
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea in
Ingegneria Informatica

Relazione Finale
Analysis and Characterization of Wi-Fi

Channel State Information

Relatori: Prof. Renato Lo Cigno
Dott. Lorenzo Ghiro

Laureanda:
Elena Tonini

Matricola n. 727382

Anno Accademico 2021/2022



Sommario

Questa tesi è una relazione sull’analisi di Wi-Fi Channel State Information

(CSI) — ossia Informazioni sullo Stato di un Canale Wi-Fi — che mira a

caratterizzare il canale wireless e fornirne un modello matematico, lavorando

sulla scala temporale della trasmissione di trame di traffico e non dei singoli

simboli che compongono la trasmissione delle trame.

Le CSI permettono di derivare una descrizione ad alto livello del compor-

tamento di un segnale che si propaga da un trasmettitore a un ricevitore. Esse

possono essere utilizzate per effettuare ambient sensing, una tecnica che per-

mette di estrarre da un canale wireless alcune informazioni relative all’ambiente

in cui si propaga il segnale. L’ambient sensing ricopre già un ruolo essenzia-

le nello sviluppo di nuove reti wireless : ad esempio, le reti 5G New Radio e

Beyond 5G lo impiegano quando effettuano Joint Communication and Sen-

sing — letteralmente: Comunicazione e Rilevamento Congiunti — e quando

ottimizzano la propagazione del segnale attraverso beamforming.

Nonostante l’uso diffuso dell’ambient sensing, vi è ancora una mancanza

di ricerca relativa alla caratterizzazione dei canali wireless quando si tratta

di utilizzarli per scopi diversi dalla sola comunicazione, quindi su una scala

temporale più lunga della trasmissione di una sequenza di simboli.

Questo lavoro analizza la struttura delle tracce CSI raccolte in un labora-

torio e ne descrive il comportamento così da fornire un’interpretazione mate-

matica che possa essere utilizzata per modellizzare l’impatto delle variazioni

ambientali sul segnale.

Il modello ottenuto può contribuire a migliorare gli aspetti tecnici dell’im-

plementazione di Joint Communication and Sensing nelle nuove reti, in modo

che sia possibile sfruttare efficacemente le proprietà dei canali per raggiungere

gli obiettivi che le tecnologie future fisseranno.
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Summary

This thesis is a report on the analysis of Wi-Fi Channel State Information (CSI)

aiming at characterizing the wireless channel and providing a mathematical

model for it working at the timescale of frame transmission.

Channel State Information allows a high-level description of the behaviour

of a signal propagating from a transmitter to a receiver. It can be used to

perform ambient sensing, a technique that extracts relevant information about

the surroundings from the signals received. Ambient sensing can already play

an essential role in the development of new wireless networks: for instance, 5G

New Radio and Beyond 5G networks use it when performing Joint Commu-

nication and Sensing and when optimizing signal propagation through beam-

forming.

Despite the widespread use of ambient sensing, there is still a lack of re-

search about the characterization of wireless channels when it comes to using

them for purposes other than communication alone, especially focusing on a

timescale longer than the typical signal and symbol analysis.

This work analyzes the structure of CSI traces collected in a laboratory

and describes their behaviour so as to provide a mathematical interpretation

for it that can be used to model the channel at the frame level.

The obtained model can help improve the technical aspects of the imple-

mentation of Joint Communication and Sensing in future networks so that it

will be possible to efficiently take advantage of the properties of the channels

to fulfil the goals that upcoming technologies will set.
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1 Introduction

With the development and evolution of 5G networks and the ongoing research

dedicated to future generations of wireless networks, the importance of guar-

anteeing both adequate coverage and the high bit rates promised to the users

has become more and more relevant.

To improve the performance of Fifth (and later) Generation networks, re-

searchers have intensified their focus on what is known as Channel State In-

formation or CSI.

CSI is the information that allows the description of the behaviour of a

signal propagating from a transmitter to a receiver. Newly-developed tech-

nologies benefit from its use when it comes to channel equalization and the

implementation of Multiple Input Multiple Output (MIMO) techniques.

Moreover, CSI can be used to perform ambient sensing, a technique that

extracts relevant information about the surroundings and the environment

where the signal propagation occurs. The information contained in the CSI

depends on the behaviour of the signal because it varies depending on how

the signal itself is reflected, scattered, and absorbed by the objects in the

environment.

Through the analysis of the content of a CSI trace, we can reconstruct the

static structure of the environment (i.e., the precise location of furniture and

other appliances) as well as its dynamic entities (e.g., location and movements

of the people in the environment). It is also possible to locate the devices

situated in the environment.

Knowing that all surfaces and objects somehow interact with the signal
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propagation by reflecting, scattering, and absorbing it, thus altering the con-

tent of the collected CSI, it is no surprise that it is possible to perform sensing

to locate people in the environment even though they do not carry commu-

nication devices. To do so, only a fixed transmitter is needed, besides clearly

the sensing receiver that analyzes the CSI. The transmitter and the sensing

receiver must be fixed, because otherwise their movement would change the

CSI, hiding the modifications induced by the ambient. Because the human

body itself acts as an obstacle to signal propagation at high frequencies, when-

ever there is a person in the area covered by propagation, the content of the

CSI gets modified according to the physical interaction between the signal and

that person’s body. This phenomenon gives an observer the chance to ob-

tain relevant information on where people are in the room based solely on the

properties that the signal displays at the receiver.

Although the final goal is to be able to perform ambient sensing anywhere

and with any new wireless technology, there have not yet been relevant studies

on CSI either taking place outdoors or using wireless communication technolo-

gies other than Wi-Fi (such as Long Term Evolution or 5G). Nonetheless, there

is no reason why performing ambient sensing using Channel State Information

should not be possible in outdoor environments or with technologies different

from Wi-Fi. In fact, 5G New Radio and Beyond 5G networks use ambient

sensing when performing what is known as Joint Communication and Sensing

(JCAS), which is a staple for new services.

Right now, capture and analysis of CSI can already find multiple useful ap-

plications and actually play an essential role in the technological development

of wireless networks.

The ability to perform ambient sensing alongside communication is an in-

teresting property for all mobile communication networks using high frequen-

cies (such as 5G, whose lowest frequency range starts as low as 600 MHz).
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Whereas up to 5-6 GHz there are no difficulties linked to the use of omnidirec-

tional antennae and Line of Sight (LoS) between antenna and receiver is not

strictly required, it is impossible to have efficient transmitters at much higher

frequencies without applying beamforming.

Beamforming is a technique that makes it possible to increase the direction-

ality of the transmitter radiation pattern to cover a specific geographical area

where the targeted receiver is. At high frequencies (20-30 GHz and higher)

Non-Line of Sight (NLoS) communications are impossible to obtain, meaning

that beamforming is required to compensate for the signal attenuation intro-

duced by such frequencies. Without implementing beamforming, under these

conditions, it would be both expensive and technologically challenging to pro-

vide network coverage to the whole area, as we would need to guarantee LoS

between any antenna and any receiver. Instead, thanks to ambient sensing, it

is possible to identify obstacles that would obstruct signal propagation, thus

facilitating beam steering or allowing to move the transmission to a better-

placed transmitter, avoiding a loss in the quality of service.

The two functionalities involved in JCAS are combined to provide sup-

port in multiple contexts other than wireless communication. For instance,

JCAS can find many applications in autonomous vehicle networks - where

sensing of the environment plays a key role in identifying obstacles and safely

modifying the trajectory of vehicles -, robot movements management, motion-

based device (de)activation in smart homes, and sensor-based in-home health

monitoring. This leads to the possibility of employing JCAS in Beyond 5G

networks to create holographic and multi-sense communications, connectivity

for all things, and time-sensitive applications requiring high data rates [1]–[3].

Considering the benefits brought by the possibility of performing both sens-

ing and communication simultaneously, studies are being conducted aimed at

designing JCAS systems that can support both features and are able to perform
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them using shared frequency band and hardware devices — thus improving

spectrum efficiency and reducing hardware cost [4], [5].

As happens with all technological innovations, the risk of their exploitation

for malicious purposes has to be taken into consideration when studying the

applications of CSI analysis; however, by expanding the studies on the extrac-

tion of information about the environment through a Wi-Fi connection, we

can develop new ways of securing the users’ privacy.

The exploitation of Wi-Fi communications to extract information about

the environment can lead to the users being in a vulnerable position, given

that they cannot defend themselves from possible attacks that would violate

their privacy, such as unauthorized sensing of their location or specific move-

ments. This is why research has been and is currently being conducted on the

development of strategies that can be used to prevent such violations of the

users’ privacy. Some strategies that have been studied include jamming signals

to make it hard for a malicious user to obtain relevant information from CSI

or obfuscating the sensitive information carried by it [6].

To this day, sensing is efficiently achieved only through Artificial Intelligence

and Machine Learning techniques, but there is a lack of research about the

characterization of wireless channels when it comes to using them for purposes

other than communication itself: thanks to an effective channel characteriza-

tion, it would be possible to obtain valuable and interesting information from

sensed data and elaborate it to make JCAS more efficient. Moreover, it would

be possible to provide new insights that could improve the efficiency of mech-

anisms aimed at enhancing users’ privacy.

This thesis’s goal is to analyse the behaviour of a Wi-Fi channel used for

sensing and define its mathematical and, most importantly, statistical charac-

terization.
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2 Motivation and Goals

As seen in Chapter 1, whereas communication — as one can expect — has

always been the principal goal of telecommunication networks, the possibility

of performing sensing in parallel to it has only more recently been discovered

in its full potential, so much so that ambient sensing is already seen as a

fundamental feature for 5G New Radio and Beyond 5G wireless networks.

Alongside the rapid evolution of new wireless networks, new privacy issues

linked to their possible weaknesses arise. Researchers aim at studying the

functionalities of the networks and, at the same time, help prevent future

innovative ways to attack them by creating appropriate means and tools that

could improve protection.

This thesis focuses on deepening our understanding of how ambient sensing

works in Wi-Fi networks, paving the road to future research aimed at enhanc-

ing the features of such networks and encouraging their implementation in

upcoming technologies. Simultaneously, we would like to help prevent these

technologies from falling victim to newly-developed attacks that could violate

ethical and legal boundaries.

Surprisingly enough, to this day, no relevant study has been performed yet

on the structure and behaviour of a Wi-Fi channel when it is used for sensing;

there is an almost complete absence of scientific literature and documenta-

tion about such research. All experiments and implementations of localization

systems are currently performed through Artificial Intelligence and Machine

Learning techniques; very little interest has been shown regarding the structure

of the underlying problem that convolutional networks are asked to solve.
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As effective as they are, current applications of JCAS do not take into

consideration the characteristics of the wireless channel when it is used for

sensing. Having a mathematical and, most importantly, statistical description

of how the channel behaves could simplify the research for new ways to protect

users’ privacy as well as provide meaningful insights on the specific aspects of

how new high-performance networks work.

Through the analysis of Wi-Fi CSI, we expect to identify patterns or reg-

ularities in trace behaviour. Our goal is to describe the channel as it is used

while performing sensing so that, based on the outcome derived from sampled

data, we can provide a reusable, mathematically simpler model; essentially, we

want to identify a known statistical distribution whose behaviour corresponds

to that of the channel.

This model could be seen as a benchmark for future developments: it

could then be used for different purposes, going from its concrete employment

in applications used to detect the presence of a person within an environment

— which would be the same as performing ambient sensing backed up by a

mathematical model — to the generation of artificial traces comparable to

those empirically collected. The ability to artificially engineer traces opens

the possibility for experimentation and testing of how the parameters of the

distribution that describes the channel influence the transmission itself, allow-

ing researchers to alter such parameters and immediately see the consequences

without needing to test their physical implementation.

These considerations lead us to believe that conducting this study could sig-

nificantly contribute to research in this field and provide valuable results that

could be employed to ensure the validity of the mathematical or statistical

models underlying future experiments and new technologies implementations.
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3 Wi-Fi fundamentals

Knowing that this thesis focuses on the analysis of Wi-Fi CSI, it is appropriate

to provide a summary of its technical aspects before delving into our analysis.

Wi-Fi is now renowned as one of the most widespread means of wireless connec-

tion; as a matter of fact, it cannot properly be considered a technology per se

because it is in fact a trademark applied to different devices by their manu-

facturers to guarantee interoperability. Regardless, Wi-Fi is tied to the IEEE

802.11 standard inseparably, as the IEEE standard serves as a foundation for

wireless network devices associated with the Wi-Fi brand.

IEEE 802.11 is the standard for wireless LANs (Local Area Networks) or

WLANs. It belongs to the same family of standards as Ethernet (IEEE 802.3)

and relies upon a set of Medium Access Control (MAC) and Physical Layer

(PHY) specifications that describe the implementation of WLANs. Different

modulation techniques are implemented in the various versions of the 802.11

standard, although they are all derived from the same basic protocol. The

protocol version used to sample the datasets in our study is 802.11a/g. Still,

an 802.11ax trace with an 80 MHz channel width was used too to explore if

CSI characterization is version-dependent or can be generalized.

3.1 802.11a/g Packet Format

A generic 802.11a/g packet is made of two main sections: a preamble and a

payload. The preamble contains information that allows time and frequency
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synchronization and channel estimation, together with some data regarding

payload length and rate of the transmission. Essentially, the preamble contains

information describing how to decode the content of the payload [7].

The following diagram features an outline of the packet structure.

STF
2 symbols

LTF
2 symbols

Signal
1 symbol

Data
N symbols

The preamble consists of the first three fields:

• STF (Short Training Field): contains initial information that allows

synchronization and frequency tuning

• LTF (Long Training Field): contains more precise information allow-

ing synchronization, frequency tuning, and channel response estimation

• SIGNAL: 24 bits of configuration data needed to correctly interpret the

payload content. They are divided in:

– RATE: 4 bits used for forward error correction (or channel coding, a

technique used in case of an unreliable or disturbed channel to cor-

rect errors in the received data without the need for re-transmission)

and modulation

– LENGTH: 12 bits that specify the length of the payload in bytes

– PARITY: 1 parity bit calculated on RATE and LENGTH

– TAIL: 7 bits used for SIGNAL symbol forward error correction de-

coding

The field named Data is the actual packet payload, corresponding to the user’s

data that we want to send over the channel.
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As one can expect, with the different versions of the 802.11 standard comes

a variety of Physical Layer Modulation techniques, whose characteristics de-

termine how the user’s data get sent over the channels. The more recent the

version of the protocol, the higher data rates the chosen modulation technique

allows.

Standard 802.11a/g uses OFDM (Orthogonal Frequency-Division Multi-

plexing) modulation technique.

3.2 Modulation techniques and OFDM

Modulation is a procedure that allows the mapping of information on a physical

dimension.

The easiest way to perform modulation is amplitude modulation, which

consists of mapping the information on the amplitude of the chosen dimension

(e.g., mapping binary values onto voltage values).

If we increase the number of physical dimensions to map information onto,

we can change the logic behind modulation and switch to a phase modulation.

The name suggests that it was introduced based on a complex electromagnetic

unit; it represents information using the phase of the exponential of the com-

plex value. Phase modulation is obtainable by combining two non-interfering

dimensions: such dimensions are orthogonal, meaning that their scalar prod-

uct equals zero, which allows their representation on a Cartesian plane defined

as the signal space.

Mapping onto more than two linearly independent dimensions is possible:

in this case, the representation of the values depends on phase and ampli-

tude on both Cartesian axes; this modulation technique is called Quadrature

Amplitude Modulation (QAM).

OFDM is a multi-carrier modulation and multiplexing system that trans-
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mits a data stream as multiple orthogonal narrowband signals named sub-

carriers [8], each of them using QPSK (Quadrature Phase Shift Keying — i.e.,

Phase Modulation) or QAM modulation.

Two main advantages come from using OFDM:

• In case of a disturbed channel, interference, noise or fading phenomena

only affect a portion of the sub-carriers without impairing the whole

communication process

• It gives the possibility to reduce used bandwidth by partially overlapping

adjacent sub-carriers.

To avoid interference from adjacent sub-carriers without adding a guard band

between them, it is a fundamental requirement that the sub-carriers are math-

ematically orthogonal. If the symbol period is T , the sub-carriers are linearly

independent if spaced by a multiple of 1/T . If the sub-carriers are spatially

distributed this way, we obtain that their combination shows sub-carrier nulls

in correspondence to peaks of adjacent sub-carriers. This phenomenon only

occurs if the sub-carriers are orthogonal and implies the removal of inter-carrier

interference. This phenomenon is visually described in Figure 3.1.

Figure 3.1: Visual representation of sub-carriers orthogonality
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3.3 802.11ax Standard Version

Version 802.11ax is a version of IEEE 802.11 whose implementation grants the

users a higher throughput compared to previous versions of the same standard

[9].

The main advantage brought by this standard is its usability in outdoor

and indoor environments characterized by a large number of users, such as sta-

diums, airports, train stations, etc. This feature depends on the introduction

of Uplink Multi-User MIMO and OFDMA (Orthogonal Frequency-Division

Multiple Access), a channel access technique that can be interpreted as an

evolution of OFDM.

Despite the introduction of the Uplink Multi-User operation mode, 802.11ax

still maintains the legacy Single-User mode active. When operating in Multi-

User mode, multiplexing can be performed in two different ways:

• MU-MIMO: when used in Downlink, beamforming techniques are em-

ployed to direct packets simultaneously to users in different locations,

which is why this technique is also known as spatial multiplexing. When

used in Uplink, spatially separate users request channel access by send-

ing a trigger frame; this is followed by a response from the Access Point,

after which users can finally send their packets over their channel.

• OFDMA: by extending the way OFDM works, OFDMA allocates Re-

source Units (RUs) to the users for a limited time. Essentially, it divides

the channel into sub-channels, each having its assigned sub-carriers, al-

lowing the users to send their packets on a specific sub-channel for a

designated amount of time. The minimum dimension of a sub-channel

(i.e., the single RU) that can be used for transmission is a set of 26 sub-

carriers. According to the specific needs, the whole channel can be either
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allocated in its entirety to a single user or partitioned into sub-channels

whose RUs are allocated separately.

The structure of a generic 802.11ax frame used in Single User mode respects

the following model [10]:

Legacy preamble RL-
SIG

HE-SIG
HE-
STF

HE-
LTF

HE-
Data

Packet
Extension

The content of the Legacy preamble is there to guarantee backwards com-

patibility with previous versions of the protocol. The structure of this preamble

is the same as that of the 802.11a/g packet preamble.

RL-SIG (Repeated Legacy Signal) field is used to repeat the content of

the SIGNAL field of the Legacy preamble.

The rest of the preamble consists of fields whose names start with HE (High

Efficiency): these fields can only be decoded by 802.11ax devices; their

content is equivalent to that of the fields listed in Section 3.1, only in a different

order. The HE-Data field contains the actual user’s data and is followed by a

Packet Extension field.

When used in Multi-User mode, the packet takes on the following structure,

which is only slightly different from the Single-User mode packet structure:

Legacy
preamble

RL-
SIG

HE-SIG-
A

HE-SIG-
B

HE-
STF

HE-
LTF

HE-
Data

Packet
Extension

In this case, HE-SIG-B is introduced to the sole scope of managing Multi-

User communication, whereas the remaining fields stay the same as in Single-

User mode.

3.4 Wi-Fi Channel Frequency and Bandwidth

Together with the modulation technique, it is necessary to specify the channel

frequency and bandwidth used in standards 802.11a/g and 802.11ax.
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Most versions of the 802.11 standard utilize the 2.4 − 2.5 GHz spectrum

or the 4.915 − 5.825 GHz band, which are often more simply referred to as

the 2.4 GHz and the 5 GHz frequency bands. Both spectra are divided into

multiple channels characterized by a centre frequency. The number of channels

significantly differs depending on the selected spectrum.

When the 802.11 standard was first released, all channels had 20 MHz

bandwidth; later, 40 MHz and 80 MHz bandwidths were introduced. Specif-

ically, the 80 MHz bandwidth can be obtained by juxtaposing two adjacent

non-overlapping 40 MHz channels.

The 2.4 GHz frequency band is subdivided into 14 channels, whereas the

5 GHz band has a more complicated partition because regulations vary from

one Nation to another, causing the channels not to be utilizable the same way

in all Countries.

Both standards we employ in our study can work on either the 2.4 GHz or

the 5 GHz frequency band.

When using 802.11a/g, we utilize channel 157 at 5 GHz with 20 MHz

bandwidth, whose centre frequency is 5785 MHz; channel 157, in Europe, can

only be used with a 20 or 40 MHz bandwidth for Short Range Devices (SRD),

whose allowed highest power level is 25 mW [7].

In this thesis, we will write 802.11a instead of 802.11a/g, given that this

is the protocol that describes the 5 GHz spectrum, which is the only band we

use empirically. Contrarily, 802.11g is dedicated to characterising the 2.4 GHz

band.

3.5 CSI Structure

In Wi-Fi systems using OFDM modulation, every sub-carrier Channel State

Information can be mathematically represented by a complex number using
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the following mathematical formula [11]:

H(k) = ||H(k)||ej∠H(k) (3.1)

In this formula, H(k) is a CSI of the k-th sub-carrier, ||H(k)|| corresponds to

its amplitude and ∠H(k) to its phase.

As one can imagine, Formula 3.1 is equivalent to:

H(k) = ||H(k)||(cos(∠H(k)) + j sin(∠H(k))) (3.2)

Depending on the activity performed in the environment where the CSI is

captured, ||H(k)|| and ∠H(k) take different values: based on their variations,

the graphs showing CSI amplitude and phase will present a unique pattern

that depends on the detected activity.

An example of this variation can be seen by comparing Figure 3.2 and

Figure 3.3. The two figures represent the amplitude of CSI traces collected

on sub-carriers on channel 157 at different times during the day with a person

standing in two different spots within the same environment.

In Figures 3.2 and 3.3 we consider the different sub-carriers (i.e., the dif-

ferent frequencies) on the x axis and the packets sent over time on the y axis.

Sub-carrier and packet numbers are indicated on the axes. As shown by the

legend on the right side of the graphs, different colours indicate different am-

plitudes: a lighter colour (i.e., closer to lime green) indicates a lower value of

the amplitude, whereas a darker colour (i.e., closer to blue) indicates a higher

value.

Remarkably, the amplitude of both CSI traces shows an overall somewhat

constant behaviour when observed in its evolution in time, but it notably

changes if observed on the frequencies. Moreover, it can be noticed that the

amplitude significantly varies when the person moves from one spot to another.
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Figure 3.2: CSI amplitude relative to a trace collected with a person standing
still within the environment

Figure 3.3: CSI amplitude relative to a trace collected with a person standing
still in a different spot than Figure 3.2 within the environment
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4 CSI Traces Collection

The CSI traces that we work on in this study have been collected in the

indoor laboratory within the Department of Information Engineering at the

University of Brescia. All those collected on the 802.11a channel were sampled

on February 24th, 2022, whereas the 802.11ax trace was sampled on July 14th,

2022.

Most CSI traces are extracted from OFDM-modulated Wi-Fi frames trans-

mitted over a channel regulated by the 802.11a protocol. The used channel is

channel 157 within the 5 GHz frequency band with 20 MHz bandwidth. A CSI

trace is also collected on an 80 MHz bandwidth channel regulated by 802.11ax

protocol.

The traces have been extracted using Nexmon Channel State Information

Extractor [12], [13]. All frames in the traces collected on channel 157 consist

of 316 bytes and are sampled over nearly 18 seconds, depending on the number

of frames in each trace. Instead, the trace collected on the 80 MHz bandwidth

channel is much shorter and consists of only 1,825 packets.

The analyzed traffic is generated by a board communicating with a re-

ceiving device: Figure 4.1 displays a map of the laboratory settings where all

device locations are indicated.

Let us consider the following landmarks to facilitate location identification

of the used devices:

• Corner 0 (c0): lab corner adjacent to the door

• Corner 1 (c1): lab corner straight ahead of the door
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Figure 4.1: Map of the laboratory — Image taken from [14] with permission
from the authors

• Corner 2 (c2): lab corner diagonally opposite Corner 0

• Corner 3 (c3): lab corner diagonally opposite Corner 1

The devices to generate, receive, and collect traffic are thus placed:

• Board (Transmitter): two metres away from Corner 0 along wall c0 - c1

• Receiver: halfway along wall c0 - c3, about three metres from the board

• Three Collectors: evenly distributed along wall c2 - c3

• Fourth Collector: two metres away from c1 along wall c1 - c2

The traces have been collected with a person standing still in eight different

spots within the laboratory, all of which can be identified in Figure 4.1 as they

are indicated by the letter P followed by a number from 1 to 8.

The data have been collected by Professor Francesco Gringoli, Dr Lorenzo

Ghiro, and Dr Marco Cominelli.
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5 Traces Analysis

Our examination of CSI traces is performed separately trace by trace, to mon-

itor their behaviour and detect possible inconsistencies or mistakes as we go.

As we have already seen using Equation 3.1, a CSI is nothing but a complex

number, therefore it can be described by amplitude and phase. The focus

of our analysis of CSI traces is strictly on the behaviour of trace amplitude

values; future research may lead to more in-depth studies on the evolution

and behaviour of CSI phases too, but this ulterior analysis currently goes

beyond the scope of this thesis. To this day, existing scientific literature has

always been centred on amplitude analysis because it is the most widespread

means of characterization of the channel and the environment, as it carries the

most relevant pieces of information that allow location identification within an

environment [15]–[18].

Despite their predictable and undeniable importance, phase values of CSI

traces have been left out of our analysis because they have not yet been used

in meaningful studies to characterize the channel and extract features from the

surroundings.

It should be noted that all plotting and data processing has been performed

on the datasets obtained from capturing CSI traces on the 80 MHz bandwidth

802.11ax channel and the 20 MHz bandwidth 802.11a channel.

The structure of the code that was used to carry out this analysis is sum-

marized in Appendix A, where we also provide brief code documentation.

Of course, it would not be feasible to show all the graphs that have been

plotted during this study. Nonetheless, it should be noted that, every time
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graphs were produced, they were generated for all sub-carriers. The graphs

presented in this thesis display the index of the corresponding sub-carrier (SC)

in their title.

5.1 Amplitude Evolution In Time

From every CSI trace, we extract the values of the amplitude of the pack-

ets sent on each sub-carrier (256 sub-carriers for the data collected on the 80

MHz bandwidth channel, 64 sub-carriers for those collected on the 20 MHz

one). Some sub-carriers have been discarded as they are not used for modu-

lation; trying to fit a statistical distribution on data that do not derive from

transmitted information would produce unreliable and incorrect results.

The initial objective is to verify whether there is any correlation in time

between the amplitudes of packets sent on the same sub-carrier. As the first

step in our analysis, we plot graphs showing the amplitude evolution in time:

on the x axis we use time as the unit of measurement, whereas on the y axis

we present the amplitude variations.

We consider this process as having discrete time values because each packet

is separated from the previous and the following one by a time interval. Con-

sidering that the frames we work on have been collected in bursts, the distance

between consecutive packets belonging to the same burst is very short (about

1 ms). For a perfectly precise evaluation of the behaviour of the channel, we

would have to consider the time of arrival of each received packet and examine

how the system behaves between consecutive packets while no data transmis-

sion takes place.

Some examples of the resulting graphs can be seen in Figures 5.1, 5.2, and

5.3.

The fluctuations displayed in the graphs in Figures 5.1, 5.2, and 5.3 may
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Figure 5.1: Time evolution of packets amplitude on an 80 MHz bandwidth
802.11ax channel
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Figure 5.2: Time evolution of packets amplitude on a 20 MHz bandwidth
802.11a channel
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Figure 5.3: Time evolution of packets amplitude on a 20 MHz bandwidth
802.11a channel - Data taken from a different trace than Figure 5.2

be due to the short period for which the sub-carriers have been observed on

both the 80 MHz bandwidth 802.11ax and the 20 MHz bandwidth 802.11a

channel. The CSI traces collected on both channels are too short to allow

accurate observations of the long-term characteristics of the process. We can

also observe how, in most instances, the trend eventually tends to stabilize and

show a more constant behaviour; this leads us to think that indeed observing

this process only for as long as it takes to transmit a few thousands of packets

is too short an observation time.

Such a limited time range does not allow a thorough analysis because,

although the process seems stationary, there are not enough packets to prove

it with absolute certainty. Longer traces would let us estimate the stationary

nature of the amplitude variations more confidently.

The unusual fluctuations visible in Figure 5.3 may also be due to the pres-

ence of Automatic Gain Control (AGC) at the receiver, which moves the ob-

— 21 —



served frequencies into the desired range. Unfortunately, it is not possible to

alter the operation performed by AGC, meaning that we cannot control its

influence on the received data.

Our stationarity hypothesis is proven by considering the packet ampli-

tudes collected on each sub-carrier separately and calculating their mean value.

Then, sub-carrier by sub-carrier, we divide each dataset into multiple batches

of the same length and calculate their mean value. To ensure stationarity,

we set a limit so that any variation of a batch average from the correspond-

ing dataset mean value does not cause the process to be discarded as non-

stationary if it takes place within the imposed range. The 10% limit we use

to tell stationary and non-stationary processes apart is based on empirical

measures.

If a stationary process is involved, the average of a sample has the same

value, whether it be calculated on the whole dataset using Equation 5.1 or

computed in batches by splitting the sample of dimension n into k smaller

subsets. The two versions of the operation are allowed by the linearity of the

average operator. The second way of calculating the average of a dataset can

be implemented using Equation 5.2.

X =
n∑

i=1

xi

n
=

1

n

n∑
i=1

xi (5.1)

X =
1

k

k∑
i=1

k

n

n/k∑
j=1

x(ki+j)

 =
1

k

k∑
i=1

[
k

n
Xi

]
(5.2)

Although non-stationary according to the imposed limit in our study, some

processes are plotted anyway, because identifying the “anomalies” and the sub-

carriers on which they occur can still provide some interesting insights.

Aside from the analysis of the amplitude evolution on the single sub-carrier,
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we can also see that, although the considered sub-carrier changes significantly,

the trend followed by amplitudes remains consistent: some minor variations

occur that clearly depend on the used sub-carrier, but we can identify some

features that stay more or less unaltered.

In Figure 5.1, we can see that all graphs have a local minimum around

packet 1,000, just like there is a downward trend followed by an upward one

after packet 1,250, regardless of the considered sub-carrier. Similarly, in Figure

5.2 we can spot some shared key features: all graphs have a downward trend

in the first 1,000 packets, followed by a local maximum around packet 2,000,

after which some fluctuations take place, while later on the trend tends to

stabilize.

It is significant to specify that these characteristics are not proper only

to the CSI traces displayed in this thesis but, albeit different from the ones

described above, multiple features can be identified in other CSI traces showing

similar trends on different sub-carriers. As one can imagine, it would not be

feasible to show all the graphs that have been plotted during this study.

These considerations lead us to think that there may be a form of correla-

tion that goes beyond time correlation alone: the graphs are often qualitatively

similar even though the sub-carriers they refer to are not adjacent, therefore

it would be interesting to search for more regularities in their behaviours. A

meaningful representation of how closely comparable the graphs of adjacent

sub-carriers are is shown in Figures 5.4, 5.5, and 5.6.

Given these observations, it is likely that CSI amplitudes are subject to a

time-frequency correlation rather than time correlation alone. We leave the

study of this more complex dependency for future research, limiting ours to

the analysis of time correlation on the individual sub-carrier.

— 23 —



0 250 500 750 1000 1250 1500 1750
Packet

800

850

900

950

1000

M
ag

ni
tu

de

SC193

0 250 500 750 1000 1250 1500 1750
Packet

825

850

875

900

925

950

975

1000

1025

M
ag

ni
tu

de

SC194

0 250 500 750 1000 1250 1500 1750
Packet

825

850

875

900

925

950

975

1000

1025

M
ag

ni
tu

de

SC195

0 250 500 750 1000 1250 1500 1750
Packet

850

875

900

925

950

975

1000

1025

M
ag

ni
tu

de

SC196

Figure 5.4: Time evolution of packets amplitude on an 80 MHz bandwidth
802.11ax channel
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Figure 5.5: Time evolution of packets amplitude on a 20 MHz bandwidth
802.11a channel
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Figure 5.6: Time evolution of packets amplitude on a 20 MHz bandwidth
802.11a channel - Data taken from a different trace than Figure 5.5

5.2 Amplitude Relative Frequency Observation

The packet amplitudes on the different sub-carriers can be shown using his-

tograms having amplitude on the x axis and its relative frequency on the

y axis. Some examples of histograms derived from data collected using the

80 MHz bandwidth 802.11ax channel are showcased in Figure 5.7: every graph

is relative to the subcarrier specified in its title.

Further examples of histograms derived from data collected using the 20

MHz bandwidth 802.11a channel are shown in Figures 5.8 and 5.9.

By normalizing the plotted amplitudes, as has been done in Figures 5.7,

5.8, and 5.9, we obtain a histogram showing their distribution, which allows us

to provide a first hypothesis on the family of statistical distributions that could

fit our data. We clearly see that, although the considered sub-carrier changes

significantly, the distributions of the normalized frequencies of the amplitudes
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Figure 5.7: Relative frequency of packets amplitude on an 80 MHz bandwidth
802.11ax channel
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Figure 5.8: Relative frequency of packets amplitude on a 20 MHz bandwidth
802.11a channel
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Figure 5.9: Relative frequency of packets amplitude on a 20 MHz bandwidth
802.11a channel - Data taken from a different trace than Figure 5.8

do not differ substantially. This contributes to reinforcing the idea that an

analysis of a very likely time-frequency correlation is the natural continuation

of this study and it would be interesting to see it carried on in future research.

Rather than only analyzing amplitude relative frequency, which does not

let us understand the properties of the process in their entirety, we also take

into consideration the increments of the amplitude on each sub-carrier. This

part of the analysis is further investigated in Section 5.3.

5.3 Amplitude Increments and Auto-Correlation

To calculate the values of the increments, we simply subtract the amplitude

of packet i − 1 from the amplitude of packet i. This way, we are left with a

set of values that can be plotted using histograms that show the distribution

of the increments.

The value X of the amplitude associated with the i-th packet on each sub-
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carrier depends on the value of the amplitude of the previous packet (packet

i− 1) and a variable increment I, according to Equation 5.3:

Xi+1 = αXi + Ii (5.3)

If α = 1, the process whose amplitude values are described by Equation

5.3 has no memory: this means that predictions can be made about the next

amplitude value based solely on the present state. Moreover, any prediction

has the same probability of being accurate, whether it is based on the current

state or the system’s history. A process that displays this property is known

as a Markovian process and is also characterized by the property of “memory-

lessness”. In essence, the value of the amplitude of packet i+ 1 depends only

on the amplitude of packet i and not on the amplitude of packets i− 1, i− 2,

and previous ones.

We plot a histogram of the amplitude increments for each sub-carrier (ex-

cluding those not used for modulation). Some of these graphs are shown in

Figures 5.10, 5.11 and 5.12: the sub-carrier each graph refers to is indicated

in the title of the graph.
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Figure 5.10: Distribution of the increments of packets amplitude on an 80 MHz
bandwidth 802.11ax channel
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Figure 5.11: Distribution of the increments of packets amplitude on a 20 MHz
bandwidth 802.11a channel
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Figure 5.12: Distribution of the increments of packets amplitude on a 20 MHz
bandwidth 802.11a channel - Data taken from a different trace than Figure
5.11. Data may be subject to AGC that generates the two smaller peaks on
the sides of the one centred in zero.

These histograms highlight that the mean value of the increments calcu-

lated sub-carrier by sub-carrier is close to 0 and that the increments are dis-

tributed symmetrically to the y axis, suggesting that the process described by

these increments may be Markovian.

To practically prove the hypothesis enunciated above, we calculate and plot

the values of the auto-correlation.

Given a dataset {xi} of size n, we limit the τ variation to a reasonable finite

value τmax << n, which is the “window” where we estimate the autocorrelation;

then we can evaluate the sample covariance as the average of all the n− τmax

possible couples of samples at distance 0 ≤ τ ≤ τmax

Covs(xi, xi+τ ) =
1

n− τmax

n−τmax∑
j=1

(xj −X) · (xj+τ −X) (5.4)
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Normalizing with respect to S2 we obtain the sample normalized auto-

covariance:

R′(τ) =
Covs(xi, xi+τ )

S2
(5.5)

Using Equations 5.4 and 5.5 on the dataset obtained by calculating the

increments of the amplitude values, we expect the data to display a noise-

like behaviour: considering that each increment is a variable value I that

is independent of previous increments — i.e., the increments process does

not have memory — , we predict that the values displayed in the graph will

fluctuate around the x axis. This hypothesis is confirmed by Figures 5.13 and

5.14.
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Figure 5.13: Auto-correlation of packets amplitude increments on an 80 MHz
bandwidth 802.11ax channel

We can verify that the increments process displays Markovian auto-regression,

meaning that the current state depends only on the last state and not on pre-

vious ones. By using Equation 5.3, we can find a first description of the state

of our system by assigning parameter α value of 1.
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Figure 5.14: Auto-correlation of packets amplitude increments on a 20 MHz
bandwidth 802.11a channel

Said equation turns into:

Xi+1 = Xi + Ii (5.6)

To better observe the phenomenon, we also calculate the auto-correlation

coefficient on the amplitude of the packets. The used formulae are again Equa-

tions 5.4 and 5.5. The resulting graphs are presented in Figures 5.15 and 5.16.

As we can see, there is an evident correlation between packets sent over

the same sub-carrier. The graphs let us see that auto-correlation displays an

uncommon, rippled behaviour. Such a trend may be due to the short time

taken to observe the process: a larger number of packets would grant a period

that would be long enough to state the stationarity of the process, which

instead sometimes appears to be non-stationary in the short term. It would

be ideal to have a trace that is much longer than the maximum size of the lags

on which auto-correlation is calculated.
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Figure 5.15: Auto-correlation of packets amplitude on an 80 MHz bandwidth
802.11ax channel
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Figure 5.16: Auto-correlation of packets amplitude on a 20 MHz bandwidth
802.11a channel
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5.4 Amplitude Increments Analysis

Based on the graphs obtained in Figures 5.10, 5.11, 5.12, and those derived

from the same computations performed on other traces we want to identify

a statistical distribution that fits the data and mathematically models the

process.

Through Python scripts — some of which are described in Appendix A —,

we perform a broad analysis to test different distributions. Trace by trace, for

each used sub-carrier, we check if there is a distribution belonging to the list

below that fits the increments:

• Beta

• Cauchy

• Chi

• Chi-squared

• D-Gamma

• F-distribution

• Folded Cauchy

• Folded Normal

• Gamma

• Generalized Normal

• Half-Cauchy

• Half-Normal

• Inverted Gaussian

• Inverted Gamma

• LogGamma

• LogNormal

• Normal

• Power Law

• Rayleigh

This test is performed using the Fitter library [19], which allows the selec-

tion of a list of distributions that have to be tested on the data and returns,

among other parameters, the values of the parameters that characterize each
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distribution.

By identifying the five best-fitting distributions for each sub-carrier, we

can narrow down our research field and perform the test once again on the

following distributions only (i.e., the ones that come up as the best fits most

frequently):

• Gamma

• Generalized Extreme Value

• Generalized Gamma

• Generalized Logistic

• Generalized Normal

• Logistic

• Normal

• Inverted Weibull

• Weibull

These distributions come from the four families of Gamma, Logistic, Gaus-

sian, and Weibull.

It appears that, although many complex distributions appear in the lists

above, the Normal distribution shows up most frequently as the best-fitting

one in both tests.

As a further means to check the goodness of fit of the Gaussian distribution

on our data, we bear the values of its location parameter µ. The values of µ

obtained by fitting this distribution on the increments of the data collected on

the 802.11ax channel are displayed in the following table:

SC0 -
SC1 -
SC2 -
SC3 -
SC4 -
SC5 -
SC6 8.7·10−16

SC7 7.9·10−16

SC8 -3.2·10−16

SC9 7.1·10−16

SC10 3.8·10−16

SC11 -4.7·10−16

SC12 -8.4·10−16

SC13 -1.5·10−15

SC14 -9.3·10−16

SC15 8.8·10−16

SC16 9.7·10−17

SC17 -5.2·10−16

SC18 -1.4·10−16

SC19 -7.7·10−16

SC20 2.4·10−16

SC21 -1.8·10−16

SC22 7.1·10−16

SC23 5.0·10−16

SC24 3.7·10−16

SC25 -1.7·10−16

SC26 -1.0·10−15

SC27 -6.1·10−16

SC28 -9.2·10−16

SC29 -4.3·10−16

SC30 -9.3·10−16

SC31 -6.3·10−16

SC32 1.8·10−16

SC33 6.2·10−16

SC34 -4.1·10−16

SC35 -2.3·10−16

SC36 6.1·10−16

SC37 3.7·10−16

SC38 4.6·10−16

SC39 2.9·10−16

SC40 -8.9·10−17

SC41 4.3·10−16

SC42 -6.0·10−16

SC43 1.3·10−16

SC44 2.4·10−16

SC45 -1.2·10−17

SC46 -1.1·10−15

SC47 8.2·10−17

SC48 5.7·10−16

SC49 -6.5·10−16

SC50 -2.1·10−16

SC51 -1.2·10−15

SC52 2.5·10−16

SC53 1.6·10−17

SC54 -2.8·10−16

SC55 -5.8·10−16

SC56 -3.3·10−16

SC57 4.7·10−17

SC58 4.3·10−16

SC59 -6·10−16

SC60 -1.7·10−16

SC61 -6.8·10−16

SC62 3.6·10−16

SC63 3·10−16

SC64 -2.5·10−16

SC65 4.4·10−16

SC66 -1.6·10−16

SC67 4.4·10−16

SC68 -3.4·10−16

SC69 3.2·10−16
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SC70 4.2·10−16

SC71 3·10−16

SC72 -4.2·10−16

SC73 -3.2·10−16

SC74 -3.7·10−16

SC75 2.3·10−16

SC76 -5.1·10−16

SC77 2.9·10−16

SC78 4.7·10−16

SC79 -2.6·10−16

SC80 -1.3·10−16

SC81 3·10−16

SC82 -4.3·10−16

SC83 3.7·10−16

SC84 2.0·10−16

SC85 -1.2·10−16

SC86 -4.7·10−17

SC87 5.8·10−16

SC88 4.7·10−16

SC89 -2·10−16

SC90 8.8·10−16

SC91 -4.3·10−16

SC92 -1.7·10−16

SC93 5.5·10−16

SC94 -5.6·10−16

SC95 -1.5·10−17

SC96 -1.2·10−16

SC97 4.4·10−16

SC98 1.7·10−16

SC99 -1.1·10−16

SC100 -5.5·10−16

SC101 3.6·10−16

SC102 5·10−16

SC103 3.4·10−16

SC104 2.3·10−16

SC105 3.5·10−16

SC106 2.9·10−16

SC107 -5.3·10−16

SC108 1.1·10−16

SC109 -2.8·10−16

SC110 6.8·10−16

SC111 5.7·10−16

SC112 4.2·10−16

SC113 2.6·10−16

SC114 0.0
SC115 -4.9·10−16

SC116 -3.2·10−16

SC117 -5.4·10−16

SC118 -1.1·10−16

SC119 4.1·10−16

SC120 5.6·10−16

SC121 -5·10−16

SC122 6.4·10−16

SC123 -7.8·10−17

SC124 2.5·10−16

SC125 8.8·10−16

SC126 -5.8·10−16

SC127 -
SC128 -
SC129 -
SC130 -2.0·10−16

SC131 -2.6·10−16

SC132 -2.5·10−16

SC133 -7.8·10−18

SC134 -2.3·10−16

SC135 -5.2·10−16

SC136 -1.4·10−16

SC137 -3·10−16

SC138 3.6·10−16

SC139 7.8·10−17

SC140 1.5·10−16

SC141 4.1·10−16

SC142 1.1·10−16

SC143 -3.3·10−16

SC144 -4.4·10−16

SC145 -1.2·10−16

SC146 -2.5·10−16

SC147 2.3·10−16

SC148 -3.7·10−16

SC149 -8.2·10−17

SC150 3.4·10−16

SC151 -1.6·10−16

SC152 -2.5·10−16

SC153 -8.3·10−16

SC154 -4.4·10−16

SC155 1.6·10−17

SC156 -2.3·10−17

SC157 1.2·10−16

SC158 3.9·10−16

SC159 -1.8·10−16

SC160 -4.4·10−16

SC161 -5.0·10−16

SC162 1.6·10−16

SC163 -4.7·10−17

SC164 1.8·10−16

SC165 9.8·10−16

SC166 -4.5·10−16

SC167 -6.3·10−16

SC168 -8·10−16

SC169 -5·10−16

SC170 -1.1·10−16

SC171 -5.5·10−16

SC172 -6.6·10−16

SC173 6.3·10−16

SC174 5.8·10−16

SC175 3.7·10−16

SC176 8.3·10−16

SC177 -1.0·10−16

SC178 1.7·10−16

SC179 5.5·10−16

SC180 3.5·10−16

SC181 5.5·10−16

SC182 2.3·10−16

SC183 -4.9·10−16

SC184 -10·10−16

SC185 4.4·10−16

SC186 -1.7·10−16

SC187 3.4·10−16

SC188 5.5·10−16

SC189 7.1·10−16

SC190 -8.5·10−16

SC191 -4.7·10−17

SC192 -8.0·10−16

SC193 4·10−16

SC194 2.3·10−16

SC195 -6.9·10−16

SC196 7.3·10−16

SC197 1.9·10−16

SC198 3.2·10−16

SC199 2.0·10−16

SC200 3.0·10−16

SC201 5.1·10−16

SC202 -1.2·10−16

SC203 -6.8·10−16

SC204 1.4·10−15

SC205 -1.2·10−15

SC206 1.4·10−15

SC207 5.3·10−16

SC208 6.6·10−16

SC209 -1.2·10−16

SC210 -2.5·10−16

SC211 7.1·10−16

SC212 8.9·10−17

SC213 7.1·10−16

SC214 -6·10−16

SC215 -8.7·10−16

SC216 -5.5·10−16

SC217 7.8·10−18

SC218 5.5·10−17

SC219 6.7·10−16

SC220 1.1·10−15

SC221 -3.1·10−16

SC222 6.2·10−17

SC223 -5.8·10−16

SC224 -6.2·10−16

SC225 -4.2·10−16

SC226 -9.5·10−16

SC227 -3.9·10−16

SC228 6·10−16

SC229 2.2·10−16

SC230 5.8·10−16

SC231 -3.8·10−16

SC232 -1.1·10−15

SC233 7.1·10−16

SC234 -5·10−16

SC235 1.6·10−16

SC236 -3·10−16

SC237 -3.2·10−16

SC238 -3.9·10−16

SC239 -6.1·10−16

SC240 -1.8·10−16

SC241 6.7·10−16

SC242 4.8·10−16

SC243 -2.5·10−16

SC244 1.5·10−15

SC245 -9.9·10−16

SC246 1.1·10−15

SC247 5.2·10−16

SC248 1.8·10−16

SC249 5.5·10−16

SC250 -1.9·10−15

SC251 -
SC252 -
SC253 -
SC254 -
SC255 -

The results displayed above let us see that the mean value of the increments

is already extremely close to zero, being in the order of 10−16 for most sub-

carriers, despite only having a few packets available on each sub-carrier. By

increasing the number of packets we would most likely have mean values even

closer to zero, reinforcing the hypothesis that the Normal distribution is the

best-fitting one.

Alongside the table displayed above, we also show one containing the values

of the scale parameter σ obtained by fitting the Gaussian distribution on the

same data as the ones used to find the values of µ.
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SC0 -
SC1 -
SC2 -
SC3 -
SC4 -
SC5 -
SC6 24.3
SC7 26.3
SC8 23.3
SC9 17.7
SC10 16.3
SC11 18.8
SC12 20.6
SC13 22.1
SC14 21.6
SC15 19.9
SC16 17.3
SC17 15.9
SC18 16.0
SC19 17
SC20 16.7
SC21 16.5
SC22 16.3
SC23 16.7
SC24 16.6
SC25 16.5
SC26 16.4
SC27 17.2
SC28 17.9
SC29 18.4
SC30 17.7
SC31 17.7
SC32 18
SC33 18.5
SC34 18.4
SC35 18.2
SC36 18.3
SC37 18.7
SC38 18.6
SC39 18
SC40 17.3
SC41 17.1
SC42 17.4

SC43 17.2
SC44 16.6
SC45 16.2
SC46 16.4
SC47 16.9
SC48 17.7
SC49 18.9
SC50 18.7
SC51 18.9
SC52 17.9
SC53 16.7
SC54 14.7
SC55 13.4
SC56 12.9
SC57 12.4
SC58 12.1
SC59 12.7
SC60 14.1
SC61 14.7
SC62 15.3
SC63 15.8
SC64 16.3
SC65 16.1
SC66 15.2
SC67 14.5
SC68 14.5
SC69 15.1
SC70 15.5
SC71 14.9
SC72 14.2
SC73 13.4
SC74 14.3
SC75 15.4
SC76 17.9
SC77 18.6
SC78 18.5
SC79 16.0
SC80 13.7
SC81 12.9
SC82 14.1
SC83 15.7
SC84 16
SC85 15.1

SC86 13.9
SC87 13.6
SC88 16.2
SC89 19.3
SC90 20.8
SC91 20.9
SC92 17.9
SC93 14.5
SC94 11.6
SC95 11.7
SC96 12.8
SC97 13.6
SC98 13.4
SC99 14.1
SC100 13.4
SC101 13.7
SC102 14.6
SC103 14.5
SC104 12.8
SC105 11.2
SC106 10.7
SC107 10.9
SC108 10.8
SC109 10.9
SC110 10.7
SC111 10.9
SC112 11.6
SC113 12.5
SC114 13.4
SC115 14.2
SC116 14.1
SC117 13.5
SC118 12.4
SC119 11.7
SC120 11.6
SC121 11.8
SC122 12.1
SC123 12.4
SC124 13.3
SC125 15.2
SC126 16.8
SC127 -
SC128 -

SC129 -
SC130 14.8
SC131 11.9
SC132 9.9
SC133 11.5
SC134 11.9
SC135 11.5
SC136 10.1
SC137 9.1
SC138 8.9
SC139 11.4
SC140 13.5
SC141 14.7
SC142 13.7
SC143 12.3
SC144 10.6
SC145 9.7
SC146 10.3
SC147 11.1
SC148 12
SC149 12.2
SC150 11.9
SC151 11.1
SC152 11.5
SC153 11.8
SC154 12.3
SC155 12.4
SC156 12.5
SC157 12.2
SC158 12.1
SC159 12.2
SC160 12.2
SC161 12.6
SC162 12.9
SC163 14.2
SC164 15
SC165 16.0
SC166 16.2
SC167 15.9
SC168 15.2
SC169 14.3
SC170 14.2
SC171 14.7

SC172 15
SC173 15.6
SC174 15.9
SC175 16.3
SC176 17.3
SC177 18.3
SC178 19.6
SC179 19.5
SC180 18.8
SC181 16.7
SC182 15.3
SC183 14.5
SC184 14.1
SC185 14.4
SC186 14.4
SC187 14.7
SC188 14.8
SC189 15.1
SC190 15.7
SC191 16.2
SC192 17.2
SC193 18.1
SC194 18.4
SC195 17.5
SC196 16.3
SC197 15.9
SC198 16.1
SC199 16.4
SC200 15.5
SC201 14.3
SC202 14.7
SC203 17.7
SC204 20.2
SC205 22.2
SC206 21.0
SC207 17.8
SC208 13.7
SC209 11.6
SC210 13.1
SC211 15.8
SC212 16.8
SC213 16.1
SC214 14.1

SC215 14.3
SC216 17.4
SC217 22.1
SC218 24.3
SC219 23.3
SC220 19.8
SC221 14.9
SC222 11.8
SC223 12.4
SC224 14.1
SC225 15.8
SC226 16.4
SC227 18.3
SC228 20.2
SC229 21.3
SC230 21.3
SC231 20.2
SC232 18.6
SC233 16.7
SC234 15.7
SC235 14.6
SC236 13.3
SC237 12.8
SC238 12.1
SC239 12.1
SC240 13.6
SC241 16.8
SC242 20.3
SC243 23.2
SC244 24.5
SC245 24
SC246 23.1
SC247 22.2
SC248 22.7
SC249 21.8
SC250 28.9
SC251 -
SC252 -
SC253 -
SC254 -
SC255 -
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6 A Simple Markovian Model

In the previous chapter, we discussed some graphic examples of the outcomes of

the calculations we performed: we have observed that a one-step memory can

accurately describe the process of the increments, leading us to the conclusion

that the amplitude variations on a single isolated sub-carrier behave according

to a Gauss-Markovian process.

We now delve into the validation of this hypothesis by examining the be-

haviour of artificially generated traces. Distinct traces have been created to

fit the specifics of the 802.11ax and the 802.11a channels. If the results we get

from processing both kinds of artificial traces are similar to those we have ob-

tained from processing real data, we can safely state that our potential model

is an accurate description of the observed phenomenon.

Through a Python script, for each sub-carrier, we generate an artificial

trace. The trace features increment values coming from a Gaussian distribu-

tion having zero as mean value µ, as the observed mean value for the increments

collected on both channels is extremely close to zero, and the best-fitting dis-

tribution seems to be the Gaussian distribution. The value of σ to produce a

specific distribution for each sub-carrier is taken from the table shown at the

end of Chapter 5.

All processing performed on the artificial traces abides by the same algo-

rithm as the one previously used on real data and all the analyses focus on the

same aspects as those presented in Chapter 5.
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6.1 Time Evolution

The amplitudes evolution in time obtained from the artificial trace highlights

— as we can expect — that the sub-carriers created through Python code

are independent of each other: this can be inferred from the fact that graphs

obtained from adjacent sub-carriers (see Figure 6.1) do not show significantly

related properties.
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Figure 6.1: Time evolution of packets amplitude on an artificial trace fitting
the specifics of an 80 MHz bandwidth 802.11ax channel

On the contrary, by interpreting the results displayed in Figures 5.1 and 5.2

— as has been done more thoroughly in the previous chapter — , we can safely

state that there is some form of frequency correlation between adjacent sub-

carriers, given that the displayed trends coming from subsequent sub-carriers
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are easily comparable.

This main difference between real and artificial data demonstrates that

research in this field still has many aspects to analyze and is open to future

expansion.

6.2 Increments Distribution

By observing Figure 6.2 we can see that there actually are some visually evi-

dent similarities between real and artificial increments relative to an 80 MHz

bandwidth 802.11ax channel. This confirms that the Normal distribution from

which we derive our artificial data can indeed be accurately descriptive of the

observed process, as it generates data confirming our previous analyses.
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Figure 6.2: Distribution of the increments of packets amplitude on an artificial
trace (orange) fitting the specifics of an 80 MHz bandwidth 802.11ax channel
compared with the increments calculated on collected data (blue)

Alongside Figure 6.2, to prove the versatility of our model, we also com-
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pare the distribution of amplitude increments on a 20 MHz bandwidth 802.11a

channel with an artificial trace created to fit the specifics of this second chan-

nel. Said comparison can be made by observing the similarities highlighted in

Figure 6.3.
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Figure 6.3: Distribution of the increments of packets amplitude on an artificial
trace (orange) fitting the specifics of a 20 MHz bandwidth 802.11a channel
compared with the increments calculated on collected data (blue)

6.3 Increments Auto-correlation

Apart from having a mean value of zero, which is granted by the fact that

they have been generated through code to do so, increments display similar

behaviour to that shown in Figures 5.13 and 5.14.

The memorylessness of the increments process is confirmed by the graphs

representing the auto-correlation: the values of the auto-correlation coefficient

display the noise-like behaviour (see Figure 6.4) we would expect data coming
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from a memoryless distribution to have. This supports the results of our

previous analysis that deduced the Markovian nature of the observed process

from the fact that the obtained auto-correlation is similar to the typical one

of processes with one-step memory.
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Figure 6.4: Auto-correlation of the increments of packets amplitude on an
artificial trace fitting the specifics of an 80 MHz bandwidth 802.11ax channel

To provide a complete comparison between real and artificial data, we plot

the graphs showing the auto-correlation of packets amplitude on each sub-

carrier, as displayed in Figure 6.5.

We can see that these graphs display a much cleaner behaviour than those

obtained from real data: this confirms our hypothesis that real data have

some form of inter-carrier dependency which would need to be included in

our model to describe the channel more accurately and comprehensively. The

ripples shown in Figure 5.15 therefore derive from a complex correlation that

takes into consideration frequency as well as time.

If we limit our analysis to time correlation by observing each sub-carrier

— 42 —



0 25 50 75 100 125 150 175 200
Tau

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Au
to

-c
or

re
la

tio
n

Auto-correlation SC11

0 25 50 75 100 125 150 175 200
Tau

0.6

0.7

0.8

0.9

1.0

Au
to

-c
or

re
la

tio
n

Auto-correlation SC132

0 25 50 75 100 125 150 175 200
Tau

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

-c
or

re
la

tio
n

Auto-correlation SC190

0 25 50 75 100 125 150 175 200
Tau

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

-c
or

re
la

tio
n

Auto-correlation SC240

Figure 6.5: Auto-correlation of packets amplitude of an artificial trace fitting
the specifics of an 80 MHz bandwidth 802.11ax channel

separately, we can consider the proposed Gauss-Markov model descriptive of

the process.

6.4 Reliability of Artificial Data Analysis

To formally ensure that the artificial traces behave similarly to the collected

ones, we would need to perform an acceptance test by comparing the outcomes

of the processing performed on the artificial traces to those obtained from

processing the data collected on the Wi-Fi channels.

As stated earlier in this thesis, the available traces collected on the wireless

channels are too short to allow a perfect description of the phenomenon; this

also means that we cannot consider our traces representative of the whole

population. To perform an accurate acceptance test, we would need to compare

the results obtained from processing the artificial traces with results obtained
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from a whole population. Without a wide enough sample, we cannot perform

an acceptance test that would give us back comprehensive results.

Nevertheless, we can already see that most empirical results and interpre-

tations of processed data are confirmed by artificially generated traces that

behave as we expect them to.
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7 Conclusions and Future Works

The question we posed at the beginning of this thesis was whether the Channel

State Information relative to a wireless channel had any consistent behaviour

that we could outline using a defined mathematical model.

We started by processing CSI traces collected on two different Wi-Fi chan-

nels. Because every CSI corresponds to a complex number, the initial simplifi-

cation we introduced was to restrict the study to the sole amplitude, omitting

the phase. As said in Chapter 5, it would be best to take into consideration

both the amplitude and the phase of the CSI traces we analyze. Working in

the complex field from the start would not have allowed us to work up our

solution step by step, therefore we chose to temporarily simplify the problem

by working with real numbers only, leaving studies on CSI phase values to

future research.

Our working method has given us the chance to observe the phenomena

we were trying to describe from a simpler, yet effective, point of view, which

made it possible to split our work into more basic steps that we eventually

combined to obtain the final result.

The first step in our analysis consisted in plotting the amplitude time evo-

lution for each sub-carrier of the considered channel. We have seen that the

trends tend to stabilize with time, but it was evident that the available traces

were too short to grant universally valid results.

It was also noticeable that adjacent sub-carriers influence each other’s

packet amplitude, suggesting that time correlation alone would be too sim-

plistic a model. The inter-sub-carrier correlation phenomenon (which we pre-
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viously called frequency correlation) is too complex to describe for the time

being, which is the reason why we also left this branch of the analysis to

upcoming research.

We decided to go in this direction because it made it possible to obtain

significant results that could work as a basis to future studies. Surely, it

would be best to perform this research in a more structured way, possibly by

expanding the size of the available datasets and comparing more outcomes we

would get from applying the algorithm we created for this case study.

To facilitate the comparison of the outputs we obtained, we plotted the

distribution of the amplitude increments for each sub-carrier; we then realized

that the increments tend to distribute symmetrically to the y axis. This led

us to think that the statistical distribution we were looking for had to be

symmetrical and have a mean value close to zero.

Subsequently, we analyzed the values of the increments auto-correlation

coefficient, concluding that they behave according to a Markovian process (i.e.,

a memoryless process).

Finally, we tried to fit some selected distributions on the increments and

found that the Normal distribution was accurately descriptive of the stud-

ied process. We concluded by asserting that the process displays a Gauss-

Markovian behaviour: such model may seem quite simple, yet it fits the data

well enough to be considered comprehensive of the main features we included

in our study.

The work we have led up to this point opens up to future expansion and

further investigations. Disposing of longer traces (about a million packets

per trace would be the minimum needed quantity) would surely grant more

reliability and wider validity to the results, confirming whether there is any

form of dependency of the channel behaviour from the used channel itself.

These data would also allow us to analyze the frequency correlation that is
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entwined with the time correlation, to provide a more accurate model of the

process.

The analysis we illustrated in this thesis consists only of the first few stages

of a much wider study. Nonetheless, we have come up with a partial solution

that satisfies our initial goals and paves the road to future more in-depth

analyses.
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A Python Documentation

The current chapter contains the documentation describing the code used to

elaborate the sampled datasets.

As shown in Listing A.1 the script retrieves the desired file from the current

working directory where it is supposed to be located and reads its content.

The file contains multiple lines made of comma-separated values (csv for-

mat), each of them representing a complex number as a string. Essentially, the

file contains an m×n table having as many columns as the studied sub-carriers

(n equals 256 if we refer to an 80 MHz bandwidth, 128 if we work on a 40 MHz

bandwidth, or 64 if there is a 20 MHz bandwidth) and as many rows (n) as

the packets that have been sampled on each sub-carrier.

The code acts on two versions of the data: on the one hand, the data is pro-

cessed as it is, after having undergone some formatting (needed for Python to

parse the string values contained in the csv file correctly as complex numbers).

On the other hand, some more processing is done on the increments calculated

on the original dataset: considering that each column of the above-mentioned

table corresponds to a sub-carrier, increments are calculated between the mag-

nitudes of consecutive packets sent on the same sub-carrier by subtracting the

values of the previous row to those of the current row.

The code shown in Listing A.1 references some functions that are defined in

the following Python files (in alphabetical order):

• artificial_trace_processor.py: generates and processes artificial traces

• autocorrelation_plotter.py: plots the graphs showing the auto-correlation
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process for each sub-carrier

• best_fits_param_calculator.py: the file contains functions that are

used to fit the five distributions that best fit the merged increments onto

each sub-carrier and to calculate and plot parameters of such distribu-

tions

• fitting_by_sc.py: the file contains functions that are used to find the

best-fitting distribution for each sub-carrier and their increments and

save both outputs in dedicated files

• histograms_plotter.py: plots the histograms showing the relative fre-

quency of the magnitude for each sub-carrier (see Section A.1 for further

details)

• increments_plotter.py: plots an increment/frequency histogram for

each sub-carrier. The increments are calculated between the amplitudes

of consecutive packets sent on the same sub-carrier. This implies that,

as for the other plots, a histogram is generated for each used sub-carrier

• merged_plotter.py: elaborates the merged increments (i.e. by consid-

ering all the increments as if they belonged to a single sub-carrier)

• parameters_calculator.py: the file contains the functions that are

used to calculate variance, skewness, and kurtosis for each sub-carrier

and the distribution of the increments of each sub-carrier

• std_deviation_and_kurtosis_plotter.py: plots standard deviation

and kurtosis calculated on the increments of each sub-carrier

• time_evolution_plotter.py: the file contains a function that is used

to plot graphs representing the evolution of the signal magnitude over

time for each sub-carrier

— 52 —



It is worth mentioning that the functions used for plotting only plot the graphs

relative to sub-carriers that are used for modulation. The unused sub-carriers

are listed either in the file named unnecessaryPlots or in an array.
1 import [...]
2
3 if __name__ == '__main__ ':
4
5 ########## INFORMATION SETUP ##########
6 csi_name = 'csi.csv' # file containing the data to be processed
7 specific_path = "csi" # folder path where to save the output of the code ,

can be an empty string
8 bandwidth = 80 # channel bandwidth: 20, 40, 80 MHz
9 #######################################

10
11 path = os.path.join(os.getcwd (), csi_name)
12
13 if bandwidth == 80:
14 colnames = ["SC" + str(i) for i in range(0, 256)]
15 df = pd.read_csv(path , names=colnames , header=None)
16 elif bandwidth == 40:
17 colnames = ["SC" + str(i) for i in range(0, 128)]
18 df = pd.read_csv(path , names=colnames , header=None)
19 elif bandwidth == 20:
20 colnames = ["SC" + str(i) for i in range(0, 64)]
21 df = pd.read_csv(path , header=None)
22 df = df.transpose ()
23 df.columns = colnames
24
25 if bandwidth == 80:
26 with open(os.path.join(os.getcwd (), "unnecessaryPlots")) as f:
27 unnecessary_plots = f.read().splitlines ()
28 elif bandwidth == 40:
29 unnecessary_plots = []
30 elif bandwidth == 20:
31 unnecessary_plots = ['SC0', ...]
32
33 for title in df:
34 if title in unnecessary_plots:
35 del df[title]
36 else:
37 df[title] = pd.DataFrame(abs(complex(value.replace(" ", "").

replace("i", "j"))) for value in df[title ])
38
39 response = input("Plot magnitude/relative frequency histogram for each sub

-carrier? [Y/n]")
40 if response.lower() == "y" or response == '':
41 batch_size = len(df)
42 for x in reversed(range(1, len(df))):
43 if len(df) % x == 0:
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44 batch_size = x
45 break
46 for title in df:
47 plot_histogram_for_sc(title , df , batch_size , path=specific_path)
48 if response.lower() == "n":
49 pass
50
51 response = input("Plot evolution in time for each sub -carrier? [Y/n]")
52 if response.lower() == "y" or response == '':
53 plot_time_evolution_for_sc(df, path=specific_path)
54 if response.lower() == "n":
55 pass
56
57 response = input("Plot increment/frequency histogram for each sub -carrier?

[Y/n]")
58 if response.lower() == "y" or response == '':
59 plot_increments_for_sc(df , path=specific_path)
60 if response.lower() == "n":
61 pass
62
63 response = input("Plot auto -correlation function for each sub -carrier? [Y/

n]")
64 if response.lower() == "y" or response == '':
65 plot_autocorrelation(df , path=specific_path)
66 if response.lower() == "n":
67 pass
68
69 distributions = {"norm": s.norm , ...}
70
71 response = input("Fit distributions on data and increments? [Y/n]")
72 if response.lower() == "y" or response == '':
73 fit_data_by_sc(df, distributions , path=specific_path)
74 if response.lower() == "n":
75 pass
76
77 response = input("Plot and fit merged data and their increments? [Y/n]")
78 if response.lower() == "y" or response == '':
79 merged_plotter.plot_merged_data(df, distributions , path=specific_path)
80 if response.lower() == "n":
81 pass
82
83 response = input("Calculate variance , skewness and kurtosis for each sub -

carrier and for their increments? [Y/n]")
84 if response.lower() == "y" or response == '':
85 parameters_calculator.calculate_params(df, path=specific_path)
86 if response.lower() == "n":
87 pass
88
89 response = input("Plot standard deviation and kurtosis for the increments?

[Y/n]")
90 if response.lower() == "y" or response == '':
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91 std_deviation_and_kurtosis_plotter.plot_std_dev_and_kurtosis(df , path=
specific_path)

92 if response.lower() == "n":
93 pass
94
95 if not os.path.exists(os.path.join(specific_path , 'merged_plot ', 'Best

five distributions fitting Increments of Merged Data.csv')):
96 merged_plotter.plot_merged_data(df, distributions , path=specific_path)
97
98 file = open(os.path.join(os.getcwd (), specific_path , 'merged_plot ', 'Best

five distributions fitting Increments of Merged Data.csv'), "r")
99 f = pd.read_csv(file , sep='\t', header=None)

100 best_dists = f.iloc[:, 0]. drop (0)
101 best_distributions = {}
102
103 print("\nThe distributions that best fit the merged increments are: ")
104 for dist in best_dists:
105 print("-> " + str(dist))
106 best_distributions[dist] = distributions[dist]
107
108 response = input("Calculate and plot their parameters for each sub -carrier

? [Y/n]")
109 if response.lower() == "y" or response == '':
110 best_fits_param_calculator.calculate_best_params(df ,

best_distributions , path=specific_path)
111 if response.lower() == "n":
112 pass
113
114 response = input("Find distribution that best fits the increments of each

sub -carrier? [Y/n]")
115 if response.lower() == "y" or response == '':
116 fitting_by_sc.find_best_dist(df.diff().drop(labels=0, axis =0),

distributions , os.path.join(os.getcwd (), specific_path))
117 if response.lower() == "n":
118 pass
119
120 response = input("Process artificial_increments trace? [Y/n]")
121 if response.lower() == "y" or response == '':
122 artificial_path = os.path.join(os.getcwd (), specific_path , '

artificial_increments ')
123 if not os.path.exists(artificial_path):
124 os.mkdir(os.path.join(os.getcwd (), specific_path , artificial_path)

)
125
126 if not os.path.exists(os.path.join(specific_path , '

normal_distribution_info.csv')):
127 fitting_by_sc.find_best_dist(df.diff().drop(labels=0, axis =0),

distributions , os.path.join(os.getcwd (), specific_path))
128 file_name = "normal_distribution_info.csv"
129 data = pd.read_csv(os.path.join(specific_path , file_name), header=None

)
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130 std_dev = pd.DataFrame(data.iloc[:, 2]. map(lambda x: x.rstrip(')')).
astype(float))

131 artificial_trace_processor.process_artificial_increments(path=
artificial_path , sub_carriers=df.columns , std_dev=std_dev ,
num_samples =10000)

132 if response.lower() == "n":
133 pass

Listing A.1: Main

A.1 histograms_plotter.py

As shown in Listing A.2, the plot_histogram_for_sc function uses the other

functions defined in its file to plot a histogram representing the frequency of

the magnitude of the packets sent on each used sub-carrier.

The function mentioned above also fulfils the purpose of calculating and

printing the mean value for each dataset column Every mean value is calcu-

lated by taking into consideration only the magnitude of the complex numbers,

leaving out their phase.

The third and last purpose of the plot_histograms_for_sc function is

to divide each column in batches of a predefined size — using the create_-

batches function — , have them processed by the process_batch function,

and finally plot a histogram for each processed column using the plot function.
1 import [...]
2
3
4 def is_stationary(batch_mean , column_mean):
5 return abs(batch_mean - column_mean) < 0.1 * column_mean
6
7
8 def process_batch(column_mean , batch , size):
9 sum = 0

10 for value in batch:
11 sum += abs(value)
12
13 batch_mean = sum / size
14 print(batch_mean)
15 if not is_stationary(batch_mean , column_mean):
16 print("Non stationary process")
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17 return False
18 else:
19 return True
20
21
22 def create_batches(data , length):
23 return [data[i:i + length] for i in range(0, len(data), length)]
24
25
26 def plot_histogram_for_sc(title , df, size , path: str= ""):
27 if path != "" and not os.path.exists(path):
28 os.mkdir(path)
29
30 col = df[title]
31
32 print(title)
33 column_mean = float(col.mean())
34 print("Column mean:", column_mean)
35 for batch in create_batches(df, size):
36 process_batch(column_mean , batch[title], size)
37 plot(col , column_mean , title , 'histograms ', path)
38
39
40 def plot(c: pandas.DataFrame , column_mean: float , title: str , dir_name: str ,

path: str):
41 c = c - column_mean
42 c.hist(bins =100, density=True)
43 pl.xlabel('Magnitude ')
44 pl.ylabel('Relative frequency ')
45 pl.title(title)
46 pl.xlim(-150, 150)
47 pl.rcParams.update(
48 {'axes.titlesize ': 'large ', 'axes.labelsize ': 'large ', 'xtick.

labelsize ': 'large ', 'ytick.labelsize ': 'large '})
49 if not os.path.exists(os.path.join(path , "histograms")):
50 os.mkdir(os.path.join(path , "histograms"))
51 pl.savefig(os.path.join(os.getcwd (), path , dir_name , 'figure ' + str(title)

+ '.pdf'))
52 pl.close()

Listing A.2: histograms_plotter.py file

The process_batch function is used to calculate and print the mean value

for the single batch and to verify whether the behaviour of the sub-carrier can

be considered stationary by calling the is_stationary function.

The plot function is used to set the desired title, labels, limits, and the

number of bins to obtain the required histogram and save it in the specified
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directory.

The analysed data are shown using a histogram because this representation

allows a better and easier interpretation as well as the immediate display of

the distribution derived from the analysis.

A.2 Artificial Traces Manipulation

To generate and process artificial traces, we created dedicated functions that

perform the same manipulations as those performed on real data on artificial

data as well.

The used script is shown in Listing A.3.
1 import os
2 import [...]
3
4 def process_artificial_increments(real_increments , path , sub_carriers , std_dev

, num_samples =1000):
5 new_data = generate_artificial_increments(sub_carriers=sub_carriers ,

std_dev=std_dev , num_samples=num_samples)
6
7 if not os.path.exists(os.path.join(path , "increments_hist")):
8 os.mkdir(os.path.join(path , "increments_hist"))
9

10 for title in sub_carriers:
11 histograms_plotter.plot_histogram_for_sc(title , new_data , num_samples ,

path)
12 time_evolution_plotter.plot_time_evolution_for_sc(new_data , path=path)
13 increments_plotter.plot_superimposed_increments(real_increments , new_data ,

path=path)
14 autocorrelation_plotter.plot_autocorrelation(new_data , path=path)
15
16
17 def generate_artificial_increments(sub_carriers , std_dev , num_samples =1000):
18 new_data = pd.DataFrame ()
19 i = 0
20 for title in sub_carriers:
21 new_data[title] = np.random.normal(0, std_dev [2][i], num_samples)
22 new_data[title] = new_data[title ]. cumsum ()
23 i += 1
24 return new_data

Listing A.3: artificial_trace_processor.py file
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A.3 Full Source Code

The full version of the code that was written to fulfil the goals of this report

can be found on GitHub [20] together with its complete documentation and

the output produced by the different scripts stored in separate folders.
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