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Abstract

The increasing need of road efficiency, driving safety, and sustainable transport
relies on Cooperative Intelligent Transport Systems (CITS) developments in
modern transportation, with a stress on the C o Communications. By enabling
vehicles to communicate with each other, exchanging real-time data through
an ad-hoc network, CITS can improve road safety and efficiency. Some of
the challenging tasks in vehicular networks include the protection and the
guarantee of correctness of the exchanged data. The common practice to deal
with those tasks involves utilizing a Public Key Infrastructure to authorize
vehicles using the network. Despite this, it doesn’t mean that an authorized
vehicle cannot misbehave. To achieve driving safety, a standard solution is
using a Misbehavior Detection System that can detect malfunctions leading to
wrong, missing, or misleading messages in the network by analyzing the data
exchanged in every message.

This thesis presents a simple Machine Learning framework based on Long-
short Term Memory neural networks, a standard approach in the referring
literature for misbehavior detection. The detection system must be trained
off-line, as usually done, on a standard dataset, and for this purpose, the
VeReMi dataset has been chosen. Many works focus only on the off-line model,
trying to reach the best scores on the whole dataset. This thesis aims to
introduce the simple detection framework at run-time on a completely different
scenario, compared to the one on which the dataset was built, suitable to be
executed on single vehicles while they communicate. The detector is validated
within a platooning application, showing that, if properly used, the predictions
can prevent practically all accidents caused by misbehavior. In particular, the
detector’s predictions are provided to a simple defense protocol that dismantles
the platoon if a message is detected to be anomalous.

The results show that the detection system and the defense protocol can
save almost all the accidents due to misbehavior conditions in the simulated set.
In particular, detecting a general misbehavior condition is precisely predicted,
with an excellent accuracy score. Although those results, the detection system
cannot identify each kind of misbehavior by assigning a label to each one,
with reasonable accuracy results, due to very different traffic conditions while
running on-line. This suggests that designing a more complex defense protocol
with personalized responses for each misbehavior, usable in all traffic conditions,
is impossible, even with more sophisticated Artificial Intelligence solutions.
Despite this, the developed system gives a solid basis to work on it, and with
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millions of data and more misbehavior while training, it may be introduced
into real-world vehicles as a CITS technology, enhancing driving safety and
making cooperative driving systems safer.
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Sommario

La crescente esigenza di efficienza, sicurezza stradale e trasporto sostenibile,
insieme ai problemi di congestione del traffico e urbanizzazione, trova una
possibile soluzione nei recenti sviluppi delle tecnologie Cooperative Intelligent
Transport Systems (CITS), con particolare riferimento alla C di Comunicazioni.
Attraverso la comunicazione tra veicoli, scambiando dati in tempo reale tramite
una rete veicolare ad-hoc, le tecnologie CITS possono migliorare la sicurezza
e l’efficienza stradale. Alcune delle principali sfide nell’utilizzo di una rete
ad-hoc includono la protezione e la garanzia della correttezza dei dati scambiati.
La pratica standard per gestire tali problemi prevede l’utilizzo di una Public
Key Infrastructure per autorizzare i veicoli consentendogli di accedere alla rete.
Nonostante ciò, non vuol dire che un veicolo autorizzato non possa trasmettere
messaggi anomali. Per garantire la totale sicurezza di guida anche da questo
punto di vista, la soluzione standard è l’utilizzo di un Misbehavior Detection
System in grado di rilevare malfunzionamenti che portano a messaggi errati o
mancanti analizzando i dati scambiati in ogni messaggio trasmesso.

Questa tesi presenta un semplice framework di Machine Learning basato
su una rete neurale di tipo Long-short Term Memory (LSTM), un approccio
standard nella letteratura di riferimento per i sistemi di rilevamento di malfun-
zionamenti. Il sistema, basato su rete neurale, dev’essere addestrato off-line,
come di solito avviene, su un dataset di riferimento, a questo scopo, è stato
scelto il dataset VeReMi. Molti lavori di ricerca si focalizzano solo sul modello
off-line, cercando di raggiungere risultati ottimi esclusivamente sul dataset.
Questa tesi mira a introdurre il semplice framework sviluppato a run-time su
uno scenario completamente diverso, rispetto a quello su cui è stato costruito il
dataset, adatto per essere eseguito su ogni singolo veicolo mentre comunica con
i vicini. Il sistema è convalidato da un’applicazione di platooning, dimostrando
che, se utilizzate correttamente, le previsioni del sistema possono prevenire
praticamente tutti gli incidenti causati da messaggi anomali o malfunzionamenti.
In particolare, le previsioni del sistema vengono fornite a un semplice protocollo
di difesa che smantella il platoon se un messaggio viene rilevato come anomalo.

I risultati mostrano che il framework e il protocollo di difesa possano
salvare quasi tutti gli incidenti dovuti a condizioni di misbehavior nel set
simulato. In particolare, il rilevamento di una condizione di misbehavior
generale è predetta con precisione, con un’accuratezza eccellente. Nonostante
questi risultati, il sistema non è in grado identificare ogni tipo di misbehavior
assegnando una label a ciascuno, con risultati di accuratezza ragionevoli, a
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causa di condizioni di traffico molto diverse durante l’esecuzione on-line. Ciò
suggerisce che progettare un protocollo di difesa più complesso con risposte
personalizzate per ogni tipo di misbehavior, utilizzabile in tutte le condizioni
di traffico, è impossibile, anche con soluzioni di intelligenza artificiale più
sofisticate di quella progettata. Nonostante ciò, il sistema sviluppato fornisce
una solida base su cui lavorare e, con l’introduzione di milioni di dati e di più
tipologie di misbehavior durante la fase di training, potrebbe essere installato
nei veicoli del mondo reale come tecnologia CITS, migliorando la sicurezza e
rendendo i sistemi di guida cooperativa più sicuri.
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Chapter 1

Introduction

Cooperative Intelligent Transport Systems (CITS) represent a significant ad-
vance in modern transportation, potentially transforming how vehicles and
infrastructure interact on the road [1]. As urbanization and traffic conges-
tion continue to increase, the necessity of creating more efficient, safe, and
sustainable transport systems has never been greater. The significance of
CITS lies in its ability to improve road safety, traffic congestion, and decrease
emissions. By enabling vehicles to communicate with each other and with
infrastructures, CITS applications can help prevent accidents by sending timely
warnings, optimizing traffic flow through smart intersection management, and
reducing fuel consumption through features such as platooning1, eco-driving
support2, intersection management3, emergency vehicle preemption4, and many
others. Studies [2]–[4] suggest that the implementation of CITS could result
in a 50% reduction in road fatalities and a 20% decrease in fuel consumption
and greenhouse gas emissions. Indeed, given the prevalence of human errors
in vehicular accidents, it is not difficult to predict that the road accidents
reduction can even approach 100%, as it is today in well managed railways.
With their offer of benefits in safety, efficiency, and sustainability, CITS are a
cornerstone of the future of transportation. As these technologies continue to

1A group of vehicles travels closely at high speeds, with the lead vehicle controlling the speed
and direction. This reduces fuel consumption, increases road capacity, and improves safety
by minimizing human error.

2Vehicles receive real-time information about traffic conditions, speed limits, and road
gradients to optimize fuel efficiency and reduce emissions.

3Vehicles and traffic lights communicate to optimize traffic flow, reducing wait times and
collisions.

4Emergency vehicles can communicate with traffic lights to request priority at intersections,
but also directly with other vehicles coordinating their movements, reducing response times
and enhancing safety for both the emergency vehicle and other road users.
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develop, they promise to reshape our transportation networks and significantly
improve the quality of life in urban areas and beyond.

Road users and traffic management systems need to exchange real-time data
to achieve CITS’s goals of enhancing driving safety and efficiency of vehicles,
which requires efficient and secure wireless networks. Vehicular ad-hoc Network
(VANET), Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle
to Everything (V2X) are all keywords pointing the the same concept: CITS is
enabled by communication technologies. Only a high level of collaboration can
ensure a dynamic and responsive transportation network that can be adapted
to change road conditions. Vehicles in a VANET are equipped with a wireless
interface, creating a dynamic network that can be accessed without additional
overhead. This network can also include infrastructure components called
Road Side Unit (RSU), which are sparsely positioned along the road. The
resulting network, which includes sparse infrastructure, is known as a Vehicular
Network (VN). A form of VN can also be based on cellular technologies (Cellular
V2X (C-V2X)), which privileges the infrastructure over direct communications;
however, the key concepts remain the same and many situations require in
any case direct, ad-hoc, on-demand communications. In this ad-hoc network,
which is highly dynamic and heterogeneous, there are some challenging tasks to
protect the integrity of the data and guarantee its correctness. For instance, in
CITS, the typical approach involves utilizing Public Key Infrastructure (PKI)
to exclusively provide key material and certificates to authorized vehicles and
entities. Unauthorized entities are barred from the system as their messages
lack valid signatures. The state of the art of PKI for CITS is discussed in
detail in Sect. 2.1. However, if a vehicle possesses valid key material and starts
to misbehave inside the VN, this approach cannot defend against it. The
word misbehavior doesn’t include only the attackers that intentionally corrupt
communications and information, but also cars that produce anomalies due
to genuine errors, e.g., a Global Position System (GPS) malfunction, that can
bring to a misbehavior inside the VN. A Misbehavior Detection System (MDS)
[5] can be used to address the work of recognizing the misbehavior of authorized
vehicles.

An MDS in a VN is designed to identify actions that compromise the integrity
and safety of data exchanges within the network. Unlike traditional Intrusion
Detection Systems (IDSs) in IT, which focus on identifying unauthorized access
or disruptions to the network, the MDSs analyze the behavior and the content
of the messages exchanged between vehicles and infrastructure. These systems
look for inconsistencies or signs of malicious intent, trying to identify attackers
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or anomaly vehicles, which could cause dangerous situations on the road. This
approach is particularly suited to the dynamic nature of VN.

1.1 Thesis Goals

To achieve CITS’s objectives, with a specific emphasis on driving safety, a
cryptographic defense based on PKI is not sufficient. It also requires a system
capable of identifying malfunctions in authorized vehicles. The literature
review about those MDSs is presented in detail in Sect. 2.2. Analyzing the
works made about those kinds of systems, it emerges that the researchers are
moving to Artificial Intelligence (AI) based solutions, focusing in particular on
Neural Network (NN) models. To train an MDS based on an AI solution, a
dataset containing misbehavior data and the exchanged messages in the VN
is mandatory; the larger and more comprehensive the dataset is, the better.
Then one can imagine solutions that keep learning from real traffic, but an
initial base is mandatory to create a reliable system that analyze the exchange
of messages in the real world to identify anomalies. Since many different
models have been developed over the years, maintaining a standard dataset is
a good practice to compare the results with the previous works and to increase
the complexity of the same dataset while introducing new attacks and data.
The Vehicular Reference Misbehavior (VeReMi) dataset [6], [7], a standard
reference for evaluating misbehavior detection mechanisms for VANETs in
many different works, is used for this thesis, and it is indeed one of the very few
dataset available for research in this area. The original dataset includes several
simple attacks. The purpose of this dataset is not only to establish a basis for
comparing detection methods but also to act as a foundation for developing
more complex attacks and find the relative countermeasures.

The literature analysis reveals that many works focus only on creating a
good MDS trained on the whole VeReMi dataset, but they evaluate it only
offline, using for the testing part of the same VeReMi dataset, failing to evaluate
the MDS on-line5, while the vehicles are running, exchange messages and behave
on the road based on the information they receive. Obviously, when we talk
about on-line testing we refer to a simulation environment, as experiments
with real vehicles are still impossible in this field: indeed, also the VeReMi
dataset is obtained with extended simulation experiments. The idea of this

5The term on-line will be used through all the thesis to refer to vehicles that are normally
running into the traffic, e.g., on-line detection means a detection computed for every single
vehicle that is running in a real-world scenario.
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thesis is to create a simple MDS that is NN-based but still trained on the
standardized VeReMi dataset while selecting some attacks that can be easily
replicated in a real-world scenario. The core idea is to recreate the misbehavior,
based on those present in the VeReMi dataset and used to train the model, in a
completely different scenario compared to the Luxembourg City used to create
the dataset and then make the MDS work on-line installed on every single car,
while the vehicles are moving through the traffic and exchanging messages.

Since the majority of the works focus only on the offline training, there’s
not only a lack in on-line evaluations of the trained MDS, but also a lack in a
consequent usage of the predictions of the MDS to try to save as much vehicles
as possible. A protocol that can coordinates the prediction of a vehicle, or a
group of that, is necessary if the objective is to use the detection system in the
real life, and also to evaluate how many accidents is able to save. This is why,
along with the MDS, the idea is to develop a protocol that can work based
on the predictions of the detection system, trying to save the vehicles exposed
to the misbehaving one by properly changing their behavior and, eventually,
return to autonomous driving (i.e., based only on local sensors) or human
driving.

Given that a good detection system that could be implemented in the
vehicle industry has to work under every condition, the thesis goal is to make
the MDS work on every single vehicle through the road in a not centralized
way, in significantly different scenarios, e.g., urban or highway, evaluate its
accuracy in detect misbehavior, and with the introduction of the protocol, show
how many vehicles could be saved from an accident, improving the driving
safety. To evaluate the system on-line, a simulator tool is used and presented in
Chapter 4, where the NN is included in the vehicles communication subsystem
and evaluate messages as they arrive to the vehicle, thus on-line. In particular,
the simulators used include OMNeT++, a discrete event simulator used to
emulate the VN in which the messages are exchanged, and Simulation of Urban
Mobility (SUMO), a microscopic mobility simulator that is used to emulate
the vehicles dynamics in traffic, urban and not.

1.2 Thesis Structure

After analyzing the state of the art about this topic in Chapter 2, the first
step to reach the goals defined is the definition of an MDS with an NN model,
trained over the VeReMi dataset properly adapted and manipulated to fit the
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network’s input. Some Machine Learning (ML) metrics, like accuracy, precision,
and recall, are used to evaluate the offline training and validation of the model.
The definition, implementation and evaluation of the MDS are discussed in
Chapter 3. After that, the simulation’s instruments are presented in detail in
Chapter 4. While, the innovative idea concerns the validation of the developed
MDS at run-time, going ahead compared to the simple training and testing on
the same dataset. The modification of the simulation instruments, allowing the
usage of an NN at run-time including the prediction on the incoming messages,
is discussed in the Chapter 5. Always in Chapter 5 the focus is moved on
the implementation of the misbehavior selected through the dataset, into the
simulation structure at run-time, and on the design and development of the
innovative defense protocol that aims to work on the prediction made by the
MDS. In the end, the set of simulations defined in Chapter 6 is executed, with
all the parameters used explained, trying to validate the framework presented
on-line, a test performed only a few times in the literature. The objective of
the simulation’s results is evaluate they with some metrics to understand if the
MDS can be used on every vehicle, how it can be improved and against how
many misbehavior it results to be effective along with the defense protocol.

Based on the accuracy and the other metrics of the detection between
the messages that are misbehavior or not, an on-line evaluation of the MDS
performances is made in Sect. 6.1.1, for what concerns the detection of a general
misbehavior, defined as single label6, and in Sect. 6.1.2 for what concerns the
punctual identification of each kind of misbehavior studied, defined as multiple
label7. A high accuracy is needed to reach a positive result, particularly between
misbehavior and not detection, i.e., the single label. In a real-world scenario,
at least an accuracy between three and five nines (99.999%) is required, but
considering that the dataset has only a few entries, compared to the millions of
data needed to reach that value, the results are evaluated from this perspective.
Another important value is how many false positives are predicted instead of
not misbehavior messages. This is very important if it’s considered that the
protocol is applied on the first message that is detected as misbehavior, and
having a model that predicts many false anomalies could bring to a continued

6The word single label is used along all the thesis to define that from the prediction results,
i.e., the label prediction between 0 (regular) and 8 (dataReplay), it only matters when the
predicted label is 0 or different from it. This brings to a definition of only one single label
that contains all the misbehavior.

7The word multiple label is used with the meaning of a correct identification of all the
misbehavior labels, i.e., from 1 (contsPos) to 8 (dataReplay), defining multiple labels for
misbehavior.
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stop of the exchanging of the messages through the VN. In addition to the
predictions accuracy and a false positive metric, a gain that represents how
many accidents are saved with the developed detection system is presented
in Sect. 6.1.3. This value has to be as high as possible, close to 100%, to be
reliable in the real world.
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Chapter 2

Related work

This literature review chapter aims to provide a comprehensive overview of the
existing research and developments in security and privacy within VN, as well as
the application of AI techniques for MDS. The chapter is divided into two main
sections. The first section reviews the state-of-the-art in security and privacy
management for VNs, covering standardization efforts, secure communication
protocols, privacy-preserving techniques, and challenges associated with the
deployment of secure vehicular communication systems. The second section
focuses on the literature surrounding MDSs, particularly those utilizing AI and
ML methodologies, which are pivotal for identifying and mitigating malicious
activities and ensuring the robustness of VN. By synthesizing the findings
from these domains, this chapter lays a solid foundation for understanding the
current landscape of VN security and misbehavior detection. It also identifies
gaps in the existing research, thereby setting the stage for developing advanced
protocols and systems to enhance the security and reliability of future VNs.

2.1 Security and Privacy in Vehicular Networks

2.1.1 Standardization

The first step in analyzing the state-of-the-art about security and privacy in
VNs is to examine the current status of the standardization process.

Various standards have been already established related to this topic, partic-
ularly by the European Telecommunications Standards Institute (ETSI). The
recent document [8] (V2.1.1 – March 2024) details the requirements and the
protocols for the distribution of security credentials in the Intelligent Transport
Systems (ITS) framework. The specifications are technology-agnostic (i.e., they
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to apply both to ITS-G5 and C-V2X) and refer to several different commu-
nications profiles. The most important definitions in this document involve:
enrollment credentials and authorization tickets for vehicles and RSU to ensure
the authenticity and integrity of the communicating entities; a Certificate
Trust Lis (CTL) distribution service that helps ITS stations to verify the trust-
worthiness of certificates and, similarly, the Certificate Revocation List (CRL)
distribution service. Security protocols are also defined to manage credentials,
including mechanisms for handling message retries and errors effectively. While,
the ETSI standardized document for trust and privacy management [9] (V2.1.1
- November 2022) is mainly focused on security, trust, and privacy management
for ITS. This standard covers a broad range of protocols and procedures to en-
sure that vehicular communications systems V2X are secure, and users’ privacy
is protected. In particular, a key component is the implementation of a PKI
and privacy enhancement technologies, such as certified pseudonyms and secure
credential management, to minimize personal data transmission and ensure
user privacy. Data security mechanisms employ encryption, decryption, digital
signatures, and secure broadcasting to prevent unauthorized data access and
to ensure message integrity, and they also employ a secure architecture with
well-defined security layers, policies, and procedures, including the use of IP Se-
curity (IPsec) for network layer security. Threat and risk management involves
identifying potential threats like eavesdropping, identity theft, tampering, and
Denial of Service (DoS) attacks, along with risk assessment procedures and
countermeasures. Also, the standard [10] (V1.1.1 - June 2012) and its following
release [11] (V2.1.1 - July 2021) are focused on secure layered architecture and
threats, basically describing something very similar to the previously presented
standard. Finally, the ETSI’s standards [12] provide specifications for secure
data structures used in ITS, detailing security headers and certificate formats
essential for maintaining data integrity and security within VNs.

2.1.2 Privacy management

Privacy management in VNs involves strategies and technologies designed to pro-
tect the identity and location information of vehicles and their occupants while
ensuring secure communication. After the standardization, significant advance-
ments have been made to enhance privacy. The key strategy is pseudonymity
[13], where vehicles use temporary identifiers that do not reveal the real identity
of the vehicle’s owner. Vehicles obtain pseudonyms from a trusted authority
and use them to sign messages within the network. These pseudonyms are
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changed periodically to prevent tracking. This method employs various crypto-
graphic techniques, including PKI, Identity-based Cryptography (IBC), and
group signatures. PKI manages public key encryption and digital signatures,
IBC reduces overhead by using the vehicle’s identifier as its public key, and
group signatures allow vehicles to sign messages as members of a group without
revealing their specific identities, ensuring strong anonymity.

Following the ETSI standardization [14] (V1.1.1 - April 2018), several
pseudonym change strategies have been standardized and implemented to en-
hance privacy. These strategies include fixed intervals, adding randomness to
intervals, silent periods after pseudonym changes, vehicle-centric changes based
on behavior, density-based changes in high-density areas, mix-zones where all
vehicles change pseudonyms simultaneously, collaborative changes where vehi-
cles synchronize pseudonym changes, cryptographic mix-zones, and pseudonym
swaps between vehicles. These strategies are evaluated based on metrics such
as privacy, user-centric performance, safety, and cost. Research [15] has demon-
strated that effective pseudonym change strategies significantly enhance privacy,
particularly in urban scenarios. In highway scenarios, the effectiveness is some-
what reduced due to more predictable vehicle movements. To maintain service
continuity and quality, it has been suggested to announce pseudonym changes
in some studies like [16], facilitating collaborative pseudonym changes and
increasing overall system privacy.

Introducing the 5th Generation (5G) technologies has further improved pri-
vacy management [17]. Enhanced location tracking precision and improved clock
synchronization allow for more effective pseudonym changes, coinciding with
specific events or zones to enhance privacy without disrupting communication.
The 5G service-based architecture modularizes network functions, enabling
security measures and privacy settings in different network slices, thus enhanc-
ing overall privacy management. These advancements post-standardization
represent a significant step forward in managing privacy in VN. They ensure
that user data remains secure while maintaining the integrity and efficiency of
the communication systems.

2.1.3 Studied attacks on Cooperative Adaptive Cruise

Control

Cooperative Adaptive Cruise Control (CACC) [18] systems enable efficient
transportation by allowing vehicles to communicate and behave cooperatively.
However, this dependence on communication exposes vehicles to various security

15



threats due to the necessary use of a network. Some studied attack models
in CACC systems include jamming, data injection, and sensor manipulation.
Jamming can be regular or reactive, disrupting communication and affecting
message reception. Data injection involves sending falsified or altered data
packets, which can be countered by an MDS. Sensor manipulation involves
direct manipulation of vehicle sensors to feed incorrect data, which can be
mitigated through secure communication protocols.

Various CACC controllers have been analyzed in the research work [19] for
their vulnerabilities to these attacks. The constant spacing controller aims to
maintain a fixed distance between vehicles but is particularly vulnerable to
jamming and data injection attacks. The Ploeg controller [20], designed to
degrade in communication failures, predicts the acceleration of the preceding
vehicle when data transmission fails, maintaining some level of control and
safety. The consensus controller [21]–[23], using information from all vehicles
in the platoon, shows resilience against data injection attacks but requires a
higher degree of communication fidelity. But all the simulations made underline
the importance of incorporating advanced MDSs or designing controllers that
can maintain some level of functionality even when faced with sophisticated
attacks.

Research on the constant space version of CACC [24] tried to mitigate
the false data injection attack with some strategies like a direct fallback to
Adaptive Cruise Control (ACC), the use of a suspiciousness parameter, and
the modification of the control input. In this case, a platoon of 8 vehicles with
a sinusoidal speed pattern, implemented by the leader, is simulated, and the
attacker try to inject some false speed data. A simple MDS is configured to
recognize attacks by comparing acceleration data from different vehicles and
determining inconsistencies. For sure, under this type of simple attack, the
fallback to an ACC will bring the loss of all the good properties of a CACC, in
particular, the one with constant spacing. In the end, the good result of this
study is that the researchers tried to create a kind of protocol to manage the
detection of misbehavior. Another proposed approach against the false data
injection attack could be the one inspected in [25], in which the developers
created a secure CACC designing from scratch the control system, trying with
the help of an NN-based MDS, to intercept and eliminate all the possible attacks
about data injection. This particular research presents a complex environment
of simulations using both Matlab and a Hardware-in-Loop (HiL) approach,
with the setup of the created algorithm on a golf cart.
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2.1.4 Achievement

From a deep analysis of the literature about security and privacy, it emerges that
standardization has made a lot of progress in that field by designing a secure
architecture from a cryptographic point of view and some good approaches that
could be used as privacy management, in order to maintain security and safety
in the VN environment, but also remove some possible problems about privacy
that a driver could require. Furthermore, by analyzing some other attacks, in
particular, focusing on cooperative systems, it emerges that, even with this kind
of security already standardized, a safe system against some possible attacks,
like false data injection or possible misbehavior of the communication systems
of some vehicles on the road, could be necessary. In particular, integrating
an MDS on board could be the best solution to defend against that kind of
problem.

2.2 Misbehavior detection systems literature

As the previous section said, traditional security mechanisms are sometimes
insufficient because they only exclude outsider attackers who lack the proper
cryptographic keys. However, insiders can still pose a threat since they might
possess valid credentials, and the vehicles may still misbehave due to malfunc-
tioning or malicious behavior. To address these security gaps, the authors of
[5] introduce and analyze various misbehavior detection mechanisms that are
capable of identifying insider attacks or malfunctioning based on the analysis
of behavioral patterns. Here follows an overview of the types of misbehavior
detection mechanisms analyzed:

• Behavioral detection: Identifies anomalies by monitoring network
nodes’ behavior, such as message frequency and adherence to protocol
norms. An example is a watchdog that checks packet forwarding without
needing to understand message content.

• Trust-based detection: Creates a reputation system where nodes
earn and update trust scores based on their actions, often using voting
mechanisms.

• Consistency-based detection: Compares data from different nodes
about the same event to find discrepancies indicating falsified information.
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• Plausibility-based detection: Verifies if reported data, like speeds or
positions, align with expected behavior models and physical constraints.

These mechanisms have strengths but also some limitations, especially
against an attacker who uses sophisticated strategies to mimic normal behaviors.
So future researches in CITS focus on enhancing security and efficiency through
hybrid detection mechanisms and advanced AI. Key areas include improving
scalability, addressing new vulnerabilities, and balancing security with privacy.

The survey faced up in [5] prepared the field for new research topics, and one
of the main ones could be the usage of ML and AI techniques to help and design
some misbehavior detection algorithms. In [26] is presented a comprehensive
overview of how ML techniques are utilized to enhance misbehavior detection
in VNs. In the survey is highlighted that while ML offers significant advantages
for security, challenges such as adapting to dynamic environments and ensuring
privacy remain. Here are the primary ML methods discussed:

• Supervised learning: Trains models using labeled data, subdivided
into classification and regression.

• Unsupervised learning: Identifies patterns in data without labels,
useful for anomaly detection and clustering similar objects, which helps
discover new misbehavior in VNs.

• Reinforcement learning: Adapts by continuously improving decisions
based on feedback, dynamically adjusting security measures.

• Deep learning: Utilizes layered NNs to process large data volumes and
extract complex features.

• Transfer learning: Transfers knowledge from one problem to a related
one, enhancing efficiency and scalability.

The first important comparison is between an NN approach against other
types of algorithms. In particular two studies [27], [28] compare the same
simulation structure firstly with ML-based algorithms unsupervised and semi-
supervised, like k-Nearest Neighbors (k-NN), One-class Support Vector Machine
and Isolation Forest, and then with an NN approach with algorithms like Au-
toencoder Replicator Neural Networks and Long Short-Term Memory (LSTM)
Networks. To compare those different approaches, the papers use the same sim-
ulation environment, based on the Luxembourg SUMO Traffic (LuST) scenario
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that is designed to replicate a realistic urban traffic environment based on the
city of Luxembourg. In particular, the aggressive behavior class is inserted into
the LuST scenario, and the vehicles that belong to this class are characterized
by significantly altered driving parameters compared to normal ones, including
acceleration and deceleration, minimum gap in terms of space left between
vehicles, maximum speed, generally higher, speed factor and speed deviation,
impatience and sub-lane models that generally are represented from vehicles
more aggressive with lane changes and maneuvers.

The results show that, although k-NN has good results, approaches based
on NNs tend to have better performances. This is why, from now on, a set of
research about MDSs that are NN-based will be analyzed. In particular, the
focus will be on papers that use the VeReMi dataset [7], which will be analyzed
later to compare the performances of the algorithms and the strong and weak
points of the simulation infrastructure.

2.2.1 Long Short-Term Memory systems

The first and most common approach to a misbehavior detection system based
on an NN is to use LSTM to manage the data sequence. In particular, in [29],
the VeReMi dataset is manipulated in a way to obtain sequences of 20 vectors
with a sliding window of size 10, labeled as malicious or not. In this case, a
Support Vector Machine (SVM) classifier is also used to extract 11 more features,
which include behavioral deviation, location plausibility, velocity information,
and comprehensive information. The model is trained on 90% of the sequences
labeled as normal (non-misbehaving vehicles) and the experimental results
show that the combined LSTM model, followed by an SVM classifier, achieves
high detection accuracy.

Another approach that includes time sequences is [30]; the data are heavily
manipulated in this work. Unnecessary labels such as sender ID and message
ID were removed, and only the X and Y coordinates of vehicle position and
speed were retained for training. Moreover, Ground Truth files and vehicle
communication log files were combined to create a comprehensive dataset
that includes both actual and claimed vehicle data. In the end, duplicate
messages and unnecessary indexes were deleted using Matlab scripts. Like the
previous approach, the input is a sequence of messages sorted by communication
time, capturing the temporal dependencies of vehicle position and speed. The
Softmax activation function was used in the output to classify the data into six
categories (one normal vehicle type and five attacker types). The LSTM model
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achieved an accuracy of around 90% on the validation set and 88% on the test
set.

Also, in [31] was used an approach LSTM-based and the creation of a time
sequence of 20 data points, and each data entry was created containing label,
send time, pseudo ID, and X, Y coordinates of position and velocity.

2.2.2 Reinforcement Learning

LSTMs represent only the simplest approach to the problem. More complicated
solutions, always working on the same dataset, were adopted over the years. In
[32] the researchers present a novel approach utilizing Reinforcement Learning
(RL) to enhance misbehavior detection in V2X communications. The NN used
in the RL model is structured around a Q-learning framework tailored for
time-series data analysis in V2X scenarios. The network includes a LSTM layer,
which is crucial for capturing temporal dependencies in the data. This LSTM
layer feeds into a fully connected layer that outputs Q-values, representing the
potential utility of actions taken by the network in given states. The model
employs an ✏-greedy strategy for exploration and exploitation, enhancing its
ability to learn from new data and adjust to evolving conditions effectively.
The results of the simulations demonstrate the high efficacy of the RL-based
misbehavior detection model. The model achieved a remarkable recall of 99.70%
and an F1 score of 98.45%, indicating a superior ability to accurately identify
misbehavior without a high rate of false positives.

2.2.3 Federated Learning

Another complex solution is presented in [33] where a Federated Learning
(FL) approach is used. In particular, this solution presents the possibility of
using a cloud-based solution, thanks to the use of some local deep learning
techniques like Variational Autoencoders (VAEs) and Gaussian Mixture Models
(GMMs). Each vehicle uses its locally refined VAE, after being provided from
a centralized RSU, to monitor incoming data for potential misbehavior. The
likelihood function from the GMM first assesses if new data points conform
to the expected distributions of benign behavior. Points that raise suspicions
based on the GMM likelihood are then processed through the VAE, where a
significant reconstruction error indicates potential misbehavior. This complex
solution is certainly interesting, but to achieve an on-line detection in which
each vehicle can predict independently from a centralized solution, FL doesn’t
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represent the correct approach to reach this goal.

2.2.4 On-line simulations approach

All the solutions presented from now only do an offline approach by training
and testing their model on the dataset, leaving out the possibility of simulating
the misbehavior detection in a real-world scenario. Right now, the focus is
moved on works that present some simulations results in addition to creating a
misbehavior detector ML-base. The first example presented is [34], in which
a model that leverages a combination of ML techniques and RL for effective
misbehavior detection is used. This example provides simulations using CARLA,
SUMO, and ARTERY simulators, and in particular, it tried to replicate the
scenario used to create the VeReMi dataset. At a certain point, various types
of misbehavior are injected into the simulation environment, such as false data
injection, message tampering, and DoS attacks. Consequently, a real-time
detection based on the detector is used to predict the misbehavior and make
proper decisions.

Another important example is the research made in [35]. This example,
in particular, defines a setup of a simulation environment using OMNeT++
and SUMO in which every vehicle, equipped with a ML algorithm selected
from a pool of six possibilities, has to face up some misbehavior like constant
position attack, constant offset position attack, random position attack, random
offset attack, eventual stop attack. In particular, when a vehicle intercepts
a misbehavior, it has to report the detection or the accident to a centralized
trusted authority.

2.2.5 Achievement

What is possible to see, from a deep analysis of some papers about MDSs
based on an NN approach, is that the literature is full of possible models that,
in particular, work well on the VeReMi dataset, properly created to work on
misbehavior or attacks. What is missing in a lot of works about this subject
is firstly the definition of a set of simulations that are independent from the
VeReMi dataset and not centralized, in a way to see if the detection system
can truly work well in a different environment and on every vehicle, and then
the definition of a safe protocol to manage the detection in a proper way.
By analyzing the literature, as anticipated in Sect. 1.1, the purpose set for
this thesis is not to define the best NN system to detect all the attacks in
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the VeReMi dataset, but to define a good misbehavior detector based on the
models used in the analyzed works and the data manipulation that they made,
that can work well on some particular attacks of the dataset that can be easily
replicated and adapted to a new environment, e.g., a highway. Then try to do
an on-line detection that is not centralized but independent in every vehicle and
different from the simulation scenarios used to create the dataset. Moreover,
to fit the lack of a defense application, the last thesis goal is to define a simple
management protocol, based on the MDS predictions, that can avoid accidents
caused by the emulated misbehavior and bring driving safety in line with CITS
objectives.
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Chapter 3

Misbehavior detection system

The first step to reach the goals set for this thesis is the creation of an MDS.
This system is intended to detect anomalies that can cause the vehicle, or those
near it, to behave improperly during the traffic flow while using cooperative
driving systems based on the V2X communication. An example of an anomaly
could be the malfunction of the GPS. From the review in Sect. 2.2, it emerged
that the recent works focus on systems based on an NN approach. Along with
the MDS implementation, a standard and well-formed dataset to train an NN
for this purpose has to be chosen. Still from the literature review, in Sect. 2.2,
many ML-based model developed used the VeReMi dataset, a standard for
what concerns misbehavior detection. Considering VeReMi as the basis for the
thesis MDS implementation, the data have to be manipulated to fit the input
of a selected NN, in particular, making feature engineering (Sect. 3.1.3) and
embedding (Sect. 3.1.5) choices. Once the NN has been selected (Sect. 3.2)
and trained on the properly modified data, a portion of the dataset is used to
validate the model offline, understand its performances and what it has to be
expected from the further insertion in the on-line simulations.

3.1 Dataset

The most used dataset in the works analyzed is the VeReMi dataset 1 [6], [7].
The VeReMi dataset was created to overcome the challenges of reproducibility
and comparability in research on vehicular misbehavior detection. Before its
creation, studies in this domain relied on individually designed simulation

1The dataset can be accessed through the GitHub URL, in which it’s possible to find the
download link with all the folders containing the log files for each scenario:
https://github.com/josephkamel/VeReMi-Dataset
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scenarios, which allowed for customization but made it difficult to compare
the effectiveness of different detection mechanisms. By providing a common
reference dataset, VeReMi facilitates the comparison of results across different
studies, promoting a more rigorous scientific approach to evaluating misbehavior
detection systems.

The dataset was generated using the LuST scenario, an open-source syn-
thetic traffic scenario validated with real data. This scenario simulates traffic
conditions in a subsection of Luxembourg City, covering an area of 1.61 km2

with a peak vehicle density of 67.4 vehicles per km2. The simulations are
conducted using VEINS, integrating OMNeT++ for network simulation and
SUMO for traffic simulation.

The VeReMi dataset comprises message logs from simulated vehicular
communications and ground truth files that document each vehicle’s behavior,
including those simulating malicious behavior. The dataset includes several
misbehavior scenarios, with data collected from multiple simulation runs under
varying vehicle and attacker density conditions. Key components of the dataset
include:

• Message Logs: These logs contain detailed records of periodic messages
exchanged between vehicles.

• Ground Truth Files: These files provide the actual positions and
behaviors of vehicles. This information is crucial for validating the
detection mechanisms being tested.

• Attack Scenarios: The dataset includes various predefined attack types,
such as constant position attacks, random position attacks, constant
offset attacks, random offset attacks, and eventual stop attacks. Each
attack type has specific parameters and behaviors that are systematically
applied during the simulations.

The dataset is presented in 2 different versions. In particular, in the first
one [6], the simulations were made with the parameters presented in Tab. 6.1.
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Parameter Value Notes
Mobility SUMO LuST (DUA static)
Simulation start (3,5,7)h controls density
Simulation duration 100s
Attacker probability (0.1, 0.2, 0.3) attacker with this probability
Simulation Area 2300,5400-6300,6300 various road types
Signal interference model Two-Ray Interference VEINS default
Obstacle Shadowing Simple VEINS default
Fading Jakes VEINS default
Shadowing Log-Normal VEINS default
MAC implementation 802.11p VEINS default
Thermal Noise -110dbm VEINS default
Transmit Power 20mW VEINS default
Bit rate 6Mbps VEINS default (best reception)
Sensitivity -89dBm VEINS default
Antenna Model Monopole on roof VEINS default
Beaconing Rate 1Hz VEINS default

Table 3.1: Simulation parameters of the first version of the VeReMi dataset [6].

In this version of the dataset, only a few attacks are presented. Through
the years, the newest version of the dataset was created [7]. Something has
been changed; in particular, in this new version, the simulations are made
throughout the day, but then 2 different time intervals are selected: between
7 a.m. and 9 a.m., which is considered high density, and 2 p.m. and 4 p.m.,
which is considered low density. In all the simulations, the percentage of vehicle
that are misbehavior is 30%.

3.1.1 Misbehavior presented

The most recent version of the dataset includes 19 types of malfunctions,
anomalies, or attacks. For what concerns misbehavior, these are the main ones:

• Position malfunctions: are usually a result of a positioning system
failure (e.g., GPS). These failures affect the longitude and latitude fields
of the safety messages and could manifest as one of these four use cases:

1. The position is constant throughout the simulation: Post+1 = Post

2. The position is random at every time-step, considering an interval
through all the surface of simulation: Pos = U [min,max]

3. A constant offset is added to the real position: Post = Post + off

4. A random offset is added to the real position: Post = Post +

U [offsetMin, offsetMax]
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• Speed Malfunctions: this could be the result of an On-board Unit
(OBU) error or a physical sensor failure. The speed malfunction is
generated similarly to the previously described position malfunction.
This results in a Constant, Random, Constant Offset and Random Offset
modification of the Vx and Vy fields.

• Delayed Messages: could be a result of a large network overhead or a
low-cost or slow on-board processing unit. These messages contain all the
correct data and required information but are sent with delay �t from
reality.

While the attacks introduced in the LuST scenario are:

• DoS attacks: consists of a vehicle sending messages with a frequency
higher than the limit set by the corresponding the Institute of Electrical
and Electronics Engineers (IEEE) or ETSI standards.

• DoS Random: are DoS attacks with all the message fields set to random
values. It could be a strategy to flood the network and prevent genuine
messages from being broadcast. This attack could also be executed in
Sybil mode, with the attacker changing its identity on every message sent
to avoid detection.

• Data Replay: sends information previously received from a specific
target neighbor. The replayed information is signed with the attacker’s
certificate. It could be executed in Sybil mode, with the attacker changing
its identity on every new chosen target to avoid detection.

• Disruptive attacks: are an information replay of previously received
data from random neighbors. It could also be a strategy to flood the
network and prevent genuine messages from being broadcast. This attack
could also be executed in Sybil and DoS modes.

• Eventual Stop: are attacks where a vehicle simulates a sudden stop by
freezing the position values and setting the speed values to null.

• Traffic congestion Sybil: is an attack to create fake traffic congestion.
The attacker generates a grid of fake vehicles in a chosen position by
maintaining a new identity and a correct message frequency for each fake
vehicle.
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3.1.2 Selected Anomalies

In this research, as explained i Sect. 1.1, the choice is not to create an NN on
all the scenarios available, but a good amount of cases, from those presented
in the previous section, that can be easily replicated and studied in a real-
world scenario, i.e., the simulation environment that is explained in Chapter 4.
In particular, the chosen misbehavior are position malfunctions, in constant,
random, and random offset position scenarios, speed malfunctions, in random
and random offset scenarios, eventual stop, disruptive attacks and data replay.
The malfunctions are selected because, in a real-world scenario, these kinds of
anomalies can truly happen, e.g., GPS malfunctions that can transmit wrong
positions or OBU anomalies. The other misbehavior selected can be replicated
in simulation without many problems, allowing an on-line study of the MDS
implemented on every vehicle in different real-world scenarios, e.g., urban or
highway.

It’s important to underline that the constant offset scenario was not used
from the position and speed malfunctions. In fact, during the VeReMi dataset
simulations, as shown in Fig. 3.1, every vehicle can be regular2, which means
that every message sent is without anomalies, or misbehavior, which means
that every message sent is with the specified anomaly. However, no one can be
mixed3, and this behavior is clearly not representative of a real-world scenario,
since in the world there’s not a beginning or an end of a simulation. Moreover,
since the thesis simulations aim to represent a real-world scenario and detect
misbehavior while a simulation is running, every vehicle could be considered
mixed, as defined. Given all the misbehavior beginning while the simulation
is running, it is sufficient to train the model on the random offset scenario to
intercept also the constant offset. In fact, at the beginning of the misbehavior,
the first constant offset message, that is the one that determines the meaningful
prediction of the MDS and the application of the protocol further defined in
Chapter 5, is seen as a random offset since the message includes any offset
compared to the previous one. So both random and constant offset can be
called more in general offset. Since training the NN on the random offset
scenario is sufficient to intercept every offset malfunction, even if it’s constant,
to avoid some noise that can be introduced from the constant offset scenario
while training the model, that is particularly difficult to learn, the decision is

2From now on, every vehicle that is running without sending misbehavior messages is called
regular

3A vehicle that changes its misbehavior state while a simulation is running, starting, or
stopping to misbehave during a simulation.
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not to include this scenario in the training. To simplify the nomenclature, the
random offset scenario is from now called offset.

Figure 3.1: How many vehicles change their type (regular or misbehavior)
during the VeReMi constant position offset simulation

.

Another scenario excluded from the training and the on-line evaluation
is the constant speed. This scenario can introduce a lot of noise during the
on-line prediction, considering that in a real-world scenario for some particular
VN goals, like platooning, the purpose is to reach a constant speed, so in a
simulation environment that aims to maintain a constant speed, it doesn’t
make any sense to train a model that, when the speed is constant, returns
a misbehavior label. Moreover, even if the vehicles are oscillating and not
constant in speed, sending at a certain time a message with a constant speed
misbehavior, with a value close to the ones between the vehicles oscillates,
doesn’t create some particular problem on the other platoon’s vehicles, in
particular, no accidents happens. So, as before, to avoid some noise during the
on-line simulations, the decision is to delete the constant speed scenario from
the model training.
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3.1.3 Feature engineering

The data in the extended version of the VeReMi are presented as a folder for
every scenario, which can be between 7 a.m and 9 a.m. or 2 p.m and 4 p.m.,
containing a GroundTruth file, or more than one, and a Log file for each vehicle
in the simulation. In particular, each log file contains all the messages received
from the other vehicles in the simulation, which are then represented in the
Ground Truth JSON with the real data. So, referring to the example in Fig. 3.2,
if the message from 2 is misbehavior with false position data, the truth message
from 2 contains the real position of the vehicle 2 for that specific message.

Figure 3.2: Subfolders’ structure of the VeReMi dataset

The data structure of every message in each VeReMi log file is composed of
the features presented in Fig. 3.3. In particular, from the feature type, the only
interesting value for this thesis is type 3, which stands for messages received
from other vehicles. The SendTime and SenderPseudo represent the time
at which the vehicle enumerated as the senderPseudo feature is transmitted.
While the Postion, Speed, Acceleration, and Heading features are written as a
3D vector, in which the z coordinate is always 0, as SUMO does not consider
elevation. The last important feature is the MessageID, which identifies the
message compared to the others in the simulation.

Figure 3.3: Structure of a message in the log files

29



While scanning all the files, a feature representing the vehicle receiving
the message was added since each log file represents a vehicle. This feature is
called rx, which stands for receiving vehicle. Furthermore, the position and
speed features were extracted in new features posx, posy, spdx, spdy so that it’s
possible not to use the vectors anymore. For the acceleration, the Euclidean
norm of the x, y vector was computed, but to reconstruct the sign of the vector,
it was necessary to compare the angle computed with the vehicle’s heading.
The angle of the acceleration and heading was computed as follows:

1 def c a l c u l a t e_ho r i z o n t a l_ang l e ( x , y ) :
2 ang l e = math . d eg r e e s (math . atan2 ( y , x ) )
3 ang l e = ang l e % 360
4 re tu rn ang l e

While the comparison between the heading angle and the acceleration angle to
assign the sign is like this:

1 d f [ ’ a c l ’ ] = d f . apply (
2 lambda row : −row [ ’ a c l ’ ] i f abs ( row [ ’ hed ’ ] − row [ ’ ac l_ang l e ’ ] ) > 90
3 e l s e row [ ’ a c l ’ ] , a x i s =1)

So, if the difference is greater than 90 degrees, the acceleration is considered
negative since it’s in the opposite direction of the vehicle’s direction.

3.1.4 Labels

The most important feature to be recovered from the dataset and needed to
train the NN is the label that represents a kind of misbehavior. The choice
is between using a single label model, in which the label feature can be only
two values: 0 for the regular vehicles and 1 for the misbehavior ones, or
using a multiple label model that aims to not only intercept the misbehavior
but also identify they. Since the protocol, presented in Chapter 5, uses only
the prediction between misbehavior or not, the feature label can be single.
Considering that this protocol is straightforward and many modifications can be
applied, particularly exploiting the differences between the various misbehavior
adopting different responses based on the prediction, a multiple label is chosen.
Since to save a vehicle on the road with the thesis protocol, the single label is
enough, the metrics results are presented in Chapter 6 both for the single and
multiple label evaluation, in particular considering all the misbehavior label of
the multiple option as a general misbehavior for the single case. In particular,
the multiple labels assigned are:

• 0: regular
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• 1: constant position

• 2: random position

• 3: random position offset

• 4: random speed

• 5: random speed offset

• 6: eventual stop

• 7: disruptive

• 8: data replay

With this kind of feature, it’s possible to consider a supervised learning
solution for offline training. So, to build this feature, all the messages in the
log files are merged with the respective messageID of the Ground truth, as
shown in Fig. 3.4.

Figure 3.4: Representation of the data merging between the log files and the
ground truth.

Given a full data frame containing entries with all the truth data and
the data transmitted for the same message, it is possible to compare all the
message’s features and assign the relative label of the misbehavior analyzed if
one is different. Here is the pseudocode of the comparison:

1 f o r e a c h f i n f e a t u r e s :
2 i f f != f_t ru th :
3 d f [ ’ lab ’ ] <− l a b e l
4 e l s e :
5 d f [ ’ lab ’ ] <− 0
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By merging and modifying all the files for a specific misbehavior, it is
possible to obtain a unique pandas data frame and then save it into a CSV file
called with the scenario name, e.g., "ConstPos_1416". The structure of the
final file is presented in Fig. 3.5.

Figure 3.5: Structure of the final data frame saved for each scenario type

3.1.5 Embedding

As said in Sect. 1.1, to emulate the on-line evaluation, a structure of simulators
is used, in particular involving SUMO, a time-driven simulator used to emulate
the urban mobility that orders chronologically the events. Given the mobility
simulation ordered by time, also the messages exchanged between vehicles will
consequently be time ordered, particularly by looking into the sendTime field
of every message. Since also the VeReMi dataset simulations act in the same
way, an important choice is how to deal with the sequence of messages ordered
by time, since the sequentiality is important while training the model and while
using it on a vehicle. In Chapter 2, some works present a possible approach
by defining a sliding window dimension containing a message sequence. In
particular, in [29], a sliding window of size 10 is used. By following some
research papers, the choice is to use a window of messages and not compute the
prediction on every message received. This could also be a good approach that
can help the NN in learning the misbehavior patterns provided. In particular,
the choice is a jumping window4 of dimension 5, since in the VeReMi simulations,
considering the beacon time presented in the Tab. 6.1, this dimension means 5
seconds, but in the thesis simulations, as presented in Chapter 6, the beacon
time is smaller to achieve particular vehicular network’s goals, like platooning.
So, considering a beacon time of 0.1 s, a jumping window of dimension 5 will

4A jumping window moves in non-overlapping steps, processing distinct and separate chunks
of data.
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mean waiting for 0.5 s to compute a prediction. It’s reasonable to identify an
anomaly in less than 0.5 seconds, considering that a misbehavior, anomaly, or
even an attack will not generally cause an accident in that time.

Since the prediction is made with a jumping window of 5 messages, the NN
has to be trained of data with the same structure. It’s logical that the sequence
of 5 messages has to be provided by the same vehicle since a sequence of data
from different vehicles along the road doesn’t make sense. Considering the final
data frame obtained, shown in Fig. 3.5, the data entries have to be grouped by
sending and receiving vehicles, as shown in Fig. 3.6, to create logical sequences
that can be later divided to compose the jumping windows.

Figure 3.6: Group every 5 messages received from the same vehicle

The final result has to be an X vector in which each entry is composed of a
sequence of five messages grouped by the receiving and the sending vehicle and
a parallel y vector that has to maintain the labels of the respective sequence.
To obtain the final X and y vectors ready to be used to train the NN, the first
step is grouping:

1 grouped = df . groupby ( [ ’ r x ’ , ’ s enderPseudo ’ ] )

after this line of code, grouped contains all the unique groups in the scenario
selected between the receiving and the sending vehicle. It’s important to
underline that a group can contain a number of messages not divisible by 5, so
after ordering the messages of a group by time

1 group = group . s o r t_va l u e s ( by=’ sendTime ’ )
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a cut of the exceeding messages was computed in order to achieve divisibility
by 5:

1 i f l en ( group ) % t ime_steps != 0 :
2 take = − ( l en ( group ) % t ime_steps )
3 group = group . i l o c [ : t ake ]

Given a group of 5 messages, the next step is to choose which label from
the five messages to assign to the entire group. In particular, since during the
VeReMi simulations, a vehicle in the scenarios selected cannot be mixed, the
consequent choice is to use the label of the last of the 5 messages to categorize
all the groups.

Sheet1

Page 1

sendTime posx posy sdpx spdy acl

Figure 3.7: Structure of an entry of the X vector

At this point, a data point of the X vector, after the feature engineering and
the previously explained embedding step, results in having the features and
the size shown in Fig. 3.7. Notice that the rx and senderPseudo columns were
removed since it doesn’t make any sense to learn the number of the vehicle
that is showing an anomaly or the vehicle that is receiving it, but also the
heading column was removed, since in the simulations further explained the
heading is not an important feature. It has to be underlined that to import
the model in real-world scenarios different from this thesis, it could be useful
to still introduce the heading column during the training. Given this particular
entry, the associated label will be shown at the same index in the y vector.

3.1.6 Population differences

Given the vector processed, some other problems have to be faced. The VeReMi
dataset was created based on the LuST scenario, an urban scenario created on
the city of Luxembourg map. At the same time, if the result that this thesis
aims to achieve is a universal misbehavior detector5, a population bias problem

5An MDS that can be used while driving on every kind of road and in every road condition.
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must be deleted somehow. It’s enough to consider that the thesis simulation
scenario is highway-based. The speed and acceleration data could be different
from an urban scenario. Another problem also involves the position features;
in fact, the dataset is simulated in the Luxembourg coordinates system, while
the test’s simulations could be different, or if other researchers wanted to use
the model in a completely different environment, the coordinates have to be
transformed in an absolute way. The last significant difference is that during
the simulation, sometimes a jumping window containing information not every
1 second (the beacon time used in the dataset) appears. In this case, it’s
important to consider a time delta between the messages. To delete those
biases, some solutions are adopted:

• Coordinates system: To manage this problem, a solution that signif-
icantly changes the embedding of the input data is used. Considering
the first message received from the group of five as a reference, all the
sequential four messages are changed by evaluating a difference between
the message considered and the first. This solution is adopted for the
position, speed and acceleration features to obtain the delta of those
dataset columns. In this way, those features now represent the evolution
in the four steps considered, given the first message as a reference and
not an absolute position anymore. The speed and acceleration features
are also transformed since, as an input of the NN, it could be good to
present the delta evolution for all the data.

• Population bias: Given the previous solution, the speed and acceleration
values bias is removed since the evaluation is on the delta and not the
absolute value anymore. Another bias on the population could be that
the deltas learned are smaller due to the urban scenario used. Still, in
this case, a smaller beacon time is helpful to balance between the bigger
deltas ordinarily present in a highway and the training population. In
particular, with a frequency of 10 Hz, the deltas are considered on an
interval 10 times smaller than the one used in the VeReMi, so this will
theoretically give a balance between the two factors.

• Send time sequence: The last problem is solved by introducing a
feature called dt, which stands for delta time, that is, the time elapsed
between the two sequential messages.

So, the final structure of the X and y vectors is presented in Fig. 3.8, in
which the prefix d stands for delta. In particular, an entry of the X vector
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right now comprises those six columns and four rows, while the same index in
the y vector is represented by a single cell containing the misbehavior label.

Sheet1

Page 1

dt dposx dposy dsdpx dspdy dacl

X[i]

y[i]

Figure 3.8: Final X and y structure, ready to be used as the input of the model

3.2 Neural Network

The choice presented in Sect. 3.1.5 is to work with data sequences ordered by
time and grouped in a jumping window of five messages. As said in Sect. 1.1, to
evaluate the MDS designed on-line, a simulation structure that includes SUMO,
a time-driven simulator, is used to emulate urban mobility. SUMO is a tool in
which the operations of a system are represented as a chronological sequence of
events. Given the analysis made in Chapter 2, the simplest but most effective
NN model for managing chronological data sequences is a Recurrent Neural
Network (RNN). In particular, the most common NN used is the LSTM, which
is a type of RNN aimed at dealing with the vanishing gradient problem present
in traditional RNNs. LSTMs are considered one of the most advanced models
to forecast time series.

3.2.1 Long Short-Term Memory

The LSTM NNs is a type of RNN architecture designed to overcome the
limitations of traditional RNNs, especially in learning and retaining information
over long data sequences. Introduced by Hochreiter and Schmidhuber in
1997 [36], LSTM networks are effective at learning long-term dependencies,
which makes them suitable for various sequential data tasks. The LSTM
network includes several vital components and formulas, presented in Fig. 3.9,
that enable it to process sequential data effectively. The Cell State (C) is a
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memory carrying information across different time steps. The Forget Gate
(f) determines what information to discard from the cell state, calculated as
ft = �(Wf · [ht�1, xt]+ bf ), in which � is the Sigmoid function, Wf is the weight
matrix for the forget weight, [ht�1, xt] is the concatenation of the previous
hidden state and the current input and bf represents the bias vector for the
forget gate. The Input Gate (i) decides what new information to add with the
formula it = �(Wi · [ht�1, xt] + bi), while the Candidate Cell State (C̃t) creates
new candidate values to be added given by C̃t = tanh(WC · [ht�1, xt] + bC), in
which tanh is the hyperbolic tangent function, which squashes values between
-1 and 1. The Output Gate (o) decides what information from the cell state to
output, using ot = �(Wo · [ht�1, xt] + bo). Finally, the Hidden State (h), which
is the output based on the cell state, is computed as ht = ot ⇤ tanh(Ct).

Figure 3.9: LSTM structure

LSTM networks are well-suited for sequential data and time series because
they can remember information for long periods and effectively manage the
vanishing gradient problem. Traditional RNNs often struggle with learning
from long sequences because gradients tend to vanish or explode during back-
propagation. However, the design of LSTMs, with their cell state and gating
mechanisms, mitigates this issue by allowing the network to capture long-range
dependencies in the data. Sequential data, such as time series, requires the
model to retain information from previous steps to make accurate predictions.
LSTMs excel in tasks where the order and context of the data points are critical,
as they dynamically control what information to retain or forget, enabling them
to model complex temporal patterns more effectively than traditional RNNs.
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Ultimately, the robustness and flexibility of LSTMs make them a good choice
for tasks involving sequential and temporal data, including anomaly detection.

3.2.2 Structure

Given the data vector X, composed of a group of four rows and six columns
that represent the features, after inserting a first Input layer that specifies the
size of the training vector, the decision is to put an LSTM layer of dimension
256, followed by a Dense layer of dimension 156, with relu activation function,
and a finale Dense layer of dimension 9, that has the softmax as an activation
function since it has to be the output layer and classifies the input messages
through all the available labels. Here is the Python code used to create this
model:

1 model = S e qu e n t i a l ( [
2 I npu t ( shape =(4 , 6 ) ) ,
3 LSTM(256 , r e tu rn_sequence s=Fa l s e ) ,
4 Dense (156 , a c t i v a t i o n=" r e l u " ) ,
5 Dense (9 , a c t i v a t i o n=" softmax " )
6 ] )

The solution is simple but enough to deal with the misbehavior pattern provided.
The NN model’s summary is presented in Fig. 3.10.

Figure 3.10: NN model structure used for the MDS.

Following, the model is compiled with the AdamW compiler, an optimizer
that extends the Adam (Adaptive Moment Estimation), which is widely used
in training deep learning models. Introduced by Loshchilov and Hutter in their
paper [37], AdamW ensures consistent and effective regularization by applying
weight decay directly to the weights, separate from the adaptive learning
rate mechanism used in Adam. This approach addresses the suboptimal
regularization in Adam, where the learning rate and adaptive updates influence
the effective weight decay. As a result, AdamW provides better generalization
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and reduces overfitting, making it a preferred choice for training deep learning
models. Here is the compiled code:

1 model . compile (AdamW( l e a r n i n g_ r a t e =0.001) ,
2 l o s s=’ s p a r s e_c a t e g o r i c a l_ c r o s s e n t r o p y ’ ,
3 me t r i c s =[ ’ a c cu racy ’ ]
4 )

here the learning rate selected, after trying different values, is 0.001, while the
loss function is the sparse categorical crossentropy since the model is dealing
with different labels.

3.2.3 Training

Before doing the training, more work has to be done. In particular, the dataset
has to be balanced because otherwise, label 0, which represents the regular
vehicles, has a huge number of messages compared to the other. Balancing
the dataset when using LSTM networks or any ML model is generally a
good practice because it addresses the issue of class imbalance, which can
significantly affect model performance. LSTM networks, like other ML models,
learn patterns based on the data they are trained on. Suppose the dataset
is imbalanced, meaning one class has significantly more samples than others.
In that case, the LSTM is more likely to predict the majority class simply
because it appears more frequently in the training data. An imbalanced dataset
can also cause the LSTM to generalize poorly because it might not learn the
underlying features of the minority class as effectively as those of the majority
class. In the end balancing the dataset before training an LSTM can lead to
improved model performance, especially when dealing with tasks where the
minority class is of significant importance [38], [39].

In the VeReMi dataset all the simulations are just replications of the same,
all the misbehavior labels have the same number of messages. The decision is to
take random messages from regular messages, i.e., label 0, in a double quantity
with respect to a misbehavior label. This bias is introduced to take advantage
of the regular label and reduce the possibility of predicting misbehavior instead
of an regular message in a false positive way since it is more probable that a
vehicle is not misbehaving compared to any kind of anomaly presented; the
goal to avoid the false positive prediction is explained in Sect. 1.2.

Another processing adopted for the data is scaling, in particular using the
Standard Scaler, a pre-processing technique used to transform the features of
a dataset so that they have a mean of zero and a standard deviation of one
[40]. Using the Standard Scaler helps normalize the feature values, leading to

39



improved performance, stability, and convergence in various ML algorithms.
By ensuring that features contribute equally and consistently, the Standard
Scaler enhances the overall effectiveness and reliability of the models.

1 s c a l e r = S tanda r dSca l e r ( )
2 s c a l e r . f i t (X)

The scaler is also exported using the pickle library in a way to later be used in
the simulation environment to scale the data while the simulation is running.

The last step before effectively training the model is dividing the dataset
between the train and the test set. To evaluate the offline training, 33% of the
dataset is used to compose the validation set, which is used to validate the
model trained on the remaining 77%. In this way, it’s possible to obtain a full
report composed of all the metrics useful in the ML environment to evaluate a
model.

1 X_train , X_test , y_tra in , y_test = t r a i n _ t e s t_ s p l i t ( X_di f f_sca led ,
2 y , t e s t_ s i z e =0.33 , random_state=42)

The training of the previous explained NN with the processed dataset
is executed with a batch_size of 64, 100 epochs and also the EarlyStopping
callback as it follows:

1 e s = Ea r l yS t opp i ng (
2 moni to r=’ va l_accu racy ’ ,
3 min_delta =0.001 ,
4 p a t i e n c e =10,
5 v e r bo s e =1,
6 r e s t o r e_be s t_we i gh t s=True
7 )
8 h i s t o r y = model . f i t ( X_train , y_tra in , epochs =100 , ba tch_s i ze =64,
9 v a l i d a t i o n_da t a=(X_test , y_test ) , c a l l b a c k s =[ e s ] )

3.3 Performance

To evaluate the performance of the detector on the offline testing (the validation
set), four ML metrics are used, which are:

• Accuracy: is a measure of the overall correctness of the model. It is the
ratio of correctly predicted observations to the total observations. The
formula is:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

in which TP stands for true positives, TN for true negatives, FP repre-
sents the false positives, while FN the false negatives
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• Precision: is a measure of the correctness of positive predictions. It is
the ratio of correctly predicted positive observations to the total predicted
positive observations. The formula is:

Precision =
TP

TP + FP
(3.2)

• Recall: also known as Sensitivity or True Positive Rate, is a measure of
the ability of the model to find all the relevant cases within a dataset. It
is the ratio of correctly predicted positive observations to all observations
in the actual class. The formula is:

Recall =
TP

TP + FN
(3.3)

• F1-Score: is the harmonic mean of Precision and Recall, providing a
single metric that balances both concerns. It is particularly useful when
a balance between Precision and Recall is required. The formula is:

F1-Score = 2⇥ Precision ⇥ Recall
Precision + Recall

(3.4)

In particular, the accuracy of the test set used to train the model is compared
with the accuracy of the validation set for each training epoch. The results in
Fig. 3.11 show that the validation accuracy reaches almost 94% on the whole
dataset. The accuracy value has to be intended as the general correctness in
differentiating all the nine misbehavior labels.
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Figure 3.11: Learning accuracy, comparing the test one vs the validation one.

All the metrics are evaluated on each label for what concerns the Precision,
Recall, and F1-Score. For the Precision metric, in Fig. 3.12, it’s possible to see
how the positive predictions work better for the labels constPos, randomPos,
and posOffset that stand for all the position malfunction. While the worst one
is the label of the eventual stop misbehavior. As for what concerns the True
Positive Rate, in Fig. 3.13, there’s a generally good average, with the worst
cases being the constant position one and the data reply.
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Figure 3.12: Precision metric evaluated on every label of the dataset.

Figure 3.13: Recall metric evaluated on every label of the dataset.

The F1-Score, in Fig. 3.14, represents an average balance between precision
and recall, and it’s possible to see how every label has an F1-Score over 80%,
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with the worst case that coincides with the data replay attack. This could be
logical if it’s considered that the data replay is similar in idea to the disruptive
attack, which has a higher F1-Score.

Figure 3.14: F1-Score metric evaluated on every label of the dataset.

The most important result is that the label of the not-misbehaving vehicles
(regular) has a very good average score on every metric. This is meaningful if
we consider that the protocol that is designed in Sect. 5.3 works with the single
label, so when it has a prediction that is not regular it starts to work and it’s
important that the regular label is the best one detected to let the traffic flow
as much as possible.

The last plot shown, in Fig. 3.15, is meaningful to understand better how
the misbehavior are predicted using multiple labels. In particular, this plot
reports a standard confusion matrix with values normalized by the sum of
predictions per each category (i.e., per each row), leading to a metric that we
call "Normalized Precision". In the figure, it’s possible to see how the regular
label has a very good prediction, and every label is generally well predicted.
The biggest problems are with between the labels constPos and eventualStop,
which are more than sometimes confused; since the deltas used to train the
network are logically very close, it’s normal that this confusion happens, but
it’s not a problem during the simulation, because in the thesis environment is
enough to intercept any kind misbehavior to start the protocol. Another logical
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confusion is between data replay and disruptive. As it’s said those attacks are
logically similar, but another time, for the simulation is not a problem. The
only problem in the simulations could be between dataReplay and the regular
label, which, compared to the other one, shows some confusion problems.

Figure 3.15: Confusion matrix normalized by row of the model trained on each
label.
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Chapter 4

Simulation environment

The simulations are realized thanks to the coordinated use of different tools.
In particular, a well-known simulator infrastructure is used to emulate urban
traffic and the VN. OMNeT++ [41] is a well-known discrete event simulator
that can replicate a network. In particular, it can provide a model of block
programming similar to the ISO/OSI stack, so it’s particularly easy to design
cross-layer network protocols. For the traffic, SUMO [42] is chosen because
it can be easily coupled to OMNeT++ through Veins [43], then extended
by PLEXE [44] to provide all the platooning functionalities. Thanks to this
structure, it is possible to implement a set of VN simulations, including the
possibility of designing some particular misbehavior. Also, the design of a
management protocol can be implemented across those tools.

4.1 SUMO

SUMO [42] is an open-source, highly scalable microscopic traffic simulator
developed in Germany at the Transport Research Institute within the German
Aerospace Center. It allows for the simulation of traffic composed of individual
vehicles moving through a road network. The simulation addresses a wide range
of traffic management topics and is purely microscopic, meaning that each
vehicle is explicitly modeled, has its route, and moves individually through the
network. The simulations are deterministic by default, but there are various
options to introduce randomness.

SUMO includes many modules and programs to prepare and execute a
traffic simulation. The two most used programs are sumo and sumo-gui. The
former allows for simulating without visualization, using only the command
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line, and is often used together with Traffic Control Interface (TraCI); the
latter allows traffic simulation and visualization through a graphical interface.

TraCI provides access to an ongoing road traffic simulation to external
applications, allowing them to retrieve the values of simulated objects and
manipulate their behavior on-line. The data exchange between SUMO and
OMNeT++ utilizes this interface and is based on a TCP connection that
encapsulates messages composed of sets of commands and responses. TraCI
is essential in simulations as it allows assigning a different controller for each
vehicle, setting and changing their parameters, and even creating complex
scenarios with preset accelerations and decelerations.

4.2 Veins

Veins [43] extends OMNeT++ by providing a vehicular communication stack
based on IEEE 802.11p. It can couple the network and mobility simulator, as
shown in Fig. 4.1, by creating a network node in OMNeT++ for each vehicle
in SUMO. Each node is associated with a stack that includes an IEEE 802.11p
network interface, a beaconing protocol, and one or more applications running
on it. Veins replicates the movement for the corresponding node in OMNeT++
whenever a vehicle moves. The two simulators, network and traffic, are extended
with a module dedicated to communication. During the simulation, the two
modules exchange commands through a TCP connection. The set of commands
and responses exchanged is based on TraCI, the interface exposed by SUMO.

OMNeT++ is an event-based simulator that schedules each node’s move-
ments at regular intervals. This approach fits well with SUMO, which advances
simulation time in discrete steps. The modules integrated into OMNeT++
and SUMO act as a buffer, collecting all commands between two-time steps
and ensuring synchronization between the two simulations. Veins, using TraCI,
queries SUMO about the traffic state, asking for information such as the number
of vehicles, their positions, and speeds for each of them, and can modify the
traffic dynamics by changing a vehicle’s route or its acceleration.

47



Figure 4.1: Coupling between OMNeT++ and SUMO through Veins
(https://veins.car2x.org).

4.3 Plexe

PLEXE [44], [45] is an extension of Veins that enables realistic simulations
and studies of platooning. Utilizing Veins’ capabilities to simulate both the
network and traffic, PLEXE integrates all the necessary components to study
car platoons, such as control system models and maneuvers for forming and
maintaining platoons.

PLEXE extends the interaction between SUMO and OMNeT++ via TraCI,
allowing vehicle data to be sent to all other cars in a platoon, thus enabling
platooning protocols and applications. This allows the CACC in SUMO to
be powered using data received from vehicles via Veins. Modifications and
extensions are required from two perspectives to enable car platoon simulations:
on the SUMO side, regarding the control system models and platoon maneuvers,
and on the Veins side, for implementing platooning protocols and applications.

4.3.1 SUMO control models

SUMO features several vehicle movement models designed to mimic human
driver behavior. Examples include IDM and Krauss. The primary modification
introduced by PLEXE is the new control model called CC (Cruise Controllers),
which is based on Krauss. This movement model was specifically created to
implement cooperative driving control systems. For example, Cruise Control
and ACC are part of this model.
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The version of SUMO used includes, in addition to CC and ACC, the PATH
[46] and Pleog [20] models. During the simulation, choosing which system
controls the vehicle is possible. Indeed, through the TraCI interface, one can
access the models implemented by PLEXE. When a CACC is active for a
vehicle, it is possible to send it the necessary data, exchanged via IVC from
the communication network simulator, OMNeT++.

4.3.2 Protocols and applications in Veins

Regarding Veins, each vehicle is equipped with an IEEE 802.11p network card,
a basic protocol for sending messages, and an application for distribution. The
idea is to have a protocol layer rooted in the BaseProtocol class, which provides
all the basic functionalities to be extended, and a set of subclasses that focus
solely on implementing the beaconing strategy.

The same principle is used for the application layer, where BaseApp is
responsible for loading simulation parameters and passing data to the CACCs
via TraCI. The underlying layers are tasked with deciding a platoon application
aspects, such as which vehicle is the leader, the lane a car should transit on,
and much more.

4.3.3 Defense application

Given the Plexe/Veins structure, composed of protocols and applications, it’s
important to underline that the latter is responsible for the reading of each
beacon. It’s possible to create a new application by extending BaseApp, which
is the basic one and that lets the most basic platooning examples. In this
thesis, it’s necessary to introduce a new logic because, for every five beacons,
as explained in Sect. 3.1.5, it’s necessary to perform a prediction that can
be avoided in case of defense is turned off. In addition to that, it’s also
necessary to introduce a Finite State machine protocol across the predictions
to manage the misbehavior detection during a simulation. So a new application
class is created and called AIDefenseApp, it extends the basic application,
in particular overriding the onPlatooningBeacon method, responsible for the
beacons’ reading.

From the extension of the basic application, it’s important to focus on the
new parameters defined. In particular, two parameters are defined, the first
one is called AIdefenseEnabled, and it’s a boolean, that defines if the defense
protocol is enabled or not, and the second one is radar that stands for the usage
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of the radar information instead of the beacons’ ones. In particular, radar is
always set to false during the beginning of the simulations since the protocol
defines the condition on which to turn it on.

1 ∗ . node [ ∗ ] . app l . A Id e f en s eEnab l ed = { true , f a l s e }
2 ∗ . node [ ∗ ] . app l . r a da r = f a l s e

About the protocol, the base one is still used but with the addition of new
parameters and functions. The first new parameter is inserted into the beacons,
and it can be turned on during the simulations. This parameter is simply called
warning, and it stands for when a misbehavior or an attack is detected.

1 bool warn ing ;

While for what concern the new functions, setWarning, to activate the warning
into the beacons, and activeAttack, to activate misbehavior or an attack, are
created.

1 // s e t the warn ing i n s en t beacons
2 vo id setWarn ing ( bool mi sbehav i ou r ) ;
3 // s e t the onAttack v a r i a b l e
4 vo id a c t i v eA t t a c k ( const char ∗ type ) ;

All the details will be explained later in Chapter 5 with the definitions of the
protocol and the attacks to be detected.
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Chapter 5

Evaluation Methodology

The simulators presented in Chapter 4 are mostly written in C++ language. To
use the MDS, based on a Python trained NN, is necessary a link between the
simulations environment and the model of the NN, saved in Keras h5 format.
The c++ library pybind11 for the binding between C++ and Python is used
to achieve the result presented in Sect. 5.1.

After allowing the usage of the detector through the simulation structure,
to properly evaluate the MDS, implemented in Chapter 3, on-line and installed
in every vehicle, it is crucial to implement all the misbehavior observed in
the simulated scenarios. Considering the significantly different scenario used,
presented in Chapter 6, compared to the dataset’s simulations, it’s important to
underline that, first of all, the data produced are different, e.g., if an extra-urban
scenario is considered, the speed and acceleration deltas could be significantly
different compared to a urban one. Moreover, the misbehavior’s code could not
be precisely the same as the dataset, and it’s also the purpose of this thesis to
deal with misbehavior that could be slightly different from the learning ones.
Also, the misbehaving feature interval, like the random offset selected for the
offset scenario, could be represented differently, adapting it to the scenario
created and logical considerations further explained in Sect. 5.2.

The last step is then the design of the safe management defense protocol,
presented in Sect. 5.3. This one is intended to work on the prediction of the
MDS, and since there’s a lack in developing and simulating on-line protocols
that work along with MDSs, it’s important to define a solution that could be a
standard for future implementation while reaching great results as it stands. So
the solution presented is slightly simple and works only on the differentiation
between misbehavior (all the labels that are not regular) and regular, i.e.,
what is defined as single label. So, all misbehaving multiple labels are not
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necessary, but they are still studied to allow future complex protocols that can
differentiate every single attack.

5.1 Neural Network binding

As defined in Chapter 3, a keras model and a standard scaler are designed and
trained on the VeReMi dataset as it is modified in Sect. 3.1.3 and Sect. 3.1.5,
and ready to be used in a simulation. The model is saved in h5 format, while
the standard scaler is in pkl. Since the NN definition is Python-made, and all
the simulation environment is C++ based, it’s necessary a binding to use the
scaler or the prediction saved at each beacon received. To reach this goal the
c++ library pybind11 is used. In particular, this library is efficient compared
to using the system library and calling through the system the Python model.
Since the prediction is needed every five beacon times, which means 0.5 s
considering the further used beacon time, a good efficiency is necessary.

Starting from the decision to use this particular library, the definition of a
class that can maintain the state of the model and the scaler, manage all the
predictions, and save all the messages is necessary. In particular, it is defined
a new package in Plexe, called AI, and into this package, a new c++ class is
implemented, called NNWrapper that stands for Neural Network Wrapper.

5.1.1 Definition and Initialization

In order to store a message, the first meaningful definition is a struct called
Message that can contain all the information that is needed to compute the
prediction based on the NN trained. This structure is defined to save the
information of the first message, that is the reference point to compute the
normalization of the next four messages, as explained during the model’s
training in Sect. 3.1.5.

1 s t r u c t Message
2 {
3 double dt ;
4 double posx ;
5 double posy ;
6 double spdx ;
7 double spdy
8 double a c l ;
9

10 Message ( double t , double x , double y , double spx , double spy , double a )
11 : dt ( t ) , posx ( x ) , posy ( y ) , spdx ( spx ) , spdy ( spy ) , a c l ( a ) {}
12 } ;
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In particular, the data saved, as defined in Chapter 3, are position x and y,
speed x and y, acceleration, and a delta time called dt. The struct is created
along with its constructors in order to create a message with useful data. The
class is defined with some others useful data structures, to save the messages
and the manipulated data.

1 // Map to s t o r e the f i r s t message o f each v e h i c l e
2 s t d : : map<i n t , Message> f i r s tMessageMap ;
3

4 // Map to s t o r e the s c a l e d d i f f e r e n c e s f o r each v e h i c l e
5 s t d : : map<i n t , s t d : : map<i n t , s t d : : v e c to r <double>>> sca l e dD i f f e r e n c e sMap ;

In particular, a map called firstMessageMap is used to save the first messages
of the group of five, along with the index of the sender’s vehicle, and a map of
map called scaledDifferenceMap that is used to save all the differences between
the messages from the second to the fourth and the first one, also along with
the indexes. Those data structures are intended to store the data already scaled
in order to speed up the simulation since the computation of the standard
scaling is made at each beacon step and not at the end of the receiving of the
five messages.

During the initialization of the application, that is running on a vehicle,
the constructor of the NNWrapper class is called. In this class, there are three
Python objects that are fundamental to be reached in all the class code, and
these are the model, the scaler, and the pandas’ library object, in order to
allow the usage of the data frames to better manage the data before using the
scaler. In all the class code, py stands for pybind11

1 py : : o b j e c t model ;
2 py : : o b j e c t s c a l e r ;
3 py : : o b j e c t pd ;

A path to reach the model and the scaler saved is given, and thanks to the
pybind11 library, the objects are created and saved along with the creation of
the class and the import of all the necessary Python libraries. Here is the code
of the module imported to use all the Python stuff.

1 py : : module_ ke r a s = py : : module_ : : impor t ( " t e n s o r f l ow . k e r a s . models " ) ;
2 py : : module_ p i c k l e = py : : module_ : : impor t ( " p i c k l e " ) ;
3 py : : module_ b u i l t i n s = py : : module_ : : impor t ( " b u i l t i n s " ) ;
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While, in the following code snippet is presented the initialization of the model
and the scaler given the model_path and the scaler_path, using the needed
libraries previously imported.

1 // Load the model h5 format
2 model = ke r a s . a t t r ( " load_model " ) ( model_path , py : : a rg ( " comp i l e " ) = f a l s e ) ;
3

4 // Load the s c a l e r
5 py : : o b j e c t s c a l e r _ f i l e = b u i l t i n s . a t t r ( "open" ) ( sca l e r_path , " rb " ) ;
6 s c a l e r = p i c k l e . a t t r ( " l oad " ) ( s c a l e r _ f i l e ) ;
7 s c a l e r _ f i l e . a t t r ( " c l o s e " ) ( ) ;

5.1.2 Workflow

During the simulation, vehicles exchange beacons with close vehicles on the
road or within the same group, such as a platoon. The usefulness of received
beacons depends on the control system in use. For example, if the Ploeg control
system is used, the front vehicle messages are the only useful beacons. The
useful messages received are processed to obtain four scaled and differentiated
data entries, which are then used for prediction computation, as defined in
Chapter 3. In particular, if the message is the first, it’s simply saved into the
firstMessageMap data structure, and then the simulation proceeds with the
next step.

1 i f ( f i r s tMessageMap . f i n d ( i d ) != f i r s tMessageMap . end ( ) )
2 {
3 // not the f i r s t message . . .
4 } e l s e {
5 Message msg ( posx , posy , spd , ac l , hed ) ;
6 f i r s tMessageMap [ i d ] = msg ;
7 }

If the message is the second, third, or fourth one, the data normalization (all the
operations needed, like computing the deltas) is made, and then the normalized
data are scaled thanks to the usage of the Standard Scaler previously bound.

1 py : : o b j e c t norma l i zed_data = s c a l e r . a t t r ( " t r an s f o rm " ) ( i npu t_ar ray ) ;

Then if the message is the 5th, after the processing of the data, the prediction
is computed.

1 py : : o b j e c t p r e d i c t i o n = model . a t t r ( " p r e d i c t " ) ( i npu t_ar ray ) ;

Depending on the label predicted, the protocol works in a precise way as it
is defined in Chapter 5. In Fig. 5.1 the working flow previously described is
represented.
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Figure 5.1: Finite State Machine that represents how during a simulation
predictions and scaling are computed, and when the defense protocol is triggered.

5.2 Misbehavior definition

The misbehavior selected from the VeReMi dataset, presented in Sect. 3.1.2,
are used to train the MDS. Each of these anomalies needs to be implemented
using simulators to see if the NN can detect them in an on-line simulation.
In Sect. 4.3.2, it is stated that each individual car is equipped with protocols
responsible for creating and sending beacons to other vehicles. As any misbe-
havior is indicated by a variance between the vehicle’s on-road behavior and the
data it transmits through V2X communications, it is imperative to modify the
protocols installed on every car in a way to insert all the misbehavior studied.
Moreover, it’s important to underline that each misbehavior is intended to
mimic its respective one from the dataset, but due to the traffic scenario simu-
lated, i.e., a platoon on a highway, as explained in Chapter 6, some parameters
are modified. From now each misbehavior used to train the model is presented
along with its implementation into the simulation’s protocol.

• Constant position: At the time t of beginning of the constant position
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misbehavior, the selected misbehaving vehicle starts to transmit the same
position of t, here is the formulas, in which t+ i is intended as every time
step after the start of the misbehavior:

posx[t+ i] = posx[t] (5.1)

posy[t+ 1] = posy[t] (5.2)

Here is the code used to set the t position into a function called activeAt-
tack, recalled when the simulation reach the time t :

1 i f ( st rcmp ( type , " constPos " ) == 0)
2 {
3 VEHICLE_DATA data ;
4 p l e x eT r a c i V e h i c l e −>ge tVeh i c l eDa ta (&data ) ;
5 posx = data . p o s i t i o nX ;
6 posy = data . p o s i t i o nY ;
7 }

The significant differences from the dataset misbehavior are that the
anomaly start during the simulation and not from the beginning of it,
and that the position sent is intended like a sudden stop of the GPS
functionalities and not a random position.

• Random position: When the misbehavior begin, the position features
are set to a random value between [0m, 10000m], an interval that is
deliberately very broad, to represent a GPS completely broken. Here is
the formulas:

posx[t+ i] = U [0, 10000][m] (5.3)

posy[t+ i] = U [0, 10000][m] (5.4)

and the code used to set the positions:
1 i f ( st rcmp ( attackType , " randomPos" ) == 0)
2 {
3 s t d : : u n i f o rm_ in t_d i s t r i b u t i o n <> d i s t r (0 , 10000) ;
4 posx = d i s t r ( gen ) ;
5 posy = d i s t r ( gen ) ;
6 }

• Position offset: At the time t of the misbehavior the sending vehicle
starts to create beacons with its actual position plus a random selected
offset. Here is the formulas:

posx[t+ i] = posx[t+ i] + U [�10, 10][m] (5.5)
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posy[t+ i] = posy[t+ i] + U [�10, 10][m] (5.6)

and the code used to set the random offset:
1 i f ( st rcmp ( attackType , " randomOffset " ) == 0)
2 {
3 s t d : : u n i f o rm_ in t_d i s t r i b u t i o n <> d i s t r (−10 , 1 0 ) ;
4 o f f s e t = d i s t r ( gen ) ;
5 }

The biggest difference from the dataset is that in there it’s used an
interval between [�300m, 300m], for the random version of the offset,
and a constant offset of �X = 250m and �y = �150m, while here the
offset is significantly smaller. This decision is because the purpose is to
represent a small error of the GPS, while including all the bigger intervals
in the random scenario.

• Random speed: Here the concept is the same as the random position
scenario, but for the speed features and with an interval of random
selection between [�200m/s, 200m/s], intentionally extreme speed values
to indicate that the OBU is not functioning properly, with the formulas
like this:

speedx[t+ i] = U [�200, 200][m/s] (5.7)

speedy[t+ i] = U [�200, 200][m/s] (5.8)

and the speed setting as it follows:
1 i f ( st rcmp ( attackType , " randomSpeed" ) == 0)
2 {
3 s t d : : u n i f o rm_ in t_d i s t r i b u t i o n <> d i s t r (−200 , 200 ) ;
4 spdx = d i s t r ( gen ) ;
5 spdy = d i s t r ( gen ) ;
6 }

• Speed offset: The idea is the same as for the position offset, but with
an offset interval between [�8m/s, 8m/s], with the formulas as it follows:

speedx[t+ i] = speedx[t+ i] + U [�8, 8][m/s] (5.9)

speedy[t+ i] = speedy[t+ i] + U [�8, 8][m/s] (5.10)

and the code like this:
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1 i f ( st rcmp ( attackType , " randomOffsetSpeed " ) == 0)
2 {
3 s t d : : u n i f o rm_ in t_d i s t r i b u t i o n <> d i s t r (−8 , 8 ) ;
4 o f f s e t = d i s t r ( gen ) ;
5 }

• Eventual stop: This kind of attack is exactly as in the dataset, so all
the position, speed and acceleration features are set to 0 once t is reached.
Here is the code snippet used to represent the misbehavior:

1 i f ( st rcmp ( type , " e v en tua l S t op " ) == 0)
2 {
3 VEHICLE_DATA data ;
4 p l e x eT r a c i V e h i c l e −>ge tVeh i c l eDa ta (&data ) ;
5 spdx = 0 ;
6 spdy = 0 ;
7 posx = 0 ;
8 posy = 0 ;
9 a c l = 0 ;

10 }

• Disruptive: This kind of attack is an information replay of previously
received data from random neighbor. Since the scenario is significantly
different from the urban one, the random neighbour is selected from the
indexes of the platoon’s vehicles at each step after the misbehaving time
t, and the selected vehicle’s data are re-transmitted into the platoon, but
with the misbehaving vehicle’s sign. Here is the random index selection
code:

1 s t d : : u n i f o rm_ in t_d i s t r i b u t i o n <> d i s (−1 , p l a t oonS i z e −1);
2 i n t randomNum ;
3 do {
4 randomNum = d i s ( gen ) ;
5 } whi le ( randomNum == myPos ) ;
6 appl−>se tRep l a y I n d e x ( randomNum ) ;

• Data replay: This attack is similar to disruptive, but for data replay
the replay index is selected only at the beginning of the simulation as for
disruptive, but it remains the same through all the simulation. While the
other misbehavior are similar to the ones presented in VeReMi those 2
attacks could be very different, bringing some confusion into the multiple
label on-line prediction of the MDS.
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5.3 Protocol

After implementing misbehavior into the simulations, the MDS is ready to
work on-line in an attempt to detect them. Upon detecting misbehavior,
a protocol is necessary to manage this prediction and try to save as many
vehicles as possible on the road. The literature reviewed in Chapter 2 lacks
a significant development of a defense protocol that can operate based on
MDS’s prediction. The protocol presented in this section is simple and aims to
establish a standard that can be modified in the future. The protocol works
on every vehicle decentralized, that means that the prediction of the MDS is
made independently from the other ones. In Fig. 5.2 is presented a finite state
machine that aims to represent the working flow of the protocol.

FOLLOWING GAP_CONTROL

AUTONOMOUS

Warning || Attack

Raise warning
Use Radar

Gap reached

PLOEG->ACC

Figure 5.2: Finite state machine that represents the protocol of management
for a misbehavior

When a vehicle is operating in traffic and engaging with other cars, its
state is called following. However, if its MDS detects any kind of misbehavior,
referred to as the attack variable, the vehicle’s state changes. For this protocol,
it is essential to focus on a single label; a deviation from the regular label
triggers the state change. The MDS prediction alone is not the sole trigger
for the state change. Due to the ability of all nearby vehicles to communicate,
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a warning parameter is embedded in each beacon. If another vehicle detects
irregularities in the exchanged messages, it activates the defense protocol. This
is critical as a vehicle only processes a fraction of the messages related to its
control system and is unable to detect misbehavior from other cars.

Once the state change is activated, the vehicle raises a warning by setting
the warning parameter of the beacons to true, signaling ongoing misbehavior,
and switches to utilizing radar instead of V2X communications. Since this
protocol only distinguishes between misbehavior and regular messages, it does
not provide specific responses for each type of misbehavior. Consequently, in
the case of severe misbehavior that could result in an accident, it is preferable
for the vehicle to utilize radar data instead of communication data for its
control system.

1 p rocedu r e INITIALIZE ( )
2 s t a t e <− FOLLOWING
3 a c t i v e C o n t r o l l e r <− PLOEG
4 s e tC o n t r o l l e r G a p ( headway [PLOEG] , d i s t a n c e [PLOEG ] )
5 warn ing <− Fa l s e
6 useRadar <− Fa l s e
7

8 p rocedu r e ONPLATOONBEACON( pb )
9 i f ( s t a t e = FOLLOWING) then

10 p r e d i c t i o n <− p r e d i c t ( )
11 i f ( p r e d i c t i o n != 0 or pb−>warn ing = True ) then
12 s t a t e <− GAP CONTROL
13 warn ing <− True
14 useRadar <− True
15 START GAP CONTROL( )
16

17 p rocedu r e GAP REACHED( )
18 s t a t e <− DOWNGRADE
19 c t r l <− ACC
20 s e tC o n t r o l l e r G a p ( headway [ACC] , d i s t a n c e [ACC ] )

Listing 5.1: Psuedocode of the protocol procedures

The protocol aims to use radar data after detecting misbehavior, making
support for CACC unfeasible due to potential issues with the radar’s provi-
sion of low-latency, high-precision data for real-time cooperative control. The
fundamental concept of the protocol involves transitioning the vehicle’s con-
trol system from cooperative to semi-autonomous (specifically ACC) upon
encountering misbehavior. This approach is reminiscent of the method used in
reference [45], where the gap between vehicles is increased based on the number
of non-functioning communication interfaces until a direct switch of the control
system becomes available. Such a procedure is crucial to avoid a sudden transi-
tion between control systems with different desired distances, which could lead
to an abrupt braking event and result in an accident. Throughout the phase of
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increasing the gap, the entire process is managed in the gap control state, as
if all communication interfaces had failed, as detailed in reference [45]. Once
the required gap is achieved, the control system is prepared to transition to
semi-autonomous ACC, with the continued use of radar information during this
phase. The pseudocode of the entire process is detailed in the Listing 5.1. Here
the initialize procedure has to be intended as the beginning of the simulation,
while the on platoon beacon is the procedure called every time a beacon is
received. Here the management of the group of five messages, explained in
Sect. 3.1.5, is deliberately cut, because the focus is on the predicted value and
not on how the prediction is computed. Moreover, all the gap control used to
allow the fallback to a semi-autonomous system is explained in Sect. 5.4.

5.4 Fallback system

Following what it’s said in the reference [45], to complete a fallback from a
control system to another one, with a larger desired distance, a procedure
that progressively increases the inter-vehicle distance is needed. The Gap
Control Algorithm, fully presented in Listing 5.2, is specifically designed to
ensure the safe and seamless adjustment of the inter-vehicle distance within
a platoon, particularly during transitions between different control systems.
The algorithm begins with the start gap control procedure, as indicated in
5.1, and by initializing the desired gap, i.e., gap_t that stands for target gap,
based on the current speed curSpeed and specified headway time curHead.
It then determines whether the gap should be increased or decreased and
adjusts the inter-vehicle distance incrementally to avoid uncomfortable or
unsafe accelerations. The core of the algorithm involves periodic updates that
adjust either the current time headway or the fixed gap distance, depending
on the control policy in use. These updates continue until the target gap is
achieved, at which point the algorithm verifies that the vehicle has physically
reached the desired distance before signaling the end of the procedure. This
careful management of gap adjustments helps maintain stability and safety in
the platoon, even during transitions between different communication states or
control algorithms. The algorithm is particularly valuable in scenarios where
vehicles must adapt to varying communication conditions or need to fallback
to a semi or full automatic control system to maintain driving safety, ensuring
that the platoon can maintain safe distances under failures in the network or
misbehavior.
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1 p rocedu r e STARTGAPCONTROL( head_t , dt )
2 gap_t <− head_t ∗ curSpeed + dt
3 i n c r e a s i n gGap <− t r u e
4 i f u s i n g t ime headway then
5 curGap <− dt
6 curHead <− ( c u rD i s t a n c e − dt ) / curSpeed
7 i f head_t < curHead then
8 i n c r e a s i n gGap <− f a l s e
9 e l s e

10 curGap <− cu rD i s t a n c e
11 curHead <− head_t
12

13 i f gap_t < curGap then
14 i n c r e a s i n gGap <− f a l s e
15 updateGap ( )
16

17 p rocedu r e UPDATEGAP
18 de l ta_h <− de l ta_g / curSpeed
19 gap_t <− head_t ∗ curSpeed + dt
20 i f i sGapCont ro lComp le ted ( ) then
21 i f u s i n g t ime headway then
22 curHead <− head_t
23 e l s e
24 curGap <− gap_t
25 s e tC o n t r o l l e r G a p ( curHead , curGap )
26 i f i sGapReached ( ) then
27 gapReached ( )
28 re tu rn
29 e l s e
30 i f u s i n g t ime headway then
31 curHead <− curHead + sgn ( head_t − curHead ) ∗ de l ta_h ∗ de l t a_t
32 e l s e
33 curGap <− curGap + sgn ( gap_t − curGap ) ∗ de l ta_g ∗ de l t a_t
34 s e tC o n t r o l l e r G a p ( curHead , curGap )
35 s c h edu l e ( de l ta_t , updateGap ( ) )
36

37 p rocedu r e ISGAPCONTROLCOMPLETED
38 i f u s i n g t ime headway then
39 i f i n c r e a s i n gGap then
40 re tu rn curHead >= head_t
41 e l s e
42 re tu rn curHead <= head_t
43 e l s e
44 i f i n c r e a s i n gGap then
45 re tu rn curGap >= gap_t
46 e l s e
47 re tu rn curGap <= gap_t
48

49 p rocedu r e ISGAPREACHED
50 i f i n c r e a s i n gGap then
51 re tu rn cu rD i s t a n c e >= gap_t
52 e l s e
53 re tu rn cu rD i s t a n c e <= gap_t

Listing 5.2: Gap Control Algorithm taken from [45] and adapted for this thesis
scope
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This code snippet provides a clear and structured way to implement the
gap control algorithm in a CACC system, ensuring that transitions between
different states are smooth and safe. In the pseudocode if a variable has the
prefix cur it stands for current, while if the suffix is _t it stands for target.
Moreover there are some variables like dt that is a fixed distance offset, the
rate at which the headway or gap should be adjusted represented by delta_t
and delta_g. In the end the sign function is defined as sgn(x) = 1 if x � 0, �1

otherwise.

5.5 Gap control dynamic

The fallback dynamic when the protocol starts to work, after a misbehavior
detection, is shown in Fig. 5.3 and Fig. 5.4. In this simulation, taken from
the whole set presented in Chapter 6, the vehicles are using a Ploeg control
system while following an oscillating speed pattern of the platoon’s leader,
used to imitate the normal flow of vehicles on the road, often not constant but
turbulent due to traffic conditions. At 40 s of simulation the leader sends a
misbehavior that is immediately detected from the MDS of the vehicle behind
that raises a warning and takes the protocol into action on all the platoon’s
vehicles. After the detection it’s possible to see how the defense protocol
works while dismantling the platoon. Fig. 5.3 shows the front distances of
the following vehicles, showing how during the gap control state the distances
are increased, while using the radar that still catches the oscillating leader’s
movement on the road, catch even when the gap is reached and the control
system switched to ACC. If instead of semi-autonomous the vehicles became
completely autonomous, therefore without using radar, there would be no
oscillation. While, in Fig. 5.4 is shown the speed pattern of the following
vehicles, showing how after slowing down, they reconstruct the correct leader’s
pattern with the new semi-autonomous control system. Those plot show how
the gap control phase to reach the correct distance to switch the control system
uses less than 30 s, increasing the front distances of about 20 m, and without
sudden break events.
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Figure 5.3: Front distances vs time of a platoon under a sinusoidal speed pattern
of the leader while dismantling after a misbehavior sent from the leader.

Figure 5.4: Speed profiles vs time of a platoon under a sinusoidal speed pattern
of the leader while dismantling after a misbehavior sent from the leader.
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Chapter 6

Simulations

The simulations are set on a highway, which differs significantly from the urban
scenario based on the City of Luxembourg used in the dataset, in which every
vehicle changes its neighbors more rapidly than on a straight highway. This
variation, particularly in speed, acceleration, and transmitting vehicles, enables
a run-time study of the MDS in a new environment along with a saving protocol
to assess the system’s validity. Furthermore, the MDS is validated within a
platooning application, showing its use to prevent as much accidents as possible.
Platooning is considered one of the most important goals in CITS for highway
scenarios due to its potential to significantly enhance safety, efficiency, and
sustainability in road transportation and also the reference paper [45], on which
the safe protocol is built, examined the fallback between control systems in a
platoon scenario on a highway, it results to be a good choice on which validate
the simulations’ set.

Parameter Value
Simulation Duration 120 s
Control System Ploeg
Scenario Highway
Beacon Time 0.1 s
Platoon Sizes 4, 8, 16
Leader Speed 100 Km/h
Oscillation Amplitude 5 km/h
Oscillation Frequency 0.1 Hz
Starting Misbehavior Time U[15 s, 80 s]
Repetition 100

Table 6.1: Simulation Parameters
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In this scenario, misbehavior are originated from a vehicle within the
same platoon consisting of 4, 8, or 16 cars. In particular, each simulation
is represented by the misbehavior type used and the platoon’s vehicle that
starts the misbehavior, that is only one for each simulation. Moreover, every
simulation combination, represented by misbehavior ID and misbehavior type,
is made with the defense protocol and the MDS’s prediction activated and
deactivated. So each simulation is uniquely identified by the combination
of misbehavior vehicle ID, misbehavior type and defense protocol active or
not. Each unique simulation is also repeated 100 times with a different seed
and a different misbehavior starting time, randomly taken from a uniform
integer distribution between 15 s and 80 s. All the simulation parameters are
represented in summary in Tab. 6.1.

Every simulation has a duration of 120 s, and in all the platoons simulated
the control system used is Ploeg for all the vehicles in a platoon, unless for the
leader, that is autonomous. An autonomous leader vehicle is required for a
platoon, because it can maintain a consistent speed, acceleration, and braking
pattern without the variability introduced by human drivers. This consistency
is critical for maintaining a stable platoon, where the following vehicles can
closely mimic the leader’s actions without experiencing sudden changes. In
particular, the autonomous leader uses a sinusoidal pattern of the speed, with
a center value of 100 km/h, an oscillation amplitude of 5 km/h and a frequency
of 0.1 Hz. This speed pattern is better through the thesis study, since it’s
normal on a road to have some little speed changes compared to a continue
constant speed. Moreover, since the simulations are dealing with CACCs at
high speed values, a beacon time smaller than 1 second is crucial because it
ensures that the vehicles can react quickly and smoothly to changes in the
environment. This is why the beacon time is set to 0.1 s, a commonly used
value in vehicular communication systems, particularly in CITS.

All the detailed simulations are resumed in Tab. 6.2. It has to be noticed
that for the platoon size 4 and 8 the misbehavior that begins from the last
vehicle ID is not simulated, since Ploeg only take care of the front messages,
and if the last vehicle send a misbehaving message, no one would be affected
by its misbehavior. While, for the platoon size 16, due to the time demanding
simulations and the platoon sizes 4 and 8 that are sufficient for this thesis
evaluation, only the leader and the center vehicle, with ID 7, are simulated
to send a misbehavior. So, on the platoon size 16 is made only an evaluation
to confirm what is seen in the others platoon sizes scenarios. In total the
simulations made are 19200.
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Size ID Misbehavior Type Defense Reps Tot

4 [0, 1, 2]

[constPos, randomPos,
posOffset,randomSpeed,
spdOffset,eventualStop,
disruptive, dataReplay]

[on, off] 100 4800

8 [0, 1, 2, 3,
4, 5, 6]

[constPos, randomPos,
posOffset,randomSpeed,
spdOffset,eventualStop,
disruptive, dataReplay]

[on, off] 100 11200

16 [0, 7]

[constPos, randomPos,
posOffset,randomSpeed,
spdOffset,eventualStop,
disruptive, dataReplay]

[on, off] 100 3200

Table 6.2: Simulations summary

6.1 Results

The results are evaluated from two different perspectives. The most important
one involves the prediction accuracy of the single label, presented in Sect. 6.1.1,
in which every misbehavior is generally identified with the label misbehavior.
At the same time, a not misbehaving group of messages is called regular. Since
the designed protocol, presented in Sect. 5.3, works only on the differentiation
between misbehavior or not, those are the most important results to be evaluated
to catch if the MDS, built on the VeReMi dataset, works well with the defense
protocol in the simulated scenarios.

The designed protocol is built without a personalized response for each
misbehavior, so if the MDS identified each label well, the protocol could be
modified with specific responses. To evaluate this possibility, the same results
are also presented for the multiple labels evaluation, in Sect. 6.1.2, in which
the metrics are evaluated by trying to identify every kind of misbehavior. The
offline results, in Sect. 3.3, present good values, but since the NN implemented
is simple as well as the scenario developed is different from the dataset one, the
expected values are not as high as for the single label. Obtaining average good
results could mean that the solution could be adopted with an improvement in
the NN.

The most important value to be shown is the accuracy of the prediction of
the misbehavior label. Reminding 3.3, the accuracy is a measure of the overall
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correctness of the model. For the evaluation of the results the formula has been
rewritten and has to be intended as it follows:

Accuracy =
#Correct Predictions

#Total
(6.1)

For the simulations’ set the accuracy is evaluated from the time that a misbe-
havior begins. In particular, a prediction is considered correct, for the single
label, if a misbehavior is predicted within two jumping windows, that means
with a reaction time of maximum 1 s. Even if the misbehavior is predicted
after those windows the prediction is considered not correct. For the multiple
labels, the prediction is considered correct if the first misbehavior prediction
within the 2 windows is the respective label of the misbehavior scenario. While,
the denominator of the fraction depends on the grouping evaluated, e.g if the
results are grouped for each misbehavior type, the accuracy is a value for a
specific misbehavior and the total number is all the simulations in the set with
that specific misbehavior. Moreover, the results are shown within a confidence
interval with a confidence level of 95% and its mean, maximum and minimum.
The confidence interval gives a range in which expect the true value to fall, and
it quantifies how sure to be about that range. Furthermore, the average is not
presented as a single value on all the simulations, but to deeply understand
what it’s happening, and which scenario creates more problems, it is presented
first grouping all the simulations by kind of misbehavior, and then also grouping
the simulations of a specific platoon size by the vehicle’s ID that is sending the
misbehavior.

Another important value to be shown, as said in Sect. 1.2, is the labeling
accuracy before that a misbehavior truly happens. This is important to show
how many regular labels are confused with the misbehavior one and trigger the
protocol before that is really necessary, blocking the normal flow of traffic. In
the end, the last value to be analyzed is how many accidents the protocol is
able to save.

6.1.1 Single label results

As already said, the single label intends to identify any misbehavior with a
unique label that is differentiated from the regular one. In Fig. 6.1 is shown
the average accuracy with the maximum and minimum values of the confidence
interval, with a confidence level of 95%. In particular, this value is shown for
each kind of misbehavior, e.g., all the constant position misbehavior, with every

68



misbehaving IDs possible and with every platoon sizes possible, is represented
in the "constPos" column. As this section presents the single label results, the
prediction is marked as correct when a specific kind of misbehavior begins,
if it is identified from the MDS as the correct label or as any other kind of
misbehavior. The only incorrect predictions are when a misbehavior begins,
and it is identified as regular.

Figure 6.1: Prediction accuracy of single label with the confidence interval,
evaluated by each kind of misbehavior

Type Mean
constPos 100%
randomPos 100%
posOffset 98.25%
randomSpeed 100%
spdOffset 95.17%
eventualStop 100%
disruptive 99.83%
dataReplay 97.92%

Table 6.3: Accuracy mean value of the single label grouped by misbehavior
type
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In Tab. 6.3 is possible to see the punctual average values of Fig. 6.1 resumed,
and it’s possible to notice how the average accuracy of many misbehavior are
100% or close to it. The only misbehavior that seems to create problems, with
an average score less than 99%, are the offsets and data replay. The lower
offsets’ score could be logical since the deviation from a regular behavior is
defined as very small in Sect. 5.2. At the same time, data replay could be the
real problem for protocol safety. It has to be noticed that the maximums of
every interval still reach 100%. By doing a mean on the average score, the
MDS accuracy score on the misbehavior is 98.9%.

In the following figures, accuracy is shown grouped by each vehicle ID
that causes misbehavior for every platoon size available, i.e., 4, 8, and 16. In
this case, a column represents the average prediction accuracy, along with the
confidence interval, of every kind of misbehavior in a specific platoon size for
the particular vehicle ID.

Figure 6.2: Prediction accuracy of single label with the confidence interval,
evaluated by each vehicle ID in a platoon of size 4
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Figure 6.3: Prediction accuracy distribution of single label, evaluated by each
vehicle ID in a platoon of size 4

In Fig. 6.2, it’s possible to see the average accuracy in a platoon of size 4,
evaluated by each vehicle ID that begins a misbehavior. The average scores
are almost the same, close to 100%, and the confidence interval still reaches
a maximum of 100% for every ID. While in Fig. 6.3, it shows the accuracy
distribution in a box plot by showing which kind of misbehavior causes the
maximum of the interval in green and the minimum in red. It’s possible to
see how the plots for each ID are almost the same, and the maximums are
always caused by constant position, while the minimum is by speed offset.
Fig. 6.4 and Fig. 6.5 show the same accuracy plots, but this time for all the
simulations of platoons composed by eight vehicles. It is possible to see how all
the averages are still greater than 95% for all the vehicle’s IDs. The maximums
of the confidence interval still reach 100% for all the IDs. Moreover, from
the distribution plots, it’s possible to see how the maximum is still caused by
constant position, while the minimum is from the offsets and data replay, as
expected.
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Figure 6.4: Prediction accuracy of single label with the confidence interval,
evaluated by each vehicle ID in a platoon of size 8

Figure 6.5: Prediction accuracy distribution of single label, evaluated by each
vehicle ID in a platoon of size 8
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Concerning the platoons of size 16, the distribution of the leader ID and the
center vehicle of ID 7 is shown in Fig. 6.6, confirming all the considerations of
the previous plots. In particular, the average is still greater than 95% with the
maximums that reach 100%, caused by constant position, and the minimum
caused by speed offset. In Tab. 6.4 all the punctual values of the accuracy
average are resumed for each platoon size.

Figure 6.6: Prediction accuracy distribution of single label, evaluated by each
vehicle ID in a platoon of size 16

Size 4 Size 8 Size 16
0 98.625% 99.25% 98.625%
1 98.625% 98.875%
2 98.125% 98.125%
3 98.625%
4 99.75%
5 99.875%
6 99.375%
7 98.875%

Table 6.4: Accuracy mean value of the single label grouped by id and for each
platoon size simulated
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Since the MDS seems to work very well on the single label predictions,
another important value to be analyzed is the labeling accuracy before a
misbehavior starts. In particular, Fig. 6.7 shows how, on a total of 886956
messages in all the simulations made before the misbehaving time, the regular
label is always predicted, indicating how the system is stable and doesn’t trigger
the protocol when it’s not necessary, letting the traffic flow as much as possible.
In this case, the labeling choice of doubling the regular label compared to any
misbehavior label, presented in Sect. 3.2.3, seems to bring stability allowing
the system not to stumble upon false positives.

Figure 6.7: Labeling accuracy between regular and misbehavior, evaluating
how many regular labels are predicted as misbehavior before it begins

6.1.2 Multiple label results

Without generalizing the unique and single label that includes all the misbe-
havior, the MDS tries to identify each kind of misbehavior from the others.
The identification of different misbehaving labels is called multiple label. With
good accuracy results on the multiple label, a protocol that makes personalized
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responses for each misbehavior could be implemented. From Fig. 6.8 it is
possible to see immediately that the results do not seem to be good. This
figure compares the accuracy levels of the single label, evaluated by each kind
of misbehavior, i.e., the same values of Fig. 6.1, and the accuracy of multiple
label. It’s possible to see that the average levels of each misbehavior are very
low, and in particular, some of them, like disruptive and eventual stop, are
close to zero.

Figure 6.8: Prediction accuracy of single label compared with multiple label,
with the confidence interval, evaluated by each kind of misbehavior

In Fig. 6.9 is presented the confusion matrix of the whole simulation set, as the
previous confusion matrix, in Fig. 3.15, this plot reports a standard confusion
matrix with values normalized by the sum of predictions per each category (i.e.,
per each row), leading to the same metric that we call "Normalized Precision".
On this matrix, the main diagonal has to be with the highest value to indicate
that the true labels on the y-axis are correctly predicted on the x-axis. The
resulting matrix of this simulation shows that the diagonal has good values
only for constant position, random speed, and speed offset. In contrast, most
of the time, the other values are generally predicted as data replay, with very
low values for disruptive and eventual stop. Moreover, the regular label, which
has to be zero for every cell because the matrix evaluates results only on
misbehavior scenarios, at the misbehaving time, is predicted in some cases for
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position offset, speed offset and data replay, confirming what is presented in
Fig. 6.1, that shows that for the single label, those three are the ones with the
most significant problems. So, from this matrix, it emerges that data replay
creates a lot of noise in the simulation environment, meaning that it could have
been replicated differently than the original one, or it could be similar to other
misbehavior from the data produced. Furthermore, it could also be the most
problematic also for the single label protocol. It has to be noticed that also in
the presentation paper of the extended VeReMi dataset [7], the replay attacks
are indicated as the most problematic, especially for the precision.

Figure 6.9: Confusion matrix of the predictions of the misbehavior on the whole
simulation set normalized by row, comparing all the labels

In Fig. 6.10 and Fig. 6.11 are shown the average accuracy and the accuracy
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distribution with the maximum and minimum misbehavior type that causes
that value, on a platoon of 4 vehicles, for each ID that begins the misbehavior,
while in Fig. 6.12 and Fig. 6.13 the same results are shown for a platoon of size
8. In the end, Fig. 6.14 shows the accuracy distribution of a platoon size 16.

Figure 6.10: Prediction accuracy of multiple label with the confidence interval,
evaluated by each vehicle ID in a platoon of size 4
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Figure 6.11: Prediction accuracy distribution of multiple label, evaluated by
each vehicle ID in a platoon of size 4

Figure 6.12: Prediction accuracy of multiple label with the confidence interval,
evaluated by each vehicle ID in a platoon of size 8
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Figure 6.13: Prediction accuracy distribution of multiple label, evaluated by
each vehicle ID in a platoon of size 8

Figure 6.14: Prediction accuracy distribution of multiple label, evaluated by
each vehicle ID in a platoon of size 16
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The results show average values always around 50% with distribution
values that change between almost 10% and 80%. This results’ patterns are
present for each platoon size and for each vehicle ID that begins a misbehavior,
meaning that the position in a platoon is not characterizing for the multiple
label detection. Moreover, the MDS doesn’t work well on the multiple label
predictions. This result could be obtained because of the different representation
of the misbehavior during the simulations, but also from different data produced
from the highway scenario, differently from the urban one. In particular,
analyzing the offline performances, in Sect. 3.3, it is possible to notice that on
the offline validation set the scores are good, meaning one more time that the
translation at run-time caused some punctual detection problems.

6.1.3 Accidents reduction

Since the single label results, in Sect. 6.1.1, are good, they provide a solid
basis for the defense protocol. The purpose of the protocol is save as much
vehicles as possible in a platoon. So, the following results present the accidents
evolution in a platoon, by activating the defense protocol, based on the single
label predictions of the MDS.

Figure 6.15: Fraction of simulations that ended in a crash without the defense
protocol. One bar is reported for each kind of simulated attack
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First of all, in Fig. 6.15 it is possible to see the percentages of accidents
caused by each misbehavior without the defense being active. In particular,
the position and speed offset never cause accidents, meaning that the lower
accuracy values of Fig. 6.1 are not a problem. Also random speed never cause
any accident, also if the random speed range is very wide. This means that
on a control system like Ploeg a sudden and wide change in the positions
transmitted is more significant than a change in the actual speed transmitted.
Furthermore, data replay, that is one of the most problematic misbehavior from
a detection point of view, cause almost the 10% of the accidents through all
the simulation set without defense. In Fig. 6.16 is shown how introducing the
defense saved many platoons, in particular with a gain in saved platoons of
98.62%, calculated as gain = defenseoff�defenseon

defenseoff
. In the end, Fig. 6.17 shows

how the 0.77% of remaining accidents with the defense protocol active it’s
caused by data replay, as expected, since it is the only problematic misbehavior
that is sometimes not detected from the MDS.

Figure 6.16: Percentage of accidents on all the simulations without and with
the defense protocol
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Figure 6.17: Fraction of simulations that, despite the active defense protocol,
ended in a crash. One bar is reported for each kind of simulated attack
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Chapter 7

Conclusions

Through extensive analysis and simulations, the study successfully addressed
the creation of a simple ML framework, based on LSTM, to detect eight different
misbehavior taken from the VeReMi dataset, a standard in the misbehavior
detection field in VN. Moreover, the study reached the goal of translating the
MDS trained offline, in run-time simulations, validated with a platoon simulated
on a highway, a profoundly different scenario compared to the training dataset.
In the end, this thesis aimed the design of a defense protocol whose purpose is
to save the vehicles in a platoon in which a misbehavior, detected by the MDS,
is happening.

From the results in Sect. 6.1.1, the prediction accuracy in identifying all the
anomalies and attacks studied as a unique misbehavior label, i.e., defined as
single label through the thesis, is well working. This result is meaningful since
it means that training offline a simple NN on the VeReMi dataset is sufficient to
recognize the same set of misbehavior reconstructed in a slightly different way
at run-time on every vehicle and in a different scenario. Furthermore, this result
provides a solid basis for the defense protocol that, as shown in Sect. 6.1.3,
has an efficiency close to 99% in saving accidents all over the simulation set.
Although the protocol is built to give the same response to all the misbehavior
detected, i.e., the disruption of the platoon, it enhances driving safety without
interrupting the cooperative driving when it’s not necessary.

Despite the protocol works on a single misbehavior label, a deep analysis
of the MDS that tries to identify each specific misbehavior was made in
Sect. 6.1.2. Those multiple labels have bad results even though the good
metrics value was reached while training offline the model. This result could
be easily explained. First of all, the eight anomalies were reconstructed based
on the idea of the dataset’s misbehavior, but it ended in implementing those
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misbehavior differently. In particular, the replay attacks are the most different
recreated, and in fact, they create noise in both the single and multiple label
predictions. Secondly, the data produced through the simulations are different
from the urban scenario of the City of Luxembourg. These arguments lead to
thinking that, even with a more complex NN, an MDS that tries to identify
every misbehavior could be useless since, on the road, any vehicle can start to
misbehave in slightly different ways from the ones learned from the detector.
In the end, the solution adopted by using a defense protocol that dismantles
the platoon based on an MDS trained offline on the VeReMi dataset reaches
the goal to enhance driving safety.

7.1 Future work

This study provided a solid basis for exploring the MDSs in a run-time environ-
ment, showing that even if the training is made offline and loaded in a vehicle,
the framework can work correctly also under different traffic conditions and
with misbehavior reconstructed in different ways. This achievement opens the
doors to future studies. Some potential research areas involve introducing more
attacks in the training phase, making the model more complex and efficient
while still keeping the required simplicity to be used on board. Also, the
designed simple protocol could be made more complex. As presented in the
conclusions, we think that building a protocol with a personalized response for
each misbehavior is not possible, considering that it is not true that all types
of misbehavior are known; for this reason also, a defense protocol like the one
presented could be sufficient for the platooning application.

It has to be said that training the model on those simulated attacks and
with few data is not sufficient to introduce the MDSs in the automotive industry.
Those systems require millions of data that have to be as much realistic as
possible, to achieve the required accuracy to install the MDS on a real OBU
into a vehicle. Consequently, the most interesting branch of studies involves the
expansion of the standard VeReMi dataset in order to contain millions of data
provided from different sources and possibly also from a real-world collection.
But in a future scenario in which the NN could be built on a reasonable amount
of realistic data, the MDS along with the protocol could be introduced in the
real world as a new CITS technology.
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all’altro ha deciso di venire a trovarmi direttamente. Agli amici con cui ho
condiviso i viaggi più belli della mia vita, tra un bicchiere di vino estremamente
costoso, senza saperlo, e una partenza senza conoscere la destinazione. Grazie!

Non posso non ringraziare poi tutte le persone che in questi anni sono
state parte della mia più grande passione, la musica. E allora vorrei iniziare
ringraziando le persone con cui ho iniziato a suonare seriamente, con chi seppur
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più grande di me ho instaurato un’amicizia forte, facendomi scoprire dopo anni
di essere daltonico, oppure a tutti quelli che erano presenti nel momento in
cui un pazzo è salito sul palco a bersi una bottiglia di Jack Daniels a goccia,
o ancora, a chi era al mio fianco a ridere nel momento in cui una persona
mascherata scelse di ribaltare uno spettatore dal pubblico sulla cassa spia
del palco. Venendo a momenti più recenti, vorrei ringraziare quell’insieme
di musicisti per cui dopo il concerto bisogna bere almeno cinque birre, quelli
pronti a tutto, anche a sei ore e mezza di macchina per andare fino ad Imola,
ma che palco era! Infine vorrei ringraziare la mia seconda famiglia degli ultimi
tre anni, coloro con cui ho condiviso forse più ore su un furgone che sul palco,
con cui sono cresciuto e da ragazzino sono diventato adulto, suonando in posti
che mai mi sarei nemmeno immaginato. Grazie!

Vorrei ringraziare anche tutte le persone che ho conosciuto grazie all’universi-
tà, tutti quanti diventati grandi amici. A chi mi ha convinto a partire per
sei mesi, regalandomi probabilmente una delle esperienze più belle della mia
vita. Oppure a chi in quell’esperienza mi è venuto direttamente a trovare,
devo confessarvelo, non me lo sarei mai aspettato. Alla compagnia di tutti i
giorni, quella delle lezioni e delle piadine a pranzo, quella delle domenica sera
al Retroscena. Grazie!

Infine vorrei ringraziare tutte le persone conosciute in Portogallo, a chi è
stato la mia famiglia per sei mesi, chi ha fatto la spesa con me per tutti i giorni,
chi si è preso cura di me nel momento del bisogno, con chi ho condiviso i viaggi
più belli della mia vita, l’alba delle Azzorre, le onde di Nazaré e i tanti tramonti
di Porto. Grazie anche all’enorme gruppo di amici che ho conosciuto, come
dimenticare la "gita scolastica" ad Aveiro. A chi di loro è stato mio compagno
di classe, chi mi ha insegnato la propria cultura, la propria lingua (non ci avrei
mai sperato) o anche solo fatto assaggiare un piatto tipico. Potrei andare avanti
per ore a elencare le emozioni e i ricordi vissuti in quei sei mesi. Grazie!
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ENG: I would like to thank all the people I met in Portugal, the ones who
became my family for six months, those who shopped with me every day, those
who took care of me when I needed it, and those with whom I shared the most
beautiful trips of my life: the sunrise in the Azores, the waves of Nazaré, and
the sunsets in Porto. I’m also grateful to the amazing group of friends I met,
especially those who were my classmates, taught me their culture and language
(something I never expected), or even just shared a typical dish with me. I
could go on for hours listing the emotions and memories from those six months.
Thank you!

PT: Obrigado ao enorme grupo de amigos e pessoas que conheci em seis
meses no Portugal. Às quem me ensinaram a sua cultura, a sua língua (nunca
teria esperado isso) ou até mesmo me fizeram provar um prato típico. Eu
poderia continuar por horas listando as emoções e lembranças que experimentei
nesses seis meses. Obrigado!
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