band at 2.4 GHz. The interference
and collision of the ISM band are bypassed by using the Adaptive FHSS (AFH) at the
PHY layer. Even though, with all these measures, Bluetooth signals can be interfered and
forced to collide, meaning AFH is not considered as a security mechanism, as also stated in
[16] “Bluetooth system employs a frequency hopping to combat interference and fading”.
Jamming Bluetooth BR/EDR is considered more complicated and overwrought, since there
are 79 Bluetooth channels. For BLE, it is easier to jam only the three primary advertising
channels. In this way, the attacker will easily deny and drop the connection initiation and
the advertising packets. During connection initiation, the central shall set a timeout value
for the received advertising packets from the connection peer. By blocking the connection,
the packets timer will be exceeded, and the central will assume the connection to be lost.
The attacker will jam the packets transmitted from the peripheral to the central device.
Thus the timer at the central device is to be exceeded. After that, the attacker will
impersonate the central device and initiate a new connection to the legitimate peripheral.
In 2018, Damien Cauquil implemented the Btlejack tool for jamming BLE [3]. Recently,
In 2021 Romain Cayre et al. demonstrated a possible method to inject a packet into an
ongoing connection by publishing their work “InjectaBLE” [11].

51

Vulnerabilities and Attacks

6.2.4 Privacy attacks

Even though Bluetooth LE employs the privacy feature, the users can still be tracked if a
device is tracked. A device that advertises packets periodically with its static address is
more likely prone to attacks. However, many vendors still prefer to use the static address
[18]. Re-identification of a Bluetooth device can be applied in one of three forms of attacks
[13]: User tracking and surveillance, stalking and espionage, and compromising physical
assets.

BLE resolvable private address, as discussed in Section 5.6, will prevent the device
from tracking only if the pairing procedure has been implemented in one of the secure
modes, where the distributed keys (i.e., IRK) cannot be extracted. If the device allows
unauthenticated pairing (e.g., Just Works), an attacker can pair with the victim’s device
and exploit the IRK. Once IRK has been exposed, the attacker fully controls the device’s
privacy. It’s mentioned in Bluetooth core specification v5.3 [16, page 1657] that the IRK
can be assigned once to a device during manufacturing, meaning a distributed IRK results
in lifetime traceability for that device. In [19], and [12], successful attacks have been
implemented against BLE devices in the absence of the privacy feature (i.e., static address).
In [10] Zhang et al. carried out a BLE attack in the presence of the privacy feature;
they spoofed a legitimate Peripheral and connected to the legitimate Central; the spoofed
peripheral generated a Link Layer encryption error (i.e., 0x06 Key Not Found), which
forces the communication to be in insecure authentication mode by triggering Just Work
association model.

In 2020, Gringoli et al. utilized a full-band SDR system [13] to sniff the 79 channels
of Bluetooth BR/EDR with the purpose of reidentification and tracking a BD ADDR by
exploiting weaknesses in the design of the header error check (HEC) and header whitening
mechanisms. They proved that it is possible to de-anonymize Bluetooth identity within 85
meters, achieving 100% identification in only 4-seconds.

52

Chapter 7

Sniffing BLE connections with
Btlejack

In this chapter we discuss an attempt to break BLE security using a low-cost device, a
Micro:bit equipped with the Btlejack software. However, to better understand the attack,
we first need to describe more in-depth how a BLE connection begins. For this reason we
will focus on the Advertising state of a BLE device and analyze the packets exchanged at
the beginning of a new connection.

7.1 Introduction

In chapter 3, Section 3.2.2, we have seen that a BLE device can operate in three main
states: Advertising, Scanning, and Connected state. Advertising allows devices to broad-
cast information defining their intentions. The Advertiser, usually a Peripheral device,
broadcasts its presence allowing other devices to find it and, if possible, to connect to
it. By contrast, the Scanner, which usually is the Central device, listens to the primary
advertising channels for broadcast transmissions and eventually sends connection requests
to a target advertiser. If the advertiser allows connections, they both enter into the con-
nected state. Understanding these states is essential for anyone who wishes to sniff a BLE
connection. More specifically, the advertising and the connection request packets are key
packets, because there we can find the connection’s most important parameters, such as
CRCInit, channel map, and the hop interval. More details will be covered as we go through
the chapter.

7.2 BLE Advertising Packets

Bluetooth Low Energy defines a unique packet format for advertising and data transmis-
sions. Every BLE packet contains four fields: Preamble (1-byte), Access Address (4-bytes),
Protocol Data Unit (PDU, 2-258 bytes), and Cyclic Redundancy Check (CRC, 3-bytes);
Figure 7.1 shows the format of a generic BLE packet.
The PDU field defines whether the packet is an advertising or data packet. Here we fo-
cus our attention on advertising PDUs only, which are divided into two main fields: a
2-byte Header and a variable size payload, as shown in Figure 7.2. The advertising Header
contains six fields, while the PDU Payload has a different structure depending on the
advertisement type.

53

Sniffing BLE connections with Btlejack

Figure 7.1: Link Layer packet format for the LE Uncoded PHYs

Figure 7.2: BLE Advertising PDU structure

7.2.1 BLE Advertising PDU Header

Figure 7.3 shows a BLE advertising PDU header’s fields. The PDU Type field indicates
the PDU type; different PDU types are explained in Bluetooth Core Specification Version
5.3 — Vol 6, Part B, Section 2.3, Table 2.3 [16]. The ChSel field indicates whether or not
the BLE Channel Selection Algorithm #2 is supported if supported (CheSel = 1); otherwise
set to 0. RFU is Reserved for Future Use. TxAdd field indicates whether the advertiser’s
address is public (TxAdd = 0) or random (TxAdd = 1); the difference between public
and random address is discussed in Chapter 3, Section 3.2.2.1. The RxAdd indicates
whether the target’s address in the TargetA “the initiator” field is public (RxAdd = 0)
or random (RxAdd = 1). The field is only used in the case of direct advertisements
“ADV DIRECT IND” that we do not treat in this document. The Length field indicates
the payload length in bytes (1 to 255 bytes).

7.3 BLE Advertising State

In order to understand how to capture a new BLE connection, one must understand not
only the packets’ structure but also how the states of the devices evolve during the con-
nection initiation.

BLE has seven different types of Advertising packets, but the two main ones are con-
nectable scannable and nonconnectable scannable undirected advertisements.

1. Nonconnectable scannable undirected advertisements:

The Advertiser broadcasts data to any other BLE device, without setting up a new con-
nection, i.e., it cannot respond to any Connection Request. BLE beacons often employ
this type of packets, and this category of devices is also called connectionless.

Figure 7.3: Fields of the BLE Advertising PDU Header

54

Sniffing BLE connections with Btlejack

Figure 7.4: Connection-oriented vs. connectionless transmissions

Figure 7.5: ADV IND PDU Payload

2. Connectable scannable undirected advertisements:

The Advertiser can accept connections from a Scanner listening to the advertisements. De-
vices from this category are also named connection-oriented. Figure 7.4 shows an example
of the two category [6]. The “PDU Type” field in the advertising PDU header indicates
the type of data contained in the following payload. Different PDU types are explained in
Bluetooth Core Specification Version 5.3 — Vol 6, Part B, Section 2.3, Table 2.3 [16].

In this Chapter, we will focus only on the type of advertisements that result in a
long-term connection. The main advertising packet is ADV IND; therefore will only give
details to this one. Advertisements of this type are sent with the fixed Access Address
0x8E89BED6.

7.3.1 ADV IND

Advertising Indications (ADV IND) are packets sent when a peripheral device is willing to
accept connection requests from any central device. An example is a smartwatch requesting
a connection to a smartphone. As shown in Figure 7.5, ADV IND payload consists of AdvA
and AdvData fields. The AdvA field contains the advertiser’s device address (public or
random). The AdvData field includes the Advertised Data; otherwise, it is empty.

7.3.1.1 Advertising Data “AdvData”

The advertising data AdvData follows the well-known LTV (length-type-value) format,
which contains multiple structures and different fields. Each of these has 1-byte of AD
Length, 1-byte of AD type (different AD types are defined in Bluetooth SIG GAP Data
Types [2]), and 29-bytes of AD Data as shown in figure 7.6.

55

Sniffing BLE connections with Btlejack

Figure 7.6: ADV IND PDU Payload Advertised Data

Figure 7.7: BLE Scanning Types

7.4 BLE Scanning State

If a Central “Scanner” wants to discover a Peripheral, it has to be tuned to the same chan-
nel on which the Peripheral is advertising at that given point. A device that is listening for
advertisements and then sends “Scan Requests” is said to be in active scanning mode. In
contrast, a device that passively listens to advertisements and does not transmit“Scan Re-
quest” is said to be in passive scanning mode. Figure 7.7 shows an example of both modes:
the device A is advertising its presence, which is detected by the scanning smartphone.

7.4.1 Scanning Parameters

The main scanning parameters are the Scanning Type, Scanning Window, and Scanning
Interval. The Scanning Type can be either Passive or Active as we have just seen. Scan
Window tells how long to scan for advertisements. And finally, Scan Interval indicates
how frequently to scan for advertisements. The scanner (i.e., the Central) will listen for the
entire scan window at every scan interval and on a different Primary Advertising Channel
in each scan window. Scan window and scan interval are configurable aspects of a scanner’s
behavior. Figure 7.8 shows the a scanning device parameters.

56

Sniffing BLE connections with Btlejack

Figure 7.8: BLE Scanning Parameters

7.5 BLE Connection State

For two BLE devices to establish a connection, they have to go through the following
procedure. First, the peripheral needs to start advertising and send out connectable ad-
vertisement packets that we have seen in Section 7.3. The Central device needs to scan for
advertisements as described in Section 7.4. If the Central device is scanning on the same
advertising channel on which the Peripheral is advertising, then the Central device discovers
the Peripheral. It can then read the advertisement packet and all the necessary information
to establish a connection. The Central then sends a CONNECT IND packet“connection
request.” The Peripheral always listens for a short interval on the same advertising channel
after it sends out the advertising packet. This allows it to receive the connection request
packet from the Central device — which activates the connection initiation between the
two devices. Afterward, the connection is assumed to be created, but not yet established.
A connection is established only when the device receives a packet from its peer. After the
connection is established, the Central becomes the Master, and the Peripheral becomes the
Slave. The Master manages the connection, controls the connection parameters, and the
timing of connection events.

7.5.1 CONNECT IND

CONNECT IND Payload fields are shown in Figure 7.9. InitA represents the initiator’s
device address, whereas AdvA indicates the advertiser’s device address. LLData field
contains important information as detailed in Figure 7.10. LLData is constructed in 10
fields:

• AA field contains the ACL connection’s Access Address defined by the Link Layer.

• CRCInit field contains the initialization value for the CRC calculation for the ACL
connection. It’s a random value generated by the LL.

• WinSize field indicates the transmit window size value, as defined in the following
manner: Transmitwindowsize = WinSize ∗ 1.25ms.

57

Sniffing BLE connections with Btlejack

Figure 7.9: CONNECT IND Payload Fields

Figure 7.10: CONNECT IND LLData Field Structure

• WinOffset field indicates the transmit Window Offset value, as defined in the follow-
ing manner: transmitWindowOffset = WinOffset ∗ 1.25ms.

• Interval field indicates the connInterval as defined in the following manner:
connInterval = Interval ∗ 1.25ms.

• Latency field indicates the connPeripheralLatency value, as defined in the following
manner: connPeripheralLatency = Latency.

• Timeout field indicates the connSupervisionTimeout value, as defined in the following
manner: connSupervisionT imeout = Timeout ∗ 10ms.

• ChM field contains the channel map indicating Used and Unused data channels.
Every channel is represented with a bit positioned as per the data channel index.

• Hop field indicates the hopIncrement used in the data channel selection algorithm.
It shall have a random value in the range of 5 to 16.

• SCA indicates the centralSCA used to determine the Central’s worst-case sleep clock
accuracy. The value of the SCA field shall is defined in [16] Vol 6, Part B, Table 2.9.

7.6 Btlejack

Btlejack is a tool developed by Damien “virtualabs” Cauquil to perform BLE attacks (i.e.,
sniffing, jamming, and hijacking). Btlejack’s current version is 2.0, which supports BLE
4.x and 5.x. The BLE 5.x support is limited, as it only supports the 1 Mbps Uncoded
PHY and does not support channel map updates [4].

7.6.1 Experimental setup

For the investigated experiment, we used a laptop with a Linux OS, one BBC Micro:Bit,
one nRF52 development board that was programmed to emulate a HeartRate sensor to
serve as the Advertiser, and a VIVO X60 mobile phone to serve as the Central. The
experiment setup is shown in Figure 7.11. In this work, we only used one Micro:Bit,

58

Sniffing BLE connections with Btlejack

Figure 7.11: Btlejack Experimental Setup

allowing Btlejack to work only in one of the three Primary Advertising Channels, leaving
us with a 0.33 probability of sniffing the packets. Three Micro:Bits would be enough to
detect new connections with 100% proability; however, for the sake of this experiment, if
the Micro:Bit fails to detect a new connection we will simply disconnect and reconnect the
devices until the connection is captured.

7.6.1.1 Installation and Preparation

Btlejack can be installed following the guide in [4]. We already have Python3 installed
in our system. Accordingly, we will use the following command to install Btlejack on the
syste,/

$ sudo pip3 install btlejack

The Micro:Bit device is connected to the host laptop via a USB cable. To load (install)
the BtleJack firmware on the Micro:bit, we run:

$ btlejack -i

The command will program the Micro:Bit with the correct firmware version for the current
client software. At this point we have our sniffer up and ready, so we will start sniffing the
packets on one of the Primary Advertising Channels.

7.7 Sniffing with Btlejack

To identify a BLE device, one has to capture the following: The advertising data that is
sent in the advertising packet (ADV IND); The channel map used by the Master device;
and the used hop interval. The Advertised data is a collection of advertising records, as
we have seen in Section 7.3.1.1. Each record contains a 1-byte length, 1-byte AD Type,

59

Sniffing BLE connections with Btlejack

Figure 7.12: Captured Packets for Heart-Rate Sensor

and up to 29-bytes data.
Sniffing a BLE packet can be of two types: sniffing new connections or an ongoing connec-
tion.

7.7.1 Sniffing new connections

Sniffing a BLE connection from the start is a straightforward task: One has to first wait on
one of the advertising channels (37, 38, or 39) for a CONN IND connection request packet;
then synchronize with both devices and use the provided parameters to follow and sniff
packets. Btlejack provides this via the -c option by specifying the target’s BD ADDR;
Btlejack will filter the connection requests and only sniff connections to this target. Another
option is to capture all newly created connections using -c any.

In Figure 7.13, we provide a capture for new connections in the surrounding environ-
ment. The first field represents Signal strength indication in dBm; the second field shows
the Access Address identifying a link between a connection pair; the last field defines the
number of received packets corresponding to the given Access Address. Figure 7.12 shows
captured packets only from the device with the following BD ADDR FD:ED:1D:5C:39:B6

(i.e., the heart-rate sensor). Unfortunately, we could not sniff the whole connection due to
resource limitations. The utilized Micro:Bit was unable to cope with the Central device
(i.e., the VIVO X60 smartphone) channel hopping, as the channel map changes regularly,
meaning that the Central device employs some SNR estimation to avoid congested chan-
nels. Therefore, we were only able to capture the connection initiation packets where after
that, the connection is lost. Then Btlejack starts sniffing from the beginning, as shown in
Figure 7.14.

60

Sniffing BLE connections with Btlejack

Figure 7.13: Finding Existing Connections

Figure 7.14: Btlejack Connection Lost Message

7.7.2 Sniffing an ongoing connection

In the case of an already established connection, we cannot capture the required parameters
from the CONNECT REQ PDU as the Master device has already sent it. The following
parameters should be calculated: CRCInit, channel map, hop interval and hop increment.
In the case of new connections, we have only provided the BD ADDR; in contrast, for sniff-
ing an ongoing connection, one has to provide the target’s connection Access Address.
For this to work and to know the target’s Access Address, we first have to use the Btlejack
-s option to listen to all the ongoing connections. Therefore we can target one device from
its connection Access Address. Once the target’s Access Address is determined, Btlejack
can be used with the -f (follow) option:

$ btleJack -f <access address>

Having set this, Btlejack will recover all the required parameters. However, as in the case
of sniffing new connections, the hardware limitation of the Micro:Bit makes this process
very slow and prone to errors.

61

Chapter 8

Conclusion and Prospective

In this chapter, we revisit our thesis questions. Likewise, we provide some suggestions to
the interested parties about Bluetooth weaknesses, based on our observations, in order to
improve the overall security of Bluetooth.

8.1 Conclusion and Prospective

In this thesis, we wanted to detail different Bluetooth security aspects, both for BR/EDR
and BLE; we have seen several studies uncovering threats and vulnerabilities and imple-
menting some attacks exploiting these vulnerabilities. With this knowledge of Bluetooth’s
security, we verified how even a tool with limited resources can be used to mount simple
attacks to users’ privacy. Following the same principle, BR/EDR is susceptible to such
attacks. We also discussed the advantages of sniffing the BLE Primary Advertising Chan-
nels with at least three Micro:Bits, or a more powerful SDR system covering the entire
spectrum of BLE. The adoption of such systems can be considered for future works on this
topic.

We have seen that it is a difficult task to have a secure Bluetooth device. Nevertheless,
as we have also seen, the Bluetooth SIG provided many ways to mitigate potential threats.
Therefore, high security can be achieved by employing all the security mechanisms pro-
vided by the Bluetooth core specification in the most current versions.

To have a secure data exchange, devices are recommended to perform bonding in order
to store the security materials (i.e., LTK and Link Key). The use of Legacy Pairing and
Just Works in both Pairing mechanisms must be avoided as it might expose the device’s
security. In contrast, devices should employ the Secure Connection mechanism which of-
fers the maximum availbe security. Furthermore, user’s privacy should be protected by
regularly activating the Privacy feature in BLE. The CTKD–Cross-Transport Key Deriva-
tion–feature can be a threat if one of the two Blueetooth systems (BR and BLE) utilizes
a weak security mechanism, allowing the attacker to breach the other system. Of course,
users must also take care of security themselves, because even the strongest passkey or PIN
is vulnearble to malicious visual eavesdropping.

62

Bibliography

[1] Mohammad Afaneh. INTRO TO BLUETOOTH LOW ENERGY. 2018.

[2] Bluetooth SIG. Generic Access Profile. https://www.bluetooth.com/specifications/
assigned-numbers/. Accessed: 2022-09-23. 2022.

[3] Damien Cauquil. You’d better secure your BLE devices or we’ll kick your butts. Tech.
rep. DEF CON 26, 2018.

[4] D. Cauquil. BtleJack: A new Bluetooth Low Energy Swiss-army knife. https://

github.com/virtualabs/btlejack. 2018.

[5] D. Cauquil. BtleJuice framework. https://github.com/DigitalSecurity/btlejuice.
2016.

[6] Developer Study Guide: Bluetooth Low Energy Security. 2021.

[7] Robin Heydon. Bluetooth Low Energy; The Developer’s Handbook. 2012.

[8] S lawomir Jasek. GATTacking Bluetooth Smart Devices. Tech. rep. SecuRing, 2016.
url: http://gattack.io/whitepaper.pdf.

[9] “Chapter 9 - Designing an Audio Application”. In: Bluetooth Application Devel-
oper’s Guide. Ed. by David Kammer et al. Burlington: Syngress, 2002, pp. 379–
417. isbn: 978-1-928994-42-8. doi: https://doi.org/10.1016/B978-192899442-
8/50012- 4. url: https://www.sciencedirect.com/science/article/pii/

B9781928994428500124.

[10] Y. Zhang; J.Weng; R. Dey; Y. Jin; Z. Lin; and X. Fu. “Breaking secure pairing
of Bluetooth Low Energy using downgrade attacks”. In: 29th USENIX Security
Symposium (2020), pp. 37–54. url: https : / / www . usenix . org / conference /

usenixsecurity20/presentation/zhang-yue.

[11] R. Cayre; F. Galtier; G. Auriol; V. Nicomette; M. Kaâniche; G. Marconato. In-
jectaBLE; INjecting malicious traffic into established Bluetooth Low Energy connec-
tions6. Tech. rep. Taipei (virtual); Taiwan: IEEE/IFIP International Conference On
Dependable Systems and Networks; DSN, 2021. url: https://hal.laas.fr/hal-
03193297.

[12] A.K. Das; P.H. Pathak; C.-N. Chuah; P. Mohapatra. Uncovering privacy leakage in
BLE network traffic of wearable fitness trackers. Tech. rep. Proceedings Of The 17th
International Workshop On Mobile Computing Systems and Applications, 2016. url:
https://dl.acm.org/doi/10.1145/2873587.2873594.

[13] Marco Cominelli; Francesco Gringoli; Paul Patras; Margus Lind; Guevara Noubir.
Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of
Bluetooth Classic Devices. Tech. rep. 2020. url: https://ieeexplore.ieee.org/
document/9152700.

63

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/
https: //github.com/virtualabs/btlejack
https: //github.com/virtualabs/btlejack
https://github.com/DigitalSecurity/btlejuice
http://gattack.io/whitepaper.pdf
https://doi.org/https://doi.org/10.1016/B978-192899442-8/50012-4
https://doi.org/https://doi.org/10.1016/B978-192899442-8/50012-4
https://www.sciencedirect.com/science/article/pii/B9781928994428500124
https://www.sciencedirect.com/science/article/pii/B9781928994428500124
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://hal.laas.fr/hal-03193297
https://hal.laas.fr/hal-03193297
https://dl.acm.org/doi/10.1145/2873587.2873594
https://ieeexplore.ieee.org/document/9152700
https://ieeexplore.ieee.org/document/9152700

BIBLIOGRAPHY

[14] Mike Ryan. Bluetooth: with low energy comes low security. Tech. rep. iSEC Partners,
2013. url: https://www.usenix.org/conference/woot13/workshop-program/
presentation/ryan.

[15] John Padgette; John Bahr; Mayank Batra; Marcel Holtmann; Rhonda Smithbey;
Lily Chen; Karen Scarfone. Guide to Bluetooth Security. NIST, National Institute of
Standards and Technology, 2022. doi: https://doi.org/10.6028/NIST.SP.800-
121r2.

[16] Bluetooth SIG. Bluetooth Core Specification. 2022. doi: https://www.bluetooth.
com/specifications/adopted-specifications.

[17] Pallavi Sivakumaran. “Security and Privacy in Bluetooth Low Energy”. PhD thesis.
Information Security Group; Royal Holloway University of London, 2021.

[18] Matthias Cäsar; Tobias Pawelke; Jan Steffan; Gabriel Terhorst. A survey on Blue-
tooth Low Energy security and privacy. Tech. rep. Rheinstraße 75, 64295 Darmstadt,
Germany: Fraunhofer Institute for Secure Information Technology SIT, 2022.

[19] Taher Issoufaly; Pierre Ugo Tournoux. BLEB: Bluetooth Low Energy Botnet for large
scale individual tracking. Tech. rep. 1st International Conference On Next Generation
Computing Applications (NextComp), 2017. url: https://www.overleaf.com/
project/62ff4672994575dc857f67b8.

[20] Wikipedia. Summation generator. url: https://en.wikipedia.org/wiki/Summation_
generato. (accessed: 25.08.2022).

64

https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://doi.org/https://doi.org/10.6028/NIST.SP.800-121r2
https://doi.org/https://doi.org/10.6028/NIST.SP.800-121r2
https://doi.org/https://www.bluetooth.com/specifications/adopted-specifications
https://doi.org/https://www.bluetooth.com/specifications/adopted-specifications
https://www.overleaf.com/project/62ff4672994575dc857f67b8
https://www.overleaf.com/project/62ff4672994575dc857f67b8
https://en.wikipedia.org/wiki/Summation_generato
https://en.wikipedia.org/wiki/Summation_generato

	Introduction
	Thesis Objectives
	Thesis Structure
	Bluetooth Technology Overview
	Brief History of Bluetooth

	Bluetooth BR/EDR: Architecture and Operations
	Bluetooth BR/EDR overview
	Bluetooth BR/EDR Architecture
	Controller
	 Host Controller Interface (HCI)
	Host

	Bluetooth Network Topology

	Bluetooth LE: Architecture and Operations
	What is Bluetooth Low Energy?
	BLE Architecture
	Physical Layer (PHY)
	Link Layer

	Bluetooth BR/EDR Security
	BR/EDR Security Overview
	BR/EDR Security Modes
	Security Mode-1
	Security Mode-2
	Security Mode-3
	Security Mode-4

	Pairing
	PIN/Legacy Pairing
	Secure Simple Pairing

	Link Key Establishment
	Legacy Pairing/PIN
	Secure Simple Pairing SSP

	Authentication
	Legacy Authentication
	Secure Authentication

	Confidentiality
	E0 Encryption Algorithm
	AES-CCM Encryption Algorithm

	Bluetooth LE Security
	BLE Security Overview
	BLE Security Modes
	Pairing
	Phase-1
	Phase-2
	Phase-3

	Confidentiality
	Encryption

	Cross-Transport Key Derivation (CTKD)
	BR/EDR link key from BLE LTK
	BLE LTK from BR/EDR link key

	Privacy

	Vulnerabilities and Attacks
	Vulnerabilities
	BR/EDR
	BLE
	Other Vulnerabilities

	Attacks
	Unauthorized Acquisition of Data
	Spoofing
	Denial of Service (DoS)
	Privacy attacks

	Sniffing BLE connections with Btlejack
	Introduction
	BLE Advertising Packets
	 BLE Advertising PDU Header

	BLE Advertising State
	ADV_IND

	BLE Scanning State
	Scanning Parameters

	BLE Connection State
	CONNECT_IND

	Btlejack
	Experimental setup

	Sniffing with Btlejack
	Sniffing new connections
	Sniffing an ongoing connection

	Conclusion and Prospective
	Conclusion and Prospective

