
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in
Ingegneria Informatica

Tesi di Laurea
Design and Implementation of Tools for the Analysis

of MU-MIMO Wi-Fi Networks

Sviluppo e Implementazione di Strumenti per
l’Analisi di reti Wi-Fi MU-MIMO

Relatore: Chiar.mo Prof. Francesco Gringoli

Laureando:
Stefano Fontana

Matricola n. 727199

Anno Accademico 2023/2024



Sommario

Questa tesi si propone di sviluppare strumenti software e hardware per

l’analisi in tempo reale delle comunicazioni Wi-Fi in cui vengono trasmessi

frame Multi-User - Multiple Input and Multiple Output (MU-MIMO).

Questo lavoro cerca di rendere possibile per un ricevitore di terze parti

catturare i suddetti frame sfruttando le funzionalità dei chipset Wi-Fi pre-

senti nelle comuni schede di rete per computer, consentendo all’utente di

caratterizzare il comportamento della rete.

La tecnologia 802.11ax, comunemente nota anche come 802.11 High Ef-

ficiency (HE), consente l’invio e la ricezione di frame multiutente grazie

all’uso della modulazione Orthogonal Frequency Division Multiple Access

(OFDMA). Questa modulazione, che è anche alla base delle moderne reti

cellulari, permette di suddividere la larghezza di banda di comunicazione in

intervalli assegnati a varie stazioni riceventi o trasmittenti. Queste trasmis-

sioni vengono poi decodificate dalle schede di rete, che possono essere con-

figurate, in base alle informazioni derivate dal traffico non multiutente e

alle informazioni contenute negli header fisici, per decodificare un frame

indirizzato a un’altra stazione.

Successivamente, viene valutata la possibilità di modificare il firmware

su tali schede per abilitare la decodifica dei frame presenti nel pacchetto,

consentendo così all’utente di avere una visione più completa della rete.

— i —



Summary

This thesis aims to develop software and hardware tools for the real-time

analysis of Wi-Fi communications where Multi-User - Multiple Input and

Multiple Output (MU-MIMO) frames are transmitted.

This work attempts to make it possible for a third-party receiver to

capture the aforementioned frames by leveraging the functionalities of Wi-

Fi chipsets present on common computer network cards, allowing the user

to charaterize and observe the network behavior.

The 802.11ax technology, also commonly referred to as 802.11 High Ef-

ficiency (HE), allows the sending and receiving of multi-user frames thanks

to the use of Orthogonal Frequency Division Multiple Access (OFDMA)

modulation. This modulation, which is also the basis of modern cellular

networks, allows the communication bandwidth to be divided into intervals

assigned to various receiving or transmitting stations. These transmissions

are then decoded by network cards, which can be configured, based on in-

formation derived from non-multi-user traffic and information contained in

physical headers, to decode a frame addressed to another station.

Subsequently, the possibility of modifying the firmware on such cards

is evaluated in order to enable the decoding of the frames present in the

packet, thereby allowing the user to have a more comprehensive overview

of the data traffic.

— ii —



Contents

Summary ii

1 Introduction 1

2 Wi-Fi Fundamentals 3

2.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Physical Header and Equalization . . . . . . . . . . . . . . . 12

2.3 Channel access . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Multi-User Multiple Input and Multiple Output . . . . . . . 18

2.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Orthogonal Frequency Division Multiple Access . . . 22

3 The 802.11ax standard 29

3.1 802.11ax PLCP . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 BSS Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Multi User Scheduling . . . . . . . . . . . . . . . . . . . . . 37

4 Sniffing 40

4.1 Brief overview of sniffing history . . . . . . . . . . . . . . . . 41

4.2 Sniffing applications . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Ethical considerations . . . . . . . . . . . . . . . . . . . . . 43

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 45

— iii —



4.4.1 The PCAP File format . . . . . . . . . . . . . . . . . 46

5 Validation and testing of State-of-the-art technologies 49

5.1 Sniffing with Intel AX210 . . . . . . . . . . . . . . . . . . . 50

5.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1.1 Experiment #1 . . . . . . . . . . . . . . . . 50

5.1.1.2 Experiment #2 . . . . . . . . . . . . . . . . 52

5.1.1.3 Experiment #3 . . . . . . . . . . . . . . . . 54

5.1.1.4 Results . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . 58

6 Changing approach: Broadcom hardware 60

6.1 D11 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . 66

7 Tool development 67

7.1 Understanding the Hardware . . . . . . . . . . . . . . . . . . 67

7.2 Testing the hardware . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 AID Register settings . . . . . . . . . . . . . . . . . . 70

7.2.2 Non-Standard Frames . . . . . . . . . . . . . . . . . 72

7.2.3 Decoding data . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 74

7.4 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5.1 Experiment #1 . . . . . . . . . . . . . . . . . . . . . 80

7.5.2 Experiment #2 . . . . . . . . . . . . . . . . . . . . . 82

7.6 AID Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 86

— iv —



8 Conclusions and future work 88

Bibliography 90

A AX210 monitor mode 103

B Extended SDR experiment results 104

— v —



1 — Introduction

Wireless network analysis is a critical area of research that underpins the

development of advanced technologies such as enhanced scheduling algo-

rithms and efficient resource allocation strategies. As wireless communica-

tion standards evolve, the ability to understand network behavior is becom-

ing ever more important. Traditional consumer-grade sniffing tools often

fall short in capturing the complexity of modern networks, particularly in

high-load scenarios or when dealing with multi-user transmissions.

This work presents an alternative approach to wireless network sniffing,

leveraging the capabilities of Broadcom chipsets to overcome the limitations

of existing solutions. By utilizing the chipset’s four-antenna configuration,

our approach enables the capture of multiple spatial stream communica-

tions in a more common Access Point (AP) configuration. This enhanced

sniffing capability provides a more detailed and accurate representation

of network activities, which is crucial for deriving statistically meaningful

parameters that can drive further research and development.

Furthermore, we introduce an innovative method for capturing

Orthogonal Frequency Division Multiple Access (OFDMA) multi-user

frames, an essential technique for the analysis modern wireless networks

adhering to the 802.11ax standard, which employ such complex

transmission schemes. With this work we aim to provide a sniffing toolset

capable of closely representing the network behavior, offering insights into

every aspect of the communication.

The modifications and enhancements presented in this work are based

on the Nexmon framework, an open-source reverse engineering and patch-

— 1 —



ing tool for Broadcom-based chipsets. This choice not only facilitates the

adaptation of our approach to a wide range of devices but also ensures

that the research community can freely access and build upon our work.

By making these tools openly available, we aim to empower researchers to

explore new dimensions of wireless network analysis and contribute to the

advancement of the field.

In the following chapter, we will discuss the basic concepts needed to

develop such tools, alongside a brief introduction to the 802.11ax standard.

Then, we will illustrate the developing process of our sniffing tool, eval-

uating its performance in various scenarios, and highlighting its potential

applications.

— 2 —



2 — Wi-Fi Fundamentals

A Wi-Fi wireless network operates as a layer-two computer communication

network, facilitating device communication without requiring direct phys-

ical connections. Instead, it utilizes a radio channel to transmit packets

between network peers. The typical configuration of a Wi-Fi network, de-

scribed in Fig. 2.1, comprises multiple Stations (STAs) that connect to a

deployed network of APs [1]. These connections may be established over

an encrypted or unencrypted channel, based on the security requirements

of the network [2].

The presence of multiple APs allows for a bigger area covering, limiting

the single AP output power, which results in lower costs for covering places.

Multiple APs deployments also need a method of managing roaming of the

STAs, either managed by the core network or managed by the wireless

devices utilizing signal strength as a metric [3].

Inside the Wi-Fi network, APs serve a critical role in managing the

wireless access, orchestrating the communication between connected sta-

tions, and potentially forwarding traffic to and from the core network [4],

generally housing required network services.

The central management role of the AP allows for an easy management

of the connected clients. A group of clients connected to an AP is called

Basic Service Set (BSS) [5], whereas the alternative solution of a distributed

interconnected network, without a predefined AP, (Wi-Fi ad hoc network

[4]) implies difficulties in network discovery and routing, as a constantly

changing mesh network may introduce latency and unnecessary routing

steps [6].

— 3 —



Figure 2.1: Schematic representation of a Wi-Fi network infrastructure with
multiple APs and roaming devices in the process of changing BSS.

— 4 —



Radio communication in a Wi-Fi network is achieved through mod-

ulated radio transmissions over a designated channel from an available

channel pool [4], [7]. A channel is defined by its central frequency fc,

also known as the “carrier frequency”, and a bandwidth symmetrically dis-

tributed around this central frequency. Nowadays, Wi-Fi utilizes three

possible frequency bands: the classic 2.4 GHz, in use since the early re-

leases of the 802.11 standard, the 5 GHz band, and the 6 GHz band later

introduced in the 802.11ax release.

The AP plays a crucial role in detecting and inferring the channel state

between each connected peer by transmitting and receiving data. This

capability allows the AP to select the appropriate transmission power and

modulation scheme to maximize the data rate over the channel.

2.1 – Modulation

Every radio communication makes use of modulation in order to transfer

meaningful data to the respective peer.

Modulation techniques employ different methods to encode information

in a radio transmission over the air. Generally, this modulation is applied

over one or more sinusoidal signals that are later transmitted thanks to an

antenna and relative circuitry.

A general overview of modulation can be represented by a generic a

cosinousoidal signal, defined in its time domain by Equation (2.1).

As per Equation (2.1), the signal possesses defined and misurable fea-

tures in the time domain.

s(t) = A(t)cos(ω(t)t + ϕ(t)) (2.1)

— 5 —



We can observe that, for each time instant t the signal has an amplitude

A(t), a frequency, related to the ω(t) angular frequency, and a phase ϕ(t).

Most of Wi-Fi modulation schemes act on each subcarrier by modifying

phase and amplitude, without modulating its frequency in order not to

interfere between subcarriers.

With additional constraints, as defined in Equation (2.2), we can quan-

tize the ranges of the two parameters A(t) and ϕ(t) and assign a meaning

to them.

In this case, we can define a quantization interval and split the two vari-

ables’ domains in “buckets” of values representing a symbol. The cartesian

product of the two quantized intervals generates the symbol space.

A(t) ∈ [Amin, Amax)

ϕ(t) ∈ [ϕminϕmax), −π ≤ ϕmin ≤ ϕmax ≤ π
(2.2)

For example, by defining a quantization interval of dimension N , we

can split the amplitude interval in equal buckets such that

∆A = Amax − Amin

N

symb = x ⇐⇒ A(t) ∈
[
Amin + x∆A, Amin + (x + 1)∆A

) (2.3)

The same happens for the phase modulation,

∆ϕ = ϕmax − ϕmin

N

symb = x ⇐⇒ ϕ(t) ∈
[
ϕmin + x∆ϕ, ϕmin + (x + 1)∆ϕ

) (2.4)

The two resulting sets of possible symbols can then be used together in

— 6 —



order to provide a N2 cardinality symbol set.

This is possible because the two variables are orthogonal between each

other. Amplitude and phase in the signal are both independent variables,

thus are not dependent on each other in the definition of the signal s(t) in

Equation (2.1).

The described modulation, namely Quadrature Amplitude Modulation

(QAM), is used because of its simple implementation [8]. It is enough to

sum two quadrature signals (shifted in phase by π
2 ) modulated in ampli-

tude (using Amplitude Shift Keying (ASK) techniques) as described by

Equation (2.5).

s(t) = I(t)sin(ωt) + Q(t)cos(ωt)

= I(t)sin(ωt) + Q(t)sin
(
ωt + π

2
)

=
√

I(t)2 + Q(t)2sin

ωt + asin

 Q(t)√
I(t)2 + Q(t)2


= Āsin(ωt + ϕ̄)

(2.5)

This allows for a demodulator to exploit the orthogonality between I(t)

and Q(t) to decompose the signal simply by multiplying it by a local ref-

erenced signal and its 90 degrees phase shift.

The typical graphical representation for QAM-modulated signals is

known as “constellation”; an example of its structure is provided in

Fig. 2.2. In the general case, the cross product of the symbol spaces in the

two axes will give a set of points representing a symbol. In general, a

symbol is a defined set of values associated to the modulating quantities

that get mapped into a known set of bits.

As per the case of 16-QAM shown in Fig. 2.2, we can associate each

— 7 —



−0.63 −0.31 0.31 0.63

−0.63

−0.31

0.31

0.63

I

Q

Figure 2.2: 16-QAM Constellation after symbol decoding. This constellation
represents the I and Q component of the decoded signal at multiple points in
time. The points are not perfectly overlapped due to the presence of noise in the
received signal.

symbol to a four bit value that gets decoded after the demodulation.

For easiness of use, the constellation diagram in Fig. 2.2 does not place

the points in the Amplitude-Phase cartesian plane. Instead, it defines the

axes as the values of the quadrature signal modulator I(t) and Q(t). Be-

cause of Equation (2.5), the plot can be read as amplitude and phase mod-

ulation on a polar coordinate system.

The modulation and demodulation scheme, reproduced in Fig. 2.3, are,

as mentioned before, very simple.

To perform IQ Modulation, a Local Oscillator (LO) is tuned to the

expected carrier frequency and its output is fed into two mixers, phased by

90 degrees between the two inputs, used for ASK modulation of the signal.

These two mixers will use the I and Q signals to amplitude modulate the

— 8 —



LO signal in order to inject the resulting outputs into a combiner. The

output of this is the modulated signal in both amplitude and phase [9].

The receiving side, instead, must recover the clock in some way and

synchronize the internal reference (the internal LO) for the demodulation.

This makes the reception of a QAM modulation a little harder.

The signal waveforms of the modulator and demodulator are displayed

in Fig. 2.4. The figure represents the signals in time as they are modulated

and demodulated. The signal starts as a stream of symbols (Fig. 2.4a)

which is split in the I and Q components by an adequate metric. The signals

in Fig. 2.4b are then used to modulate the two, 90 degrees phased, LO

derived signals. The two ASK modulated signals are then added together

in Fig. 2.4c and later sent by the radio device.

The demodulator then recovers the I and Q components (Fig. 2.4d)

which are perturbed by the high frequency component of the transmitted

signal. This perturbation is removed by a low pass filter, as displayed in

Fig. 2.4e, and the signals are then averaged inside the symbol window and

decoded in the final result, with a reverse IQ-sampling process.

It can be stated that the generic QAM modulation may be a general-

ization of other types of modulation. For example, by placing

Amin = Amax

in Equation (2.2), de facto reducing the amplitude symbol space to an

empty set, we define a phase modulation scheme, allowing the IQ hardware

to perform Binary Phase Shift Keying (BPSK), Quadrature Binary Phase

Shift Keying (QBPSK), ASK etc.

— 9 —



Data

Sa
m

pl
e

G
en

er
at

or

LO

+ +90◦

S(t)

LO

−90◦

I(t)

Q(t)

LPF

LPF

ADC

ADC

In

Qn

(In, Qn)

Figure 2.3: Conceptual diagram of the IQ modulation and demodulation pro-
cess. The signal is first modulated in order to generate the signal S(t) which is
sent into the air and later receiver and demodulated by the decoder.

— 10 —



0 100 200 300 400 500 600 700
0
5

10
15

(a). Signal values in time. Each signal value is represented with 4 bits as the 16-QAM
modulation required symbol size.

0 100 200 300 400 500 600 700
−1

0

1 I(t)
Q(t)

(b). I-Q decomposition of the signal in Fig. 2.4a. The I signal is determined by the
two lower bits of the symbol and the Q signal from the two high bits.

0 100 200 300 400 500 600 700

−1
0
1

(c). Resulting 16-QAM modulated signal.

0 100 200 300 400 500 600 700
−1

0
1 Ircv(t)

Qrcv(t)

(d). Receiver side recovered I and Q signals.

0 100 200 300 400 500 600 700
−1

0
1 Idec(t)

Qdec(t)
Iorig(t)
Qorig(t)

(e). Receiver side recovered I and Q after low pass filtering. The two recovered siganls
present a small deviation from the original signals.

Figure 2.4: IQ Modulator and demodulator example signals.

— 11 —



Detailing the previous assertion, by forcing

√
I(t)2 + Q(t)2 = 1

the resulting IQ-modulated signal gets a constant amplitude of one, allow-

ing for the phase variation to be simplified to asin
(
Q(t)

)
.

2.2 – Physical Header and Equalization

Wi-Fi supports OFDM since it was introduced in 1999 with the

11a amendment. While initially Orthogonal Frequency Division

Multiplexing (OFDM) was possible only in the 5GHz band, support was

extended to the 2.4 GHz band later in 2003 when 11g was ratified. In this

transmission techniques a channel is divided into multiple orthogonal

subcarriers representing each a symbol stream. These streams are located

at a specific frequency intervals.

Since subcarriers were initially spaced by 312.5 kHz — and in later revi-

sions 76.25 kHz — and based on the mathematical concepts behind OFDM,

later discussed in Sect. 2.4.2, only amplitude and phase can be modulated

to encode information without interfering with the neighbor data stream.

Because the transmission channel is not perfect, it is indispensable to

perform channel equalization on the received data [10], in order to cor-

rectly decode the frame when subject to a non-uniform response. Given

the usually high bandwidth used by OFDM modulation, there is a high

probability that the transmission channel may alter some parts of the spec-

trum more than others, because of the multipath phenomenon [11]. Be-

cause of this necessity, the introduction of the Physical Layer Convergence

Protocol (PLCP) follows naturally.

— 12 —



The PLCP, described by Fig. 2.5a for the OFDM based channel mod-

ulation, allows for three main scopes: Start of Frame (SOF) detection,

Channel State Information (CSI) inference, and demodulation setup.

At first, because Wi-Fi transmits packet data and the Radio Frequency

(RF) signal is not continuous, there must be an identifiable sequence to

allow the chipset’s Base Band (BB) to detect the start of the frame.

As this step is performed in hardware, the resulting field (Short Training

Field (STF)) is used to recover clocks and to synchronize the receiver to

the incoming packet [4], [12].

Then, after the STF has been identified and fully received, the second

PLCP field is decoded. This field contains a known data sequence to allow

the receiving device to extract the CSI affecting the frame [13]. Because, as

hypothesis, the channel response does not change, or its change is limited

in the frame’s life [14] in a non-erratic way, the extracted CSI is then used

to perform the equalization needed to decode the rest of the packet.

The CSI extracted from the Long Training Field (LTF) field contains

the phase and amplitude response of the channel found by the receiver.

Generally, because of multiple spatial streams, these values are represented

as a matrix where each element is defined as the channel response between

two pairs of antennas (sender and receiver). Thus, the equalization proce-

dure is defined as the pseudo inversion of this matrix to be later applied to

the signal, before demodulation.

The third and final utility of the legacy PLCP header is to prepare the

receiver to demodulate the rest of the packet.

Because prior to the PLCP no information is transferred to the receiver,

the standard must define a fixed modulation for the header transmission

to ensure that each device can detect the frame and not interfere. This

— 13 —



L-STF L-LTF L-SIG
(a). 802.11 OFDM PLCP fields.

RATE LENGTH P TAIL
(b). SIG field structure definition.

Figure 2.5: Legacy PLCP Header structure [4] for OFDM modulated networks.

modulation must satisfy the following conditions:

• It must be slow. Slow modulations are easier to decode and can travel

further distances because the power per bit ratio is higher, because

the transmission is performed with the same power but takes longer.

This enables a distant STAs to detect the beginning of a frame and

ensures that collision avoidance methods are effective.

• It must be available to every device supporting the entire standard or

the coexistence with it. Generally newer standards allows for older

specification devices to be in the same network; this old devices must

be able to detect the non-free channel even if they are not able to

decode the frame. This usually implies that BPSK is used as defined

in legacy standards [4].

The last field of the PLCP is the SIG field, later known as L-SIG, legacy

signal field. This field contains information regarding the upcoming data’s

modulation. Its definition in Fig. 2.5b denotes that the field contains infor-

mation relative to the transmission, like the total length of the upcoming

data and its transmission rate, thus its modulation. These fields, alongside

a parity bit to verify the preamble’s integrity, allow the receiver to configure

its hardware to decode incoming data after the preamble [4].

It’s necessary to mention that network management, like association

— 14 —



and authentication, is not performed in the physical layer but is later im-

plemented by the MAC protocol.

Following the PLCP header is the full extent of the data frame sent

by the transmitter. Even if the PLCP defines the modulation of the sub-

sequent part of the frame, the standard does not impose the utilization

of that modulation for the whole packet length. Taking as an example

802.11ax and 802.11ac, new standards insert an additional implementation-

dependent PLCP right after the legacy header previously described. In this

subsequent PLCP header, additional modulation information are inserted

without breaking the legacy standard, thus granting coexistence between

new devices and old ones. This allows for the coexistence of multiple stan-

dards in the same network, because older devices are able to detect the

presence of a frame in air, given the fact the legacy PLCP described in

Fig. 2.5b is present, that later will be dropped because of unknown modu-

lation or format, but the device will be able to interrupt its medium access

routine impeding interferences.

2.3 – Channel access

The standard Carrier Sense Multiple Access with Collision

Avoidance (CSMA-CA) medium access protocol defines the channel access

with the Contention Window (CW) mechanism [15]. It is based upon

positive acknowledgement, where a receiver sends back to the transmitter

an Acknowledgement (ACK). If the ACK times out, the frame is

retransmitted.

Whenever the channel is sensed free by a STA, a Back-Off counter (BO)

is initialized with a uniformly random value between 0, included, and the

value of the CW excluded. Because channel access is discretized in 9 µs

— 15 —



slots — this means that a transmission can only start at the beginning

of a slot —, the STA will count down a BO extracted number of slots

before starting a transmission. If another STA has extracted a smaller BO

value, all the running BO counters get paused and will resume after the

transmission has ended.

If a collision is detected because the ACK is not sent back, then a new

BO gets extracted in an interval where the CW gets doubled until its limit

of 1024 slots.

For example, in Fig. 2.6, after the transmission of STA2 and the rela-

tive ACK and after a Distributed Interframe Space (DIFS), both stations

randomly extract a BO value between 0 and 15. Since the BO counter of

STA1 expires first, it will start transmit occupying the channel. After the

usual ACK and DIFS, since both stations need to transmit a frame, STA1

extracts another BO. This time, both the BO have the same value (since

STA2’s BO got paused when 4 slots were still to be waited). The transmis-

sion will result in a collision, making both the STA timeout in waiting the

ACK. The contention window gets doubled, and a new access is performed.

This method of channel access will introduce long latencies with the

growth of the number of STAs in the network [16], hence limiting the total

network throughput, making the network inefficient because of the time

spent in waiting during the CW.

This procedure, as also demonstrated by Fig. 2.6, does not completely

prevent collisions. There is still the possibility of extracting the same BO

value, because, according to the birthday paradox, in a big network the

possibility of collision is pretty high, resulting in an on-air collision and

successive retransmission.

In order to limit frame collisions, 802.11 defines a channel booking pro-

— 16 —



STA1

STA2

BUSY

FRAME

NAV

SI
F

S

ACK
D

IF
S

D
IF

S

FRAME

BUSY NAV

SI
F

S

ACK

D
IF

S
D

IF
S

FRAME

FRAME

BUSYSI
F

S

SI
F

S
D

IF
S

FRAME

BUSY

C
W

=
16

C
W

=
16

BO
=

2
BO

=
6

BO
=

4

A
C

K
T

O
C

W
=

32

BO
=

5
A

C
K

T
O

BO
=

22

Figure 2.6: Contention window mediation for channel access between two STA.

tocol, mandating the utilization of an active channel protection method.

This method, become mandatory since 802.11ac, consists in a two-way re-

quest and response with special frames: Request To Send (RTS) and Clear

to Send (CTS). Before 802.11ac, the channel access was made with the

CW method until a threshold failure count, where the RTS-CTS method

was then used. The transmitting device is mandated to send a RTS frame,

containing details on the intended destination and the number of slots

it will take to transmit the frame, in order to announce the intention of

transmission, thus “booking” the channel access. RTS frame structure is

represented in ?? [4].

Once the RTS has been received by the destination device, the receiver

will respond with a CTS frame after a SIFS, granting priority access to the

channel and making collisions nearly impossible. This enables the other

STAs to detect an incoming transmission, aborting the possible contention

window, improving the raw network performance, and addressing the hid-

den station problem [17].

It is necessary to specify that the channel will be seen as occupied by

other since right after the RTS transmission, as a mechanism of impeding

collisions.

— 17 —



Sender

Receiver

Channel BUSY

RTS

CTS

DATA

ACK

BUSY

Figure 2.7: RTS-CTS channel access dialogue.

The advantage of RTS and CTS in reducing collisions consist in their

raw frame size [18]. Although there can still be collisions in RTS and

CTS frames, their small size allows for faster retransmissions and reduced

losses. The RTS frame, shown in, consists of a simple Medium Access

Control (MAC) Layer control frame totaling at 20 octets of length. The

CTS frame, is smaller because it does not contain the whole MAC layer

data but will only report the MAC address of the RTS originating device,

totaling at 14 octets in size.

The RTS and CTS frames are always sent as a 802.11g/a frames with

slowest Modulation Coding Scheme (MCS), maintaining compatibility with

older devices in order to not limit coexistence of multiple standards.

Another utilization for CTS is in channel protection. In this case, a

transmitting device, like an AP, sends out a CTS frame without previously

having received the corresponding RTS in order to clear the channel.

2.4 – Multi-User Multiple Input and Multiple

Output

Since 802.11ac — also known as Wi-Fi 5 —, APs have gained the ability

of sending packets to multiple stations in a single frame. This technology,

known as Multi User Multiple Input Multiple Output (MU-MIMO), is the

direct descendant of Multiple Input Multiple Output (MIMO) technology,

— 18 —



capable of multiple data streams on the same channel thanks to spatial

diversity directed to the same STA. This technology is a generalization

of MIMO transfers, which are derived by beam-forming techniques, where

the signal is “steered” thanks to a computational operation in the digital

domain before transmission.

The AP and each STA in the MU-MIMO group are able to recreate the

channel response matrix, previously described in Sect. 2.2, and to precode

data streams to allow each receiving end to decode its directed stream with-

out interference from the others [19], effectively performing beamforming

operations. This is done, in both MIMO and MU-MIMO cases, by ex-

changing the CSI matrix between the transmitter (generally the AP) and

the receiver. By gaining information relative to the channel response, with

adequate protocols, the transmitter is able to weigh each data stream with

a precoding matrix, whose formulation and construction won’t be detailed

in this work, to make the receiver capable of recovering its stream from

the sum of the others. This method implies the utilization of CSI data

to guarantee that, by performing the reverse beamforming operations, the

receiver will be able to retrieve the data destined to it.

MU-MIMO, as previously mentioned, is a generalization of MIMO tech-

nology, where instead of directing multiple streams to one station increasing

the available data rate, multiple streams are directed to multiple STAs. For

example, in a system of 3 STA and one AP, the AP may start a MU-MIMO

transmission with four streams, considering hypothetically, the AP pos-

sesses four antennas, allocating two streams for STA 1 and one stream

for the remaining two STAs. Reception of the data by the STA is simply

a MIMO reception (if needed). The STAs are not required to know the

presence of other MU-MIMO transmissions.

— 19 —



AP

STA1

STA2

DATA

ACK

DATA

ACK

(a). No MU-MIMO channel access and data transmission process description.

AP

STA1

STA2

MU-DATA BA-P

BACK

BA-P

BACK

(b). MU-MIMO channel access

Figure 2.8: MU-MIMO channel access and data transmission process descrip-
tion.

The advantage of MU-MIMO is that the AP does not have to access the

channel multiple times, with the methods described in Sect. 2.3, for each

outgoing packet, but it can send all the data in one frame, thus reducing

latency and increasing overall throughput [20].

Fig. 2.8a and Fig. 2.8b delineate the two different access methods and

highlight the different timings of the transmissions.

CSI data exchange for MU-MIMO in 802.11ac is performed explicitly

[21]. Channel measures are performed periodically, by announcing the

emission of a Null Data Packet (NDP) with a Null Data Packet Announc-

ment (NDPA), whose structure is shown in Fig. 2.9, containing information

regarding the stations that will be involved in the polling procedure. In

particular, the frame will report the list of Association Indexes (AIDs) re-

quested and the type of the feedback [22].

The transmission of a NDP, represented by a standard management

frame with a known training sequence instead of the usual data, is then

followed by a polling procedure where the AP, for each station interested

by the NDPA, will request the resulting CSI in compressed format with

a poll packet [21] (apart from the first STA which responds after a Short

— 20 —



0 16 32

Frame Control Duration
Receiver Address

Transmitter Address
S STA1 INFO

...

STAN INFO FCS

Figure 2.9: NDPA Frame structure [22].

AP

STA1

STA2

STAn

NDPA NDP

NDP Rep.

NDP Poll

NDP Rep.

NDP Poll

NDP Rep.

Figure 2.10: 802.11ac sounding procedure. This procedure allows for the re-
porting of CSI information to the AP.

Interframe Space (SIFS)).

The probing sequence, also known as “sounding procedure”, is shown

in Fig. 2.10. Each station will answer, whenever the AP polls them, with

a compressed beamforming report containing the channel information in a

compressed format.

2.4.1 – Limitations

MU-MIMO in 802.11ac comes with several limitations that affect its overall

efficiency and applicability in wireless networks. There is no support for

MU-MIMO in the uplink direction [23], which requires clients to take turns

when transmitting to the AP. This lack of uplink MU-MIMO can lead to

inefficiencies, particularly in environments with many clients competing for

— 21 —



bandwidth.

The number of spatial streams allowed in a MU-MIMO transmission is

another limitation. The maximum number of spatial streams is given by

the amount of channels between the AP and the STA [21]. For example,

a four-antennas AP can handle up to four concurrent streams with a four

antenna STA. In the MU-MIMO case the same concept applies: with four

antennas the AP can serve four single antenna users or two dual antenna

users with two streams each.

Another challenge with MU-MIMO in 802.11ac is client compatibility.

Not all devices support MU-MIMO, and even those that do must be able to

receive the specific number of spatial streams that the AP is transmitting.

This limits the effectiveness of MU-MIMO in practical scenarios, as the

potential benefits are only realized when both the AP and clients support

the necessary number of spatial streams [24].

The performance of MU-MIMO is also highly dependent on the wireless

environment. Poor channel conditions, such as interference or a low signal-

to-noise ratio (SNR), can significantly degrade MU-MIMO’s effectiveness,

reducing the throughput gains expected from simultaneous transmissions.

Additionally, the spatial distribution of clients is needed. If clients are

too close to each other, or if the AP’s beamforming is not accurate, the

required channel diversity is compromised, leading to suboptimal perfor-

mance or even the inability to use the technology.

2.4.2 – Orthogonal Frequency Division Multiple Access

OFDMA is an extension for multi-user communication. This method of

multi-user communication is introduced by 802.11ax to compensate for

MU-MIMO limitations described in Sect. 2.4.1. With the introduction of

— 22 —



this technology, the number of possible users in a frame increases drastically.

Considering the addition of 160MHz channels, the resulting multi-user al-

locations can reach 128 users, granting a higher overall throughput of the

network.

Initially, in order to define OFDMA, some mathematical concepts re-

garding frequency orthogonality derived from OFDM are needed. OFDM

is a frequency multiplexing technique utilized since 802.11a. The advan-

tages of OFDM consist easier equalization and better interference rejection.

These advantages overcome the increased hardware manufacturing compli-

cations. Given the orthogonality of the subcarriers, they are not interfer-

ing with each other by mathematical construction, allowing for a reduced

manufacturing cost of the transmitter and receiver because no subcarrier

filtering has to be added to the device. Second, by allowing for multiple

data carriers, OFDM allows for longer symbol time without data rate plum-

meting [25], maintaining the channel throughput constant but making the

communication more robust by sending more energy per symbol.

The concept of OFDM consists in subdividing the digital signal in multi-

ple parallel streams to be sent on multiple subcarriers. We define a subcar-

rier as a modulated signal of frequency fi such that fi ∈ [fc− BW
2 , fc + BW

2 ],

where fc is the center frequency of the selected channel and BW is the

bandwidth.

The problem occurring when transmitting concurrent signal in the spec-

trum is that they may interfere with each other if not conditioned or placed

correctly. This is why orthogonality is important in OFDM and conse-

quently in OFDMA.

It is known that a Fourier transform over an infinite time and pure tone

signal will result in an impulse function shifted by the frequency of the

— 23 —



tone. This is not true if the time window is not infinite: this case result

in some spread of the peak around the real frequency given by the signal

uncertainty.

Given the definition of the Fourier transform for a signal of period T in

Equation (2.6),

F{f(t)}(n) =
∫ T

2

− T
2

f(t)e−2π n
T

tidt (2.6)

it is possible to theoretically apply it to a single OFDM symbol of

duration δs. The result is a closed form in the variable k of the value of the

Fourier transform of the signal.

Let’s assume, without loss of generality, that the symbol resulting from

the modulation of the sub-carrier fi is representable as a sinusoidal func-

tion with no phase deviation and given amplitude. The solution of the

Fourier transform of the signal, over the symbol duration δs, is defined

by Equation (2.7) assuming the symmetry of the window that has been

reformulated as [− δ
2 , δ

2 ].

F{s(t)} =
∫ δ

2

− δ
2

Asin(ωt)e−2π n
T

tidt =

= 2A
ωTcos(1

2δω)sin(πδn
T

)− 2πsin( δω
2 )cos(πδn

T
)

ω2T 2 − 4n2π2 i

(2.7)

As we are interested in orthogonality between frequencies, we must solve

Equation (2.8).

F{s(t)}(fi) + F{s(t)}(fi + ∆f) = F{s(t)}(fi + ∆f) (2.8)

A valid solution to the system is when Equation (2.9) is satisfied.

— 24 —



|F{s(t)}(fi)| = 0 (2.9)

Equation (2.9) also shows why the assumption of the phase shift of

the signal to be zero holds. Since we are interested in the modulus of the

Fourier transform in the frequency fi, it is known that Equation (2.10)

holds, thus the assumption does not limit the generality of the statements.

∣∣∣ ∫ T
2

− T
2

Asin(ωt)e−2π n
T

tidt
∣∣∣ =

∣∣∣ ∫ T
2

− T
2

Asin(ωt + ϕ)e−2π n
T

tidt
∣∣∣ (2.10)

It is possible, although this work will not construct a symbolical solu-

tion, to determine the solution of Equation (2.9).

The numerical solution found approaches a value ∆f = k
δs

, as shown in

the plot displayed in Fig. 2.11.

The left and write zeros, barring any rounding errors, are located at

fi± k
δs

frequency. Thus, by placing sub-carriers at the newly found locations,

OFDM will remove any sub-carrier crosstalk without employing special

filters or wasting guard bands between the subcarriers.

As previously mentioned, OFDM allows for a more stable channel —

if keeping the data rate constant — because each subcarrier splits the

amount of data to be sent per symbol in it, allowing for longer symbol

time and closer subcarrier distances. Alternatively, by maintaining the

same modulation on each subcarrier, it is possible to theoretically multiply

the data rate across the channel by increasing its bandwidth. With twice

the amount of subcarriers, the total data rate will be doubled.

We can take this concept to the multi-user domain simply by changing

the meaning of each sub-carrier stream. Mainly, in OFDM, one single

— 25 —



237 238 239 240 241 242 243

0

0.5

1

1.5

2

|F{S(t)}|

Figure 2.11: Fourier transform of a signal with frequency fi = 240Hz, δs = 1s
with relative OFDM zeros.

data stream is split into nsub data sub-streams. The same concept can be

extended to multiple input data streams: each data stream can be split on

multiple sub-carriers.

The example in Fig. 2.12 assumes two data streams y1(t) and y2(t) and

a channel with 2n subcarriers: the first stream can be mapped to the first

n subcarriers and the second to the remaining part.

This concept may be extended to an arbitrary number of subcarriers

and arbitrary number of data streams. The main limitation is radio per-

formance during decoding.

The implementation of both OFDMA and OFDM is done thanks to the

FFT being doable in hardware. Instead of having multiple IQ Modulators

for each subcarrier, it is possible to associate to each symbol in the data

stream(s) the respective amplitude and phase for the modulated signal. It

is common to use complex numbers to encode both these properties in a

single location.

— 26 —



Data Stream 1 Data Stream 2

FFT FFT

Σ

IFFT

S(t)

FFT FFT

Recovered Data Stream 1 Recovered Data Stream 2

Figure 2.12: OFDMA encoding Fast Fourier Transform (FFT) and multiple
decoders. The two symbol streams get encoded into a spectrum representation
which is then converted in the time domain thanks to the Inverse FFT function.
At the receiver side, each device will decode only the portion of spectrum allo-
cated to it.

— 27 —



Then, we can construct a spectrum with the given frequencies and apply

an inverse FFT in order to get signal representation in time. This signal

can then be sent through a radio interface and received by multiple clients,

which can decode only the part of the spectrum they are interested.

One additional improvement to the transmission efficiency is made pos-

sible thanks to the use of OFDMA. The advantage comes thanks to the

receiver not having to capture the whole channel bandwidth in order to de-

code the data stream. Only the assigned portion of the spectrum is needed,

thus there is a greater margin for low-power applications.

In general, the use of FFT based methods is preferred due to the abil-

ity of selecting and introducing subcarriers without radical changes in the

chips. With the ability of new integrated circuits to accelerate FFT and

Inverse Fast Fourier Transform (IFFT) calculations, the overall system

reached a great optimization and simplicity level. With the addition of

orthogonal frequencies that eliminates the needs for a per-subcarrier fil-

ter, the system gains impressive spectral and power efficiency due to the

removal of losses of the circuit replaced by pure digital computations.

— 28 —



3 — The 802.11ax standard

The successor of 802.11ac is the “802.11 High Efficiency (HE)” protocol,

released by IEEE in the year 2021 and rapidly conquering the consumer

markets. This update addresses multiple limitations of the previous stan-

dard, especially in terms of speed and overall data rate in the network.

It focuses mostly on the radio physical interface, where it introduces new

channels in the 6 GHz band for faster transfer rates and new modulation

schemes, such as 1024-QAM, capable of more than 1 Gbitps per spatial

stream in high bandwidth channels of 160 MHz [7].

Benchmark comparisons denote only a little less than a 40% improve-

ment in terms of raw data rate with respect to the previous standard [26],

thanks to the adoption of faster modulation schemes. This happens due

to the main focus of the standard having shifted to increasing overall net-

work output and efficiency, which is reported to have improved by 300%

alongside a 40% of latency improvement [27] thanks to the new approach

at multi-user communications thanks to OFDMA, which represents a tech-

nology alignment to the current generation cellular network.

Switching to OFDMA for multi-user communications in 802.11ax, in

both uplink and downlink directions, allows up to 72 contemporary data

transmissions, excluding MU-MIMO, granting higher spectral efficiency

and improved transmission timings and jitter[7], [28].

The multi-user access scheme for downlink has been simplified to its

limit. Whenever an AP determines, thanks to its scheduler, that a mul-

tiuser OFDMA downlink transmission is advantageous, it will simply prop-

agate the OFDMA packet to the radio channel by utilizing a variation of

— 29 —



the RTS-CTS mechanism. Note that in this case, the ACK of each packet

(or packet group) is usually sent by each STA (if needed) as an Uplink

Orthogonal Frequency Division Multiple Access (UL-OFDMA) packet.

The AP will send a Multi User RTS (MU-RTS) to the involved sta,

containing the Resource Unit (RU) allocation for the CTS. Then the data

is sent to all the STAs at the same time leveraging OFDMA. As for the

CTS, the STAs then send back the ACK with the same RU allocations

used in the data frame.

UL-OFDMA is also straightforward: as observable in Fig. 3.1b,

whenever the access point’s scheduler determines that an uplink multiuser

transmission could be beneficial or needed to improve efficiency, like for

block ACK of a Downlink Orthogonal Frequency Division Multiple

Access (DL-OFDMA) transmission [7], the AP will send a “Trigger

Frame” requesting all the involved clients to start sending their uplink

data in the RU allocation defined in the trigger frame. The AP can also

query the network uplink status with the reception of Buffer State

Request (BSRs), obtaining information relative to the uplink situation

in order to take decisions. This “Trigger Frame” is then expected to

be followed by the uplink transmission of each STA reported in the

previously mentioned trigger frame.

This feature requires the AP hardware to be able to decode all the

OFDMA transmissions at the same time, giving a great insight of each

chipset manufacturer’s hardware. Additionally, the previous generation

spatial diversity access has not been discontinued: it is possible to send

MIMO frames inside each OFDMA RU [7].

— 30 —



AP

STA1

STA2
...

STAn

MU-RTS

CTS

CTS

CTS

DATA

ACK

ACK

ACK

(a). DL-OFDMA transmission procedure.

AP

STA1

STA2

...

STAn

TF-R

BSR

BSR

BSR

ACK TF

DATA

DATA

DATA

B-ACK

(b). UL-OFDMA transmission procedure.

Figure 3.1: Multi user communications in 802.11ax

3.1 – 802.11ax PLCP

Every 802.11 HE communication utilizes information inside the HE pream-

ble described in Fig. 3.3a. This data structure follows the PLCP discussed

in Sect. 2.2, and it is encoded, generally, with the maximum available PLCP

data rates. Note that the PLCP is still present in order to allow for legacy

devices to detect the presence of a frame, thus making coexistence of the

new radio protocol with older Wi-Fi apparatus possible.

Frame differentiation between all the various possible types and differ-

ent standard versions is performed by the receiving device thanks to the

modulation of the first two fields in the upcoming data after the legacy

PLCP. Particularly, the differentiation is made by computing the average

power of the I and Q demodulated signals.

The difference between each type of frame type consists in the mod-

— 31 —



I

Q

10

(a). BPSK Constellation

I

Q

1

0

(b). QBPSK Constellation

Figure 3.2: Difference between BPSK and QBPSK constellation diagrams.

ulation of the first two symbols being BPSK or QBPSK. The difference

between the two modulations, described by their constellations in Fig. 3.2,

resides in the IQ signal used for modulation which makes the symbols ap-

pear as 90 degrees rotated BPSK symbols. By testing the difference of the

power for each signal, it is possible to detect if the data is modulated with

one of the two methods [29].

HE frames had to use a different method: at first, the identification of a

HE frame is performed thanks to the repeated L-SIG (RL-SIG) field, which

can be identified by the receiver. In order to differentiate between the four

types of HE frames, the length field of the L-SIG is modified to permit a

mod 3 calculation, where the result will indicate the effective frame type

to be used for interpretation [7].

The generic structure of a HE preamble is defined in Fig. 3.3a. For

each frame a HE-SIG-A structure is defined, and it is the first field after

the RL-SIG. This field, described in Fig. 3.3b, contains information on the

frame coding, bandwidth, and transmission options. These transmission

options comprehend coding type used in the packet, channel bandwidth

— 32 —



utilized for the upcoming data, BSS Coloring (later explained in Sect. 3.2)

and more features flags.

The HE-SIG-A then contains different fields based upon the frame type.

For SU frames, it contains the upcoming MCS and other physical layer flags,

whether for MU frames it contains information regarding the upcoming

HE-SIG-B modulation and common user modulation properties.

If the frame is a MU frame, after the HE-SIG-A one or more HE-SIG-B

(Fig. 3.3c) are inserted. In this case the content of the HE-SIG-A refers

to the encoding and modulation of the upcoming HE-SIG-Bs. HE-SIG-B

contains a common section, valid for every user in the OFDMA frame, and

multiple dedicated sections containing information on the coding, modula-

tion and physical parameters of the respective RU allocation.

The HE-SIG-B common fields contain the RU allocation for the up-

coming data, including, if needed, definitions for spatial usage and the

STA dedicated section allows the receiver to understand what frame has to

be decoded by matching the AID.

The AP can still manage the network when sending control and manage-

ment frames in the multi-user frames. Special AID are defined to identify

broadcast RU allocations (AID 0), data directed to non associated stations

(2045) or to define zero data RUs (2046).

The standard states that the receiving STA must decode its assigned

AID from every Multi User (MU) frame. If the AID is not present, then

the station must check and eventually decode AID 0 to detect broadcast

data. Citing the standard directly [7]:

“An HE AP with dot11MultiBSSIDImplemented equal to false

shall not include in an HE MU PPDU anything other than one

or more of the following:

— 33 —



• One or more individually addressed RUs, corresponding to

the parameter STA_ID equal to the AID(s) of STA(s) as-

sociated with the AP, to carry information intended for the

STA(s).

• A broadcast RU corresponding to parameter STA_ID equal

to 0 to carry information intended for the STAs associated

with the AP that are not the recipient of an individually

addressed RU.

• A broadcast RU corresponding to parameter STA_ID equal

to 2045 to carry information intended for STAs not asso-

ciated with the AP.

• One or more RUs corresponding to parameter STA_ID

equal to 2046 for unassigned RUs.”

where the STA_ID refers to the AID previously defined. It is evident

that a STA may decode a broadcast RU if and only if no data was directed

to it.

APs are only required to decode multiple RU in the same time frame

for UL-OFDMA transmissions.

3.2 – BSS Coloring

802.11ax includes methods for spatial reuse of frequencies defined as BSS

coloring. This AP property allows for the reduction of channels interfer-

ences in a multi AP network [7].

The base concept behind coloring is the following. APswill start with a

random color assigned to them and included in every beacon. This “color” is

simply a tag inserted in the HE-SIG-A to identify the access point emitting

— 34 —



PLCP RL-SIG HE-SIG-A HE-SIG-B HE-STF HE-LTF
(a). 802.11ax HE Preamble structure.

ER UL MCS DCM COLOR SR BW NST
TXOP CODING STBC CRC

(b). HE SIG-A field composition for Single User Frame Structure.

RU-ALLOC CRC TAIL CODING DCM MCS BF NST AID
Common Bits User Bits (one for each user)

(c). HE SIG-B field composition.

Figure 3.3: Full description of an 802.11ax HE PLCP.

it. Each AP will listen to the incoming beacons from other APsin the

neighborhood and, if the same color is detected, they will start a color

change procedure notifying the connected STAs that a color change will

take place in a defined amount of time. This allows for the connected

stations to follow the color tag configuration and to keep the connection.

STAs use the color tag each time channel access has to be performed, like

as described by Fig. 3.4.

In order to perform channel access with CSMA-CA, if a signal is de-

tected with the same BSS color as the one of the associated AP, the channel

is considered occupied, and the collision avoidance takes place. If the re-

ceived signal includes a different color than the BSS Color of the associated

AP, instead, if this signal is below a power threshold, the channel is con-

sidered free even if a transmission is ongoing, because the two concurrent

transmissions will not interfere since, even if received, different colors will

prevent further elaboration by the other part [31].

The concept of BSS Coloring is very similar to what has been imple-

— 35 —



Signal Detected

BSS Color Match? Channel Busy

RSSI over Treshold? Channel Busy

Channel Free, Transmit

Figure 3.4: BSS Color carrier sensing procedure [30].

— 36 —



1

6

1

2

3

2

4

4

6

1

6

4

2

4

5

3

1

6

1

Figure 3.5: BSS Color Distribution. Note the interference radius is increased
because distance between BSS with the same channel number and color is max-
imized.

mented in cellular networks, whose physical layout is shown in Fig. 3.5.

Different adjacent cells may use different channels to limit interference.

The problem arises when there is a limited amount of usable channels.

This condition necessitates the reusal of a channel when not out of reach of

the nearest cell using it [32]. The idea is that possible channel interferences

are removed by assigning a tag to the transmissions, allowing the devices

to ignore unrelated communications.

By coloring, thus associating the messages to the “cell” AP, devices will

not be subject to Co-Channel Interference (CCI) and communication will

not degrade.

3.3 – Multi User Scheduling

As previously mentioned, multi-user frames in 802.11ax are sent by encod-

ing them in an OFDMA frame. This very spectrum efficient technology

— 37 —



Table 3.1: 802.11ax RU sizes [7].

RU Tones Data Subcarriers Pilot Subcarriers
26 24 2
52 48 4
106 402 4
242 234 8
484 468 16
996 980 16

poses the task of deciding how the available bandwidth has to be divided

in order to provide effective multiple user transmissions [33], [34].

Even if the idea behind OFDMA is simple, its actual implementation is

dependent on a very large set of statistics and transmitter related decisions.

Until 802.11ac every frame was utilizing the full channel bandwidth

for modulation. This is considered a spectrum inefficiency because, even

considering MU-MIMO, two stations with very different throughput may

be grouped together in a multi-user transmission. This hypothetical multi-

user transmission would be somewhat efficient for the time the two frames

are overlapped, which, given the hypothesis of a fast and a slow STA,

consists in a small portion of the frame.

The OFDMA solution, other than allowing for a greater number of

concurrent users in a frame, allows for asymmetric allocation of RUs to

guarantee spectrum efficiency, allowing the scheduler to reserve an asym-

metrical allocation of RUs in order to make the frame times equals, thus

minimizing the overall frame duration and network efficiency.

An RU is defined as the group of a given number of tones. The standard

defines the possible groupings as shown in Tab. 3.1. The scheduler must

be able to assign these RUs while transmitting packets to the STAs. Gen-

erally, the scheduler implementation checks how many packets are queued

for transmission while preparing the next frame. If enough devices have

— 38 —



data queued and if other system conditions are met, such as number of

packet per second the user is transferring, the AP will compose and send

a HE_MU frame. Multi-user schedulers must also take into account the

average data rate for each device in order to allocate different size RUs as

a function of the needed throughput. Another difficulty that has to be in-

cluded inside the scheduler is the ability to query and to define scheduling

patterns for uplink data coming from the devices. Even in this case, it is

up to the AP’s scheduler to decide the RUs to be allocated in an OFDMA

upload.

In OFDMA there is no a priori designation for the RUs to be allo-

cated by a client. Each time the scheduler will assign a possibly different

RU configuration in the frame for every device, thus making the alloca-

tion possibilities not subject to limitation of previous choices. OFDMA is

stateless.

Utilizing OFDMA in a crowded network is useful. Latency times get re-

duced and data flow is not subject to sudden stops because medium access

is performed in a crowded environment. In fact, simulations report that, in

a pure DL-OFDMA, without OFDMA most packets will be blocked in the

MAC First Input First Output queue (FIFO) waiting for a channel access

being performed in a crowded environment [28]. Other studies highlight

the importance of the scheduling algorithm to make the approach useful.

This neat sensitivity to the scheduling process poses difficulties in the de-

velopment of new chipsets [35].

This problem is also present in cellular networks where this technology

has been first implemented in. Solutions are not public because of the algo-

rithms’ high monetary value, resulting in lots of different implementations

causing a clear difference in performance inside different vendors networks.

— 39 —



4 — Sniffing

We define “sniffing” as the act of intercepting, without altering, some prop-

erties of a channel that make the operating subject (the sniffer) able to

decode them into symbols representing data with a related meaning.

The concept of sniffing is prominent in the realm of communication net-

works. More or less every form of communication can be subject to sniffing,

as it can be modeled as an eavesdropping attack without — hopefully –

malicious intent.

Talking about on-cable networking, the sniffing can happen with the aid

of network equipment that exposes a monitoring port, a feature usually used

in Intrusion Detection System (IDS) [36]. In the realm of Wi-Fi networking,

contrarily, the sniffing can be done without the cooperation of the involved

users and devices. This is because the communication channel is shared

between all the devices in reach of the signal without the need of cabling

and physical access to the network; every radio channel is always accessible,

provided that the receiver sensitivity is good enough [37].

The previously mentioned advantages comes with additional intrinsic

difficulties: it has already been discussed in Sect. 2.2 how, in order to

provide a reliable and fast channel between the network peers, there is

the need of equalizing the channel. These features, alongside multi-user

technologies, use precoding in order to apply beam-forming and spatial

diversity streaming. These operations may result in disturbances — given

the fact the receiver and the sniffer are not in the same place, causing

the precoding not to maximize correct reception chances — or may limit

the total amount of traffic the sniffer is capable of decoding if not in the

— 40 —



immediate neighborhood of the targeted receiver.

In general, it is very improbable to receive every possible frame while

sniffing a Wi-Fi network. This is because interference and radio condition-

ing of the transmitted signal may introduce interference to the sniffer.

4.1 – Brief overview of sniffing history

In the past, where computers were technologically limited, it was easy to

sniff traffic if access to the network infrastructure was available. There

was no difficulty in intercepting data transiting in a shared network bus

given the nature of the communication system, and there was practically

no encryption in the data. This made analyzing and understanding the

network traffic easier.

With the introduction of switches and point to point networking as we

know for 802.3, there have been multiple upcoming difficulties due to the

operation of switches, delivering only messages destined to the host (in the

L2 network). This made it necessary to develop network attacks in order

to make the network apparatus behave like a hub, thus sending every frame

to the sniffing host.

4.2 – Sniffing applications

The primary application of sniffing techniques in the IT industry is for IDS.

In such configurations, a network switch is often set up to mirror or copy all

network traffic to a specific port. This port is connected to a dedicated host,

which is deployed specifically for analyzing the network traffic to identify

common attack patterns and suspicious activities. By monitoring traffic in

this manner, IDS can detect unauthorized access attempts, malware, and

— 41 —



other security breaches in real time, allowing administrators to take swift

action [36].

In traditional wired networks, this method is highly effective because

the entire data stream passing through the switch can be captured and

analyzed. However, Wi-Fi sniffing presents additional challenges. In wire-

less networks, it’s more common to place network analysis systems deeper

inside the core network infrastructure rather than on the periphery. This is

primarily because IT administrators are often more concerned with threats

originating from remote attacks, rather than those coming from local wire-

less access points. Nonetheless, while Wi-Fi sniffing may be less prevalent

in IDS systems due to these limitations, it remains a valuable tool in other

contexts.

One significant application of network sniffing, even in wireless envi-

ronments, is for network performance analysis and troubleshooting. IT

professionals use sniffers to diagnose issues with existing network hardware

or when deploying new appliances. For example, if a network experiences

slowdowns or intermittent connectivity issues, a sniffer can capture and

analyze the traffic to pinpoint the problem. This is particularly useful in

identifying packet loss, latency issues, or bandwidth bottlenecks.

In addition to troubleshooting, network sniffing is also extensively used

in benchmarking network performance. Academic researchers and network

engineers often set up controlled environments where they can test different

network protocols or technologies. By analyzing the distribution of packet

types, they can establish baseline performance metrics. These benchmarks

are crucial for understanding how a network will perform under various

conditions, such as high traffic loads or in the presence of specific types of

traffic (e.g., streaming video versus bulk data transfer).

— 42 —



For example, in a Wi-Fi network, a sniffer might be used to determine

the proportion of packets that are management frames versus data frames.

Another possibility is to evaluate the number of multi-user frames sent to

prove the efficiency of a scheduling algorithm. Understanding this distribu-

tion helps in optimizing network configurations for different applications,

such as VoIP, which requires low latency and high packet delivery reliability.

Another critical application of network sniffing is for eavesdropping on

communication channels to capture illegitimate information transmitted

over the network. Malicious actors often use sniffing techniques to steal

sensitive data, such as passwords, credit card numbers, or personal infor-

mation. This type of attack is particularly concerning in public Wi-Fi

networks [38] since 2% of the global Wi-Fi BSS are unencrypted, totaling

to more than two billion networks. In these open networks, the setup of a

Wi-Fi sniffer can be done with minimal effort. Public networks provide an

easy target for data thieves.

To counteract these threats, the implementation of secure communica-

tion channels and strong encryption protocols is crucial. For example, the

use of WPA encryption, namely WPA3 [2], in Wi-Fi networks significantly

reduces the risk of data being intercepted by a sniffer. However, despite

these measures, the potential for eavesdropping can never be entirely elim-

inated.

4.3 – Ethical considerations

When discussing sniffing in a Wi-Fi network, both legal and ethical con-

siderations are paramount due to the potential for significant privacy vio-

lations and misuse of intercepted data.

Legally, sniffing Wi-Fi networks can often fall into a gray area depending

— 43 —



on the jurisdiction. In many countries, laws make it illegal to intercept or

monitor communications without the consent of the parties involved. This

means that if someone is capturing data packets from a Wi-Fi network that

they do not own or do not have explicit permission to monitor, they could

be in violation of the law. For example, in the European Union, the General

Data Protection Regulation, also known as GDPR, imposes strict regula-

tions on how personal data is handled and accessed [39]. Unauthorized

interception of data through Wi-Fi sniffing could lead to severe penalties

under GDPR, including hefty fines. In Italy, information gathered through

sniffing of a Wi-Fi network resulting in access to IT systems may incur jail

time according to article 615 ter of the penal code “Accesso abusivo in un

sistema informatico o telematico” which protects against unwanted access

to the network [40].

Additionally, certain countries have specific laws governing the use of

wireless communications, making it illegal to intercept or decode encrypted

communications. Even if a network is unsecured or open, this does not nec-

essarily grant legal permission to intercept and analyze the data transmitted

over it. Furthermore, courts have increasingly recognized the expectation of

privacy that users have when using wireless networks, which can influence

legal interpretations of what constitutes lawful or unlawful sniffing.

Ethically, the act of sniffing Wi-Fi networks presents significant con-

cerns, even if it is technically legal in some situations. Unauthorized sniff-

ing can lead to breaches of confidentiality and trust, as individuals and

organizations expect their communications to remain private. This expec-

tation is particularly strong in the context of sensitive information such as

personal emails, financial transactions, or private messages. Even in cases

where the network is public or open, the ethical principle of respect for

— 44 —



privacy suggests that users’ data should not be intercepted and analyzed

without their informed consent [40].

Moreover, ethical considerations also extend to the potential for misuse

of the information obtained through sniffing. The intercepted data could

be used for malicious purposes such as identity theft, corporate espionage,

or unauthorized data collection. This raises questions about the intent

behind sniffing activities and whether they are conducted for legitimate

purposes, such as network diagnostics and security testing, or for harmful

and exploitative reasons.

4.4 – Implementation

Almost every network interface has the possibility to be put in a reception

mode called “monitor mode”. This configuration is usually made by the

device driver and instructs the device to send up to the kernel every packet

received without performing validation. The device effectively becomes a

physical layer interface used only for reception.

The device driver then must create or reconfigure the network interface

of the system in order to not drop unexpected packets. Once the driver and

the device are configured to deliver every packet to the host, a program to

log and analyze the data has to be used.

The most used programs for network packet analysis are “tcpdump”

and “Wireshark”. The two programs make use of the “Packet Capture

Protocol (PCAP)” file format to handle packet identification and reception

metadata decoding. This format is widely used because it allows both

stream-processing and file storage into a vast variety of analysis programs

like IDSs and network tracking.

— 45 —



4.4.1 – The PCAP File format

The PCAP format can be considered an inter-application communication

interface for the transfer of data packets. It has initially been developed in

the late 1980s by a group of researchers at the Berkeley National Labora-

tory.

The format is defined as a packet streaming protocol divided in multiple

packet records headed by the PCAP header [41].

On capture session opening, the capturing program will report at the

beginning of the PCAP stream a header, defined in Fig. 4.1a, where the

protocol version and some future packet information is stored. Particularly,

there is a field, namely SnapLen, to indicate the maximum buffer size the

receiver is allocating, thus limiting the maximum number of octets in each

packet.

Then there is the possibility to report the presence and the length of

the Frame Check Sequence (FCS) (if present) appended to the end of the

packet. Frame check sequences are generally used for error-detection of

the data contained in the packet and are commonly implemented as Cyclic

Redundancy Check (CRC). The “f” bit defines the presence of the FCS,

and the value of the field “FCS Len” reports the number of words (16 bit)

appended to the packet.

The last field of the header is then a 16-bits identifier to specify the

link type to the parsing program. There is a publicly available table of

possible values, and each value may require an ad-hoc base dissection layer

for analysis. Fig. 4.1b shows the single captured packet structure, where

the reception timestamp (with respect to the beginning of the stream) is

reported with a millisecond or nanosecond precision. Two length fields

are included in the header, indicating the captures size and the original

— 46 —



0 2 3 8 16 32

Magic Number (0xA1B2C3D4)
Major Version Minor Version

Reserved
SnapLen

FCS
Len f Link Type

(a). PCAP Header format [41].
0 8 16 32

Timestamp
Timestamp (Nanoseconds)
Captured packet Length
Original Packet Length

Data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

FCS
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(b). PCAP Packet Entry [41].

Figure 4.1: PCAP format definitions.

— 47 —



size received by the device. This is done because usually all the requred

informations are stored in the header, and most of the time the body can

be discarded.

Note that the dimensions reported does not take into account the FCS.

The simple implementation of the PCAP protocol makes it the first

choice when implementing packet analysis scripts. This solution allows

for a great interoperability of analysis scripts and programs, because it

abstracts their data gathering interface from the device and OS level.

— 48 —



5 — Validation and testing of

State-of-the-art technologies

Currently, almost every Wi-Fi chipset vendor allows to enter monitor mode

with their products. It’s obvious that every vendor will implement this

functionality with quirks and details derived by the hardware construction,

because this feature is not standardized by any association.

For this work, we started by evaluating the current state of the art in

terms of multi-user 802.11ax sniffing. This work will concentrate its efforts

in decoding DL-OFDMA frames. While analyzing a network in an high

load situation, it can be stated that DL-OFDMA is more common given

the improved spectral efficiency and network throughput advantages. We

decided, after an extensive evaluation of the possible hardware candidate

capabilities, to test Intel’s implementation of the 802.11ax chipset: the Intel

AX210. This platform has been chosen because of the reported multiuser

monitor sniffing capabilities, which are made obvious and explained in the

chipset’s linux driver, available as open source [42].

Sadly, the presence of an open source driver does not mean that re-

searchers have access to every aspect of the chipset’s hardware. The kernel

module interacts with the closed source firmware in the Wi-Fi board that

carries out all the real time work. [43]

— 49 —



5.1 – Sniffing with Intel AX210

The first experiment made with the Intel AX210 is to test the ability to

capture DL-OFDMA frames. Given how the linux driver works, it’s evident

that the chipset can only decode one AID for each DL-OFDMA frame.

The following sections will report some experiments done with a given

setup, providing some comments over the obtained results.

5.1.1 – Setup

For the first setup we tested the AX210 capabilities to monitor DL-OFDMA

traffic. The setup for this experiment consisted in:

• AX210 Host, placed in monitor mode

• Asus RT-AX86U (Broadcom BCM4908) in access point mode. This

device was set up with DL-OFDMA enabled and was assigned a non-

used channel (157/80MHz).

• Two Asus RT-AX86U (Broadcom BCM4908) configured as STA.

The APs consist in a 2 GHz quad-core device with two radio interfaces

at 2.4 GHz and 5 GHz. The 5 GHz radio is a separate dongle powered by a

Cortex-A7 BCM43684 which has been the main focus of this work.

All the experiments have been made in the 5 GHz band leaving 2.4 GHz

analysis for future work.

The layout of the experiment is described in Fig. 5.1.

Experiment #1

The aforementioned Wi-Fi network was configured as an open Basic Ser-

vice Set Identifier (BSSID) where the two RT-AX86U were configured as

— 50 —



Figure 5.1: Physical location of the hardware in the experiment room. No
people were inside the room at the time of the experiment.

stations and were associated to the third RT-AX86U working as an AP. In

order to limit packet interferences from other BSS, the network was tuned

on channel 157 with 80MHz of bandwidth. This choice ensures without any

major doubt that no interference can be registered by the sniffer, thanks to

a previous survey which have determined the nearby Wi-Fi network did not

use the high part of the 5 GHz. spectrum. Each STA device was equipped

with an iperf server ready to accept sessions. When the experiment started,

the monitoring host was put in monitor mode (see App. A) and two iperf

sessions were started on the AP to the two STAs.

This setup allows to send frames to the STA without ethernet link

limitation from an external host. Since iperf generates large frames, we

are sure that no particular slowdown for packet generation in user-space is

present.

On the monitoring host, the traffic was captured with tcpdump and then

analyzed on the fly by a custom-made script used to count multiuser frames

received thanks to the radiotap header prepended by the intel device.

After one minute of recording, the monitoring was interrupted and the

results were analyzed. Experiment results reported that no data frame was

decoded, thus no packet estimation could be derived, given the fact that

— 51 —



neither the number of stations nor the RU allocation is available in the

radiotap header.

In order to perform sniffing with the AX210 chipset family, a valid AID

must be configured.

Experiment #2

Following the experiment in Sect. 5.1.1.1, without any configuration change,

we repeated the test. This time, before the beginning of the experiment,

the status of the AP multiuser scheduler was collected, given the fact that

we had full access and control over the AP. This resulted in the availability

of the connected AID and their association with the MAC address.

The recording produced results similar to the experiment in Sect. 5.1.1.1

in terms of raw frames received, but this time the chipset was able to decode

packets from the frames directed to the selected AID. This is represented

by the second series in Fig. 5.2 indicating the total number of packets re-

ceived in a given time interval. We see more packets than frame because

Aggregated MAC Service Data Unit (AMSDU) and Aggregated MAC Pro-

tocol Data Unit (AMPDU) were enabled in the AP.

Without considering AMSDU and AMPDU, we can estimate the total

number of packets in the network as twice the number of frames, given the

50% duty cycle in AID switching.

This is feasible because of the simple network layout and the predictabil-

ity of the iperf traffic. In a real network, this estimate will not be very

precise due to variation in the network load.

As a test bench, a traffic capture was run on the AP in order to later

match and estimate the number of lost frames. Overall packet loss results

are shown in Tab. 5.1.

— 52 —



0 5 10 15 20 25 30 35 40

1,000

1,200

1,400

1,600

1,800

2,000

AX210 Received packets for AID 0x0E

Figure 5.2: Experiment 2, Number of received packets per time period by the
AX210 sniffer.

Table 5.1: Setup 1, Experiment 2, Results

Metric Value
Total number of packets transferred 2296373
Total Number of packet per AID 1140461
Total Number of packet sniffed 803505
Total Number of packet lost 334391
Percentage of packets sniffed 40.9%
Percentage of packets sniffed for the AID 70.1%

— 53 —



The same experiment has been performed with a 4-NSST configuration

reporting no data captured by the AX210 because of its bi-antenna layout.

Experiment #3

To get a better view of the network packets transmitted on the channel,

we repeated the experiment in Sect. 5.1.1.1 and 5.1.1.2 with an additional

script cycling through a preconfigured list of AIDs and configuring them as

the current target AID for the AX210 every second.

The AID list, as previously stated in Sect. 5.1.1.2, has been obtained

thanks to the full access to the AP scheduler information.

By varying the switching time between the AIDs, we were able to pre-

pare a benchmark of the sniffing capabilities in function of the switching

time, evaluating the device jitter and performances.

Fig. 5.3 shows the number of packets captured by the device divided by

the AID, across the switching time range of 1ms, 10ms, 100ms and 1s. It

is possible to evince the switching nature of the process as the switching

interval becomes bigger than the sampling interval, which remains constant

at 0.1s.

In terms of jitter timing for the switching, it is expected that the his-

togram of inter-frame timings should present two peaks: one near zero,

because of all the frames received in a single switching interval, and one

near the value of the switching interval. This is because we should be able

to detect at least as many frames with inter-frame interval long as much as

the switching interval or more, as the number of switches in the experiment.

If during the experiment the total amount of AID switches was a number

n and the switch time was tswitch, we should expect at least n− 1 reported

inter-frame intervals greater of equal tswitch. The more thhese inter-frame

— 54 —



0 2 4 6 8 10

800

1,000

1,200
AID1
AID2

(a). Received packets in time,
∆switch = 0.001s.

0 2 4 6 8 10
800

1,000

1,200 AID1
AID2

(b). Received packets in time,
∆switch = 0.01s.

0 2 4 6 8 10

600

800

1,000

1,200
AID1
AID2

(c). Received packets in time,
∆switch = 0.1s.

0 2 4 6 8 10
0

1,000

2,000 AID1
AID2

(d). Received packets in time,
∆switch = 1s.

Figure 5.3: Experiment 3, Number of packets sniffed per time interval and
AID.

— 55 —



0 0.5 1 1.5
·10−2

100

102

104

106

(a). Inter frame interval distribution,
∆switch = 0.001s

0 1 2
·10−2

100

102

104

106

(b). Inter frame interval distribution,
∆switch = 0.01s

0 2 4 6
·10−2

100

102

104

106

(c). Inter frame interval distribution,
∆switch = 0.05s

0 5 10
·10−2

100

102

104

106

(d). Inter frame interval distribution,
∆switch = 0.1s

Figure 5.4: Experiment 3, Inter-Frame time distruibution per switching time
interval.

— 56 —



Table 5.2: Setup 1, Experiment 3, Results.

Metric Value per ∆switch

0.001s 0.01s 0.05s 0.10ms
# of packets transferred 2136617 2320231 2341005 2392980
# of packet for AID1 1079704 1158354 1172402 1200135
# of packet for AID2 1056910 1161875 1168600 1192843
# of packet sniffed 801224 801708 799964 800590
# of packet sniffed for AID1 399376 399622 400420 399382
# of packet sniffed for AID2 401848 402086 399544 401208

times are longer than the switching time, the worse is the traffic sampling

granularity, providing less precision in the description of the network load

and behavior when burst of traffic are present. Fig. 5.4 demonstrates what

previously mentioned exposing the limits of the platform. In fact, for fast

switching timings such as 1ms and 10ms, the second peak appears nearly

twice as far as expected. The spread around this peak, also, enables us to

infer the jitter charateristics of this process.

Because the switching process is driven in user space, it was expected

that jitter would have played a big role in the charaterization process.

We were able to also define a limit switching interval for this technique

which demonstrates to be in the interval [100ms− 10ms].

Capture statistics of the experiments are represented in Tab. 5.2.

Results

The current state of the art, while allowing for a multi-user OFDMA moni-

toring by switching the AID during capture, is able to provide only a rough

estimate of the network performance with a rough granularity because of

the limited performance in switching times.

As shown by experiments in Sect. 5.1.1.3, the fact that AID switching is

performed in the user space does not allow for an in depth control over the

— 57 —



hardware, resulting in less precise data with consistent jittering imprecision.

Also, the AX210 is one of the few devices allowing for multi-user sniffing

in 802.11ax. This new technology allows for possibly an easier sniffing

because it does not depend on spatial diversity and precoding in order to

decode data, but the decoding hardware is not fully controllable by the

user, resulting in difficulties in the sniffing.

The fact that AX210 does not support 5GHz AP mode — in fact it can

only be used in a “soft AP configuration only on the 2.4 GHz” — implies

that the only product capable of MU sniffing does not support the full AP

capabilities needed to decode frames concurrently, needed for UL-OFDMA,

increasing the inefficiency of the sniffing process.

5.1.2 – Limitations

The current monitoring setup for 802.11ax multi-user DL-OFDMA presents

significant limitations that impact the effectiveness and comprehensiveness

of network traffic analysis with the AX210 hardware setup.

Specifically, this setup is constrained by the ability to recover only one

frame per multi-user transfer, based on a given Association ID (AID). This

restriction inherently leads to the loss of other frames within the same

multi-user transmission, thereby preventing a complete capture of all trans-

mitted data. Consequently, this results in an incomplete picture of the

network’s traffic, as only a subset of the transmitted data can be analyzed.

Moreover, the necessity to change the AID every second to capture traf-

fic from the entire network introduces further complications. This approach

is inefficient and prone to missing critical data, as it relies on the manual

or automated cycling through AIDs, which may not align with the actual

transmission schedule of the AP.

— 58 —



The inability to recover multiple frames simultaneously may obscure

important traffic patterns and behaviors, such as load balancing, client-

specific issues, or security breaches. The cumulative effect of these limita-

tions is a monitoring setup that may not fully reflect the network’s dynam-

ics, potentially leading to misguided conclusions or overlooked issues.

The lack of an easy and usable method to detect and select AIDs exacer-

bates this issue, as it necessitates either a manual configuration or reliance

on the AP’s scheduler. Dumping the scheduler data on the AP, while pos-

sible, is often impractical and may not provide real-time or near-real-time

insight, which is essential for effective monitoring.

These limitations could lead to significant gaps in the captured data,

affecting the reliability and accuracy of network performance analysis, secu-

rity monitoring, and troubleshooting. Also, captured data comes in bursts

of one second, and they get more spread over with the increasing number

of users in the network, resulting in a less accurate understanding of the

networks functioning due to discontinuities in the available data.

— 59 —



6 — Changing approach: Broadcom

hardware

As previously stated, this work aims to develop a new set of tools for

OFDMA network sniffing.

The hardware choice of the Broadcom BCM46384 comes thanks to the

availability of Nexmon, a framework that allows for the complete access to

the chipset internals and permits its firmware modification [44].

We must acknowledge that the Broadcom firmware is closed source, but

the aforementioned tool is applicable thanks to the great effort in reverse

engineering the platform. This tool, with the addition of some reverse

engineering of the PHY registers in the chipset, allowed us to gain a deeper

understanding of the chipset’s structure. Thanks to a multitude of tests and

operations such as fuzzing, we were able to adapt the hardware behavior

to our scope.

Before handling the effective modifications needed to perform the net-

work analysis and before displaying the newly found behavioral discoveries

of the OFDMA hardware, it’s necessary to have an understanding of the

chipset itself and its architecture.

Please note that the work here presented may be ported to multiple

chipsets — up to the next major hardware revision of the chipset — with

specific adaptations.

The BCM46384 offers up to four spatial streams on both 2.4GHz and

5GHz bands with support for 802.11ax High efficiency. As previously men-

tioned in Sect. 5.1.1.1, during the development of these tools, we only

— 60 —



PHY

BB

Real Time Processing

MAC

Host

Figure 6.1: Layer organization of the Broadcom hardware and software inter-
face to the user space.

utilized the 5 GHz capabilities.

A high level overview of the platform, described in Fig. 6.1, can be

divided in four macro layers handling the different needs for a fast and

reliable communication.

The chipset consist in a full-MAC architecture, later described in

Sect. 6.2, where every Wi-Fi domain operation is handled in a separate

CPU without host interaction.

The base layer, identified as the PHY layer, is the main physical inter-

face to the external world. It includes every component needed to perform

the hardware side of the modulation and demodulation, such as signal con-

ditioning and modulation components for OFDM network access and much

more. This layer also includes the required DAC and ADC to perform signal

synthesis and decoding [45].

The second layer, the BB, contains all the required digital peripherals

to perform modulation and demodulation, with the addition of dedicated

hardware offload components to allow for faster processing of the 802.11

— 61 —



structures during modulation and demodulation.

Up until now, every layer contains hardware peripherals with no (or

very little needed) microcode.

The first interesting layer containing executable code is the Real Time

Processing core. There is no official documentation on its architecture

other than the name: D11. The D11 core(s) is responsible for the real

time processing of the frame, and it can operate on the data even while the

Physical Layer (PHY) is still receiving it [45].

The last macro-layer is the MAC. This layer is the responsible for

handling “slow” Wi-Fi operations such as handling connection requests.

Real time operations such as ACKs and beamforming reports, which must

obey strict timing requirements, are handled by the D11 instead.

6.1 – D11 Core

The D11 real time processing core is the main actor for the low-level com-

munication capabilities. It features a 64bit fixed size instruction set with

numerous internal registers.

Thanks to previous work made when developing Nexmon, the basics of

the internal architecture are now known. The D11 handles frame manipu-

lation with a set of hardware and software instructions and communicates

with the upper layers thanks to a shared memory section [44].

Internally, the D11 core presents itself as referenced by Fig. 6.2.

There are a couple of caveats to understand the architecture: initially,

lots of decoding and operations on the received frame data are made in

hardware. This is evident when reading disassembled code from the dis-

tributed firmware in the official driver. There are multiple registers getting

populated by the dedicated peripherals with adequate data without the

— 62 —



RX Engine

TX Engine

Crytpo Engine

RX FIFOs

TX FIFOs

Programmable
State Machine Ram and Registers

From BB

To BB

To MAC

From MAC

To/From Driver

Figure 6.2: D11 internal layout.

need for code to carry out the decoding. This is mirrored by the fact that

multiple instructions will behave differently depending on the state the core

is in. This implies the presence of a microcode executing in the background

optimized for particular tasks.

In general, it is evident that this core is very multipurpose. Its code

is loaded at driver initialization and can vary whenever some features are

required. For example, the main driver will load a different D11 firmware

whenever Bluetooth coexistence is needed or not.

6.2 – MAC Layer

The MAC layer is the high level responsible for non-time-sensitive opera-

tions. This layer manages the hardware whenever power limits are enforced

and is the main controlling unit of the device. It manages the communi-

cation interfaces between the chipset and the host processor and handles

generic driver activities.

— 63 —



Up until 802.11n, Broadcom chipsets implemented the MAC layer di-

rectly in the host driver, communicating directly to the D11 core on the

chipset. This solution guarantees simplicity and cost optimizations, but

the ever-increasing computational speed and efficiency required by modern

standards limited its application.

The host implementation of the MAC layer, commonly known as Soft

MAC, is subject to scheduling jitter and host/OS inefficiency in handling

real time data access. This solution was only possible because more opera-

tions were delegated to the D11 core running on the hardware, and because

of the limited speed required by the standard [45].

Modern chipsets use a different architecture, Full MAC. This architec-

ture introduces an ARM core, usually a Cortex-M4, between the D11 and

the host. This core is the responsible for non-real-time operations such

as scheduling configuration, AP association, AP mode management opera-

tions and interface management.

The presence of this additional layer, introduces communication diffi-

culties between the D11 and the host, which are solved with DMA access

discussed in Sect. 6.3, but allows for the possibility of handling Wi-Fi events

in low-power hardware consenting the host CPU to sleep until an event or

data is received.

6.3 – Data Reception

Data reception begins with the identification and the demodulation of a

signal by the physical layer. The signal travels through the layer where

the required signal conditioning and amplification occurs. The signal is

then sampled by a set of Analog to Digital Converters (ADCs) that allows

the BB to handle the newly digitized samples. Here the raw samples are

— 64 —



decoded with the necessary signal processing steps.

For OFDM and OFDMA frames, the Base Band (BB) shall first detect

the presence of the frame by identifying and correlating the LTF field. This

field is used, as stated in Sect. 2.2, to provide channel equalization and to

detect the effective start of the frame. This step is performed in hardware

and generates the required CSI data to equalize the signal, compensating

for amplitude changes and phase shifts due to channel disturbances and

reflections.

Once the frame is detected, FFT and other reception operations are

performed to decode the frame, and they are supplied to the D11 for elab-

oration as bytes. The D11 is also able to read some other hardware-related

values decoded by the lower layers with the use of special hardware regis-

ters.

The D11 then receives the raw data through a FIFO and starts inter-

preting them. These operations are performed mostly by a programmable

state machine, which reacts to changes faster than code could do. This PSM

then controls the various decoding engines implemented in hardware with

whom the D11 core interacts with in order to perform the data reception.

Data transmission to the host then happens thanks to the presence of

hardware FIFOs. Data is sent up to the ARM core with the help of DMA

and ring buffers. Here the Full MAC will apply Ethernet headers as needed

and will handle management frames as defined by the standard. Note that

data pushback to the host is then performed by DMA or by placing the

content directly in the host’s physical memory thanks to PCIE DMA access.

— 65 —



6.4 – Data Transmission

For data transmission, data is sent from the host or from the ARM proces-

sor (when particular management activities require sending frames) thanks

to DMA. The ARM firmware will handle data processing for the packets

coming from the host and will place them into a ring buffer that another

DMA peripheral will use to send the data to the D11. Here the core han-

dles the most part of multi-user scheduling (if needed) and data processing

to form the raw frame which is then sent to the BB for encoding and then

out to the channel thanks to the PHY layer.

— 66 —



7 — Tool development

The main focus of this work, as previously mentioned, is to develop a toolset

for OFDMA network sniffing.

Thanks to both Nexmon and some GNU General Public License (GPL)

Software releases by Asus, we were able to fully dissect and reverse engineer

parts of the D11 firmware. Especially, we were able to identify the point

where the D11 starts executing while a new frame is being received. The

reception flow in the D11 firmware starts after the detection of an incoming

packet, thanks to the STF field in the PLCP. The hardware is responsible

for the channel setup and for the PLCP reception.

Once the PLCP has been received and has been validated, the D11 can

now detect what type of frame has been received.

Then, after the full PLCP reception, the frame is decoded and, based

upon its type, dedicated operations are performed, such as sending the

frame up to the host or managing the hardware based on information com-

ing through the received packet.

One example of this behavior is the handling of HE Trigger Based frames

or UL-OFDMA. In these cases, the D11 will send a packet from the TX

FIFO whenever an HE trigger based frame is received containing the re-

quired transmission parameters.

7.1 – Understanding the Hardware

As we are interested in the DL-OFDMA decoding hardware a long reverse

engineering of the D11 firmware and testing have been performed.

— 67 —



Following the reverse engineering of the disassembled firmware, and

thanks to the definitions cross-referenced to the GPL source code release,

we are able to make a description of the receiving hardware layout and

design.

At first, we discovered that there is a PHY register filtering out the

correct color packets while receiving. We suspect that this operation is

made in hardware because this allows for the frame decoding to be aborted

when a different color than configured is found. This is done to provide

better power efficiency and to allow for transmission when the detected

power is less than the threshold described in Sect. 3.2.

By writing to the registers ACPHY_HESigBMyBSS0 and

ACPHY_HESigBMyBSS1, we can configure what color is being filtered.

The color filtering is enabled or disabled by writing a value in the

register ACPHY_HESigParseCtrl. Specifically, the field to be written is

he_mybss_color_len. The name explains why there are two different

registers containing the color: we can choose the length of the BSS Color

vector to be used for matching the color of a packet. This allows the

STA to switch colors when roaming without interruption of the incoming

traffic.

We can also write a length of zero to disable the color matching filter

and receive data from every color. This is useful for sniffing, when the color

of the BSS is not known, but it may introduce unwanted traffic that would

be later filtered out in an phase of analysis.

The BSS color is available in the Wi-Fi beacon, so it can be configured

without difficulty before the sniffing activity. The only downside is that

if the color changes, the sniffing will stop. As this is a very situation-

dependent configuration, its setup is left available for the user, who can

— 68 —



decide when BSS coloring is needed.

The second set of registers that need modification in order to grant

monitoring features are ACPHY_HESigBStaIdxy. Here too there are two sets

of registers (x equals 0 or 1) and each set contains four different configurable

AID (y from 0 to 3). The purpose of these two sets is not clear, since as

only the last written bank is effectively enabled.

One strange hardware organization consists in the presence of two equal

BSS Color and AID selection register banks. These two banks seem not to

control the hardware at the same time, but they seem to be selectable. We

suspect this feature is used when roaming between access points. Having

two register banks allows configuring the new AID and color while still being

connected to the original AP. Then, when the device is required to switch

to a new BPSK, the register bank is switched to allow communications to

continue without interruption [7].

7.2 – Testing the hardware

In order to support the assumptions of Sect. 7.1, a set of controlled exper-

iments has been run. These experiments utilized the layout reported by

Fig. 7.1, where a transmitting Software Defined Radio (SDR) directly con-

nected with 30 dB attenuation to the chipset radio interface. This allowed

us to perform reception tests without experiencing signal degradation and

interference.

Once the setup has been validated by the transmission of a single user

frame generated with the help of MATLAB, a sequence of test frames have

then been transmitted to evaluate hardware behavior when HE multi-user

frames are received. Particularly, we tested multiple configurations of the

AID and BSS color registers while capturing the memory locations respon-

— 69 —



Figure 7.1: SDR reception test configuration. All receiving chains except for
the connected one were disabled on the sniffer. Cable connection was preferred
because of transmissing power limitations.

sible for decoding the incoming frame.

7.2.1 – AID Register settings

First, experiments were conducted in order to understand how the AID

registers were determining how the frame was being decoded.

After having configured the decoding hardware to utilize the register

bank 0 with adequate enabling bits in the selection register, we started

transmitting an HE_MU frame composed as shown in Fig. 7.2. In Tab. 7.1

we find the outcome of the receptions given the configured AID decoding

configuration. Table 7.1 allows to understand that the AID selection reg-

isters are used like a priority queue for frame decoding, where the higher

index of the list is the most prioritized.

It can be observed that the hardware will receive the packets destined

to the first AID found starting from index 03. If an AID is not found then

— 70 —



Table 7.1: Experiment Results for AID configuration registers.

ACPHY_HESigBStaId Result00 01 02 03
255 255 255 255 No decoding happening. The AID

255 was not present in the frame, so
we expected to not receive any frame.

1 255 255 255

Decoding of frame with AID 1255 1 255 255
255 255 1 255
255 255 255 1
2 255 255 255

Decoding of frame with AID 2255 2 255 255
255 255 2 255
255 255 255 2
3 255 255 255

Decoding of frame with AID 3255 3 255 255
255 255 3 255
255 255 255 3
0 1 255 255 Decoding of frame with AID 1
1 0 255 255 Decoding of frame with AID 0
0 1 2 3 Decoding of frame with AID 3
3 0 2 1 Decoding of frame with AID 1

— 71 —



Pre-HE portion HE portion
-500

0

500

Su
bc

ar
rie

r I
nd

ex

RU #1 # S ize: 242 # User #1 AID 0

RU #2 # S ize: 242 # User #2 AID 1

RU #3 # S ize: 242 # User #3 AID 2

RU #4 # S ize: 242 # User #4 AID 3

Figure 7.2: RU allocation of the transmitting frame.

the hardware looks for the next one decreasing the index reference.

7.2.2 – Non-Standard Frames

Another experiment was run in order to understand the hardware behavior

when non-standard frames were received.

Detailing this frame format, Fig. 7.3 shows an allocation where both

RU 1 and RU 2 have been generated with the same AID in the HE-SIG-

B but containing different payloads in order to be able to distinguish the

allocations.

The outcome of the experiment was that only the first intercepted AID,

which was the first RU index available, was being decoded.

7.2.3 – Decoding data

By capturing the hardware registers right after the PLCP detection, we

found that the hardware will discard any unmatched HE-SIG-B whose AID

— 72 —



Pre-HE portion HE portion
-500

0

500

Su
bc

ar
rie

r I
nd

ex

RU #1 # S ize: 242 # User #1 AID 1

RU #2 # S ize: 242 # User #2 AID 1

RU #3 # S ize: 242 # User #3 AID 2

RU #4 # S ize: 242 # User #4 AID 3

Figure 7.3: RU allocation of the non-standard transmitting frame.

was not in the matching register, as shown by the dumps in Listing 7.1 and

Listing 7.2.

The shown content, starting at the address 0x10, represents the dump

of the PLCP registers responsible for matching the various parts of the

PLCP data structure while receiving in order to prepare the reception flow

based on the type of frame.

The data format of the memory dumps is not fully understood, but with

an adequate number of tries, it was possible to deduce the following: know-

ing that each field is the representation (little endian) of a D11 register, the

bytes at the addresses 0x1C through 0x1F are the HE-SIG-B. Particularly,

the lower 16 bits of the HE-SIG-B are at address 0x1C:1D and the upper

5 bits are encoded in the 0x1D:1F addresses. For example, the SIG-B in

Listing 7.1, should look like 00 11 00 03, consisting in an allocation for

AID 3 with 1 spatial stream, no beamforming, LDPC coding and MCS of

— 73 —



1 0x00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2 0x10: 0e 00 0b 39 01 01 e0 02 0d 01 82 14 03 00 11 00
3 0x20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 7.1: Received PLCP memory dump with HE-SIG-B decoded.

1 0x00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2 0x10: 0e 00 0b 24 01 01 e0 02 8d 00 82 2c 00 00 00 00
3 0x20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Listing 7.2: Received PLCP memory dump without HE-SIG-B decoded.

1. Given the fact the experiment was conducted with one transmitting and

receiving antenna while using the SDR radio, the decoding corresponds to

the real transmission configuration.

It is evident that, in the case of Listing 7.1, where the hardware was

configured with the AID equal to 3 (0x03) that the SIG-B has been correctly

decoded. Contrary, in Listing 7.2, where the AID was misconfigured on

purpose to 255 (0x0f), the SIG-B has not made available by the hardware.

We are now sure the hardware can decode only one HE-SIG-B at a time,

and its value will be accessible in the packet header structure utilize by the

D11 firmware. Other unrelated SIG-Bs are discarded and are not available

in the registers for elaboration.

7.3 – Performance Evaluation

Recreating the experiment in Sect. 5.1.1.2, we focused on the Broadcom

sniffer evaluation. The setup saw the addition of the sniffer close to the

two STAs, as shown in Fig. 7.4, to make the reception conditions similar to

the one at the Intel AX210 board. In this case, We developed a modified

firmware in order to be able to keep track of the number of received frames

by their types.

In particular, we added a small filtering and counting section in the D11

— 74 —



Figure 7.4: Physical location of the hardware in the experiment room. No
people were inside the room at the time of the experiment.

firmware for both the two STAs and the sniffer, right after the reception

routine. The code, shown in Listing 7.3, makes easier to understand the

process behind this feature: after finishing the reception of a frame we

check its receiving address against a configured one in the shared memory,

specified by three 16-bit values named TARGET_MAC1_1, TARGET_MAC1_-

2, TARGET_MAC1_3. Then, since we are intrested in monitoring the iperf

traffic, we continue counting only if the frame control field of the frame

indicates the presence of a data frame. At this point the frame type is

encoded in the fourth and fifth bits of r23 which are shifted and masked

out and checked against the values 0 and 1, representing HE_SU and HE_-

MU frame types respectively and consequently we increment the relative

counter.

Experiment results demonstrate that the number of frames received by

the sniffing apparatus, configured with the correct BSS Color and the same

AID configured for the AX210 sniffer, are very close to each other. In

fact, during this experiment, the counter values have been monitored at a

constant interval of 0.1s, plotted on the graphs in Fig. 7.5a and Fig. 7.5a.

In Fig. 7.5a the number of received Multi User frames per time interval

is plotted. Instead, in figure Fig. 7.5b a comparison between the number of

— 75 —



1 L965_rx_complete :
2 [...] ; perform reception routines as FCS checks and

push the packet in the RXFIFO when able.
3
4 ; filter frame by RA field against memory locations.
5 xjne TARGET_MAC1_1 , SPR_MHP_Addr1_L_ID , done+
6 xjne TARGET_MAC1_2 , SPR_MHP_Addr1_M_ID , done+
7 xjne TARGET_MAC1_3 , SPR_MHP_Addr1_H_ID , done+
8
9 ; filter only data frames

10 and SPR_MHP_FC_ID , 0xff , SPARE1
11 xjne SPARE1 , 0x88 , done+
12
13 ; find out the frame type (( r23 >> 3) & 3)
14 mov r23 , SPARE1
15 sr SPARE1 , 3, SPARE1
16 and SPARE1 , 0x3 , SPARE1
17 xjne SPARE1 , 0, next+ ; jump if not Single User
18
19 ; Increment SU Counter (32 bits)
20 xadd. CONTA1_SU_L , 1, CONTA1_SU_L
21 xaddc CONTA1_SU_H , 0, CONTA1_SU_H
22 jmp done+
23 next:
24 ; Increment MU Counter (32 bits)
25 xjne SPARE1 , 1, next+ ; jump if not Multi User
26 xadd. CONTA1_MU_L , 1, CONTA1_MU_L
27 xaddc CONTA1_MU_H , 0, CONTA1_MU_H
28 jmp done+
29 next:
30 ; If the frame type is something else (e.g. Trigger

Based) we would end up here.
31 ; note: given the filtering of only data frames , we

should never get here.
32 xadd. CONTA1_OTHER_L , 1, CONTA1_OTHER_L
33 xaddc CONTA1_OTHER_H , 0, CONTA1_OTHER_H
34 done:
35 [...] ; continue execution

Listing 7.3: Counting routine in the D11 Core firmware for performance
evaluation.

— 76 —



0 10 20 30

2,400

2,600

2,800

3,000

STA
SNIFFER

(a). STA received frames in time vs.
Broadcom sniffed frame count

0 10 20 30

2,500

3,000

BCM
AX210

(b). Intel sniffed frames in time vs.
Broadcom sniffed frame count

Figure 7.5: Experiment 1 results for Intel and Broadcom single AID sniffing
performances. MCS 6, NSS 2.

frames received by the Broadcom sniffer against the Intel AX210 is made.

It is possible to note that the numbers are very close to each other. In

particular the fact the Intel and Broadcom sniffers present practically the

same numbers, albeit Intel reports an increased variance in them, positively

concludes the performance evaluation of the platform.

In order to force the traffic to be sent as OFDMA, the AP has been set

with a fixed MCS and Number of Spatial Streams (NSS) to not incur into

traffic generation problems from the user space application.

The same experiment has been reproduced with four spatial streams,

confirming the results in Sect. 5.1.1.2, but this time the Broadcom sniffer

was able to capture almost every frame, as shown by the comparison in

Fig. 7.6

7.4 – Tool Implementation

We discussed in Sect. 5.1.2 the limitations of the AX210 sniffing setup. The

main deficit this work aims to improve is the frequency of the receiving AID

— 77 —



0 5 10 15 20 25 30 35
0

1,000

2,000

3,000

STA
Broadcom

Intel

Figure 7.6: Experiment 1 results for Intel and Broadcom single AID sniffing
performances against the real values from the STA counters. MCS 3, NSS 4.

switching.

Since the hardware is not allowing nor the full access of the PLCP

header and neither multiple AID decoding in a single multi-user frame, our

solution to improve sniffing results is to instruct the hardware to switch the

listening AID every frame reception.

The implemented sniffing operation, then, follows Algorithm 1, given

the configuration parameters that have been set in the D11 shared memory

from the host.

The expected shared memory configuration for this modified firmware

must contain a table of scanning AID at a predefined address. The table

format shall be a length-encoded list of 16 bit values starting at address

0x176c as described by Fig. 7.7. This list must be preceded by the control

byte of the system, containing the activation flag alongside the current list

index.

Each time the function for switching the AID is called, the next aid in

the list is set in the configuration registers and the INDEX field is updated.

— 78 —



Algorithm 1 Sniffing procedure
while running do

recv ← waitframe
if ¬is_mu(recv) ∨ ¬switching_en then

PushFrame(recv)
continue

end if
NextAID() ▷ Frame is Multi User
if sig_b is null then

continue
end if
PushFrame(null) ▷ Selected AID present

end while

In order to prevent overreading the list, the switching procedure will per-

form a modulo operation on the index field with the length of the list to

automatically roll back to the beginning if the index is pointing over the

end of the list.

Thanks to Nexmon utilities, the user space interface for writing into the

shared memory is already implemented. Only a small script was written

for easiness of use of the system. The script takes the parameters of the

AID list from the command line and encodes them in the correct format.

Once the data has been formatted, an ioctl is performed in order to write

the data on the D11 memory [44].

By performing AID switching at every frame, we ensure that the system

will not get stuck in case an AID is not transmitted or missing.

0 1 16 32

EN INDEX LEN AID 0 ... AID N
0x176e 0x176f 0x1770 0x1770 + LEN - 1

Figure 7.7: Memory representation for the control structure controlling AID
switching.

— 79 —



Sadly, because of Sect. 7.1 discoveries, no data regarding the RU allo-

cation can be decoded and interpreted given the lack of HE-SIG-B data in

the header available to the firmware.

Another time-based switching mode has been implemented to permit

direct confrontation with the banchmarks provided in Sect. 5.1. This mode

utilizes the same methodology of Algorithm 1 but, instead of switching at

each frame, the change in aid occurs when the D11’s internal monotonic

counter gets to the time delta configured. The algorithm representing this

working mode is defined in Algorithm 2

Algorithm 2 Sniffing procedure
while running do

recv ← waitframe
if ¬is_mu(recv) ∨ ¬switching_en then

PushFrame(recv)
continue

end if ▷ Frame is Multi User
if last_time + ∆t ≤ GetTime() then

NextAID()
last_time← GetTime()

end if
if sig_b is null then

continue
end if
PushFrame(null) ▷ Selected AID present

end while

7.5 – Results

7.5.1 – Experiment #1

Once the above-mentioned implementation has been inserted into the bi-

nary payload the unix driver loads at boot, a new SDR based experiment

— 80 —



Pre-HE portion HE portion
-500

0

500

Su
bc

ar
rie

r I
nd

ex

RU #1 # S ize: 106 # User #1 AID 1029

RU #2 # S ize: 106 # User #2 AID 1030

RU #3 # S ize: 106 # User #3 AID 1031

RU #4 # S ize: 106 # User #4 AID 1032

RU #5 # S ize: 106 # User #5 AID 1033

RU #6 # S ize: 106 # User #6 AID 1034

RU #7 # S ize: 106 # User #7 AID 1035

RU #8 # S ize: 106 # User #8 AID 1036

Figure 7.8: RU allocation of the testing frame in transmission.

has been run to check it effectivity.

The OFDMA frame utilized for this experiment, shown in Fig. 7.8,

consisted in an eight-user wide tranmission, with AMPDU payload of six

packets.

The hardware configuration was the following:

• ENABLE bit: 1

• Staring Index: 0

• List Length: 8

• AIDs: 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036

Note that in this frame, the presence of AMPDU will introduce in the

resulting packet capture multiple packets with the same AID for each re-

ceived frame. Also, the packets for AID 1032 were sent at MCS 3 instead

of MCS 0 like the others. Because of DL-OFDMA frame padding, this

sub-frames contain a repetition of packets with the tag EOT set to the value

1 [7].

— 81 —



Table 7.2: Receiving MAC address per AID in Experiment #1

AID MAC Address
1029 24 4b fe 32 11 11
1030 24 4b fe 32 22 22
1031 24 4b fe 32 33 33
1032 24 4b fe 32 44 44
1033 24 4b fe 32 55 55
1034 24 4b fe 32 66 66
1035 24 4b fe 32 77 77
1036 24 4b fe 32 88 88

This removal of the padding is performed in the ARM core, which has

been disabled in this execution because the monitor mode will directly send

up to the user space any packet received.

Full results of this capture are available in App. B, where it can be

observed a cyclic pattern in packet reception, due to the alternation of the

AID registers.

All the packets in each sub-frame were created such that their receiving

address (last six bytes of the payload) were reflecting the index of the

RU. Table 7.2 shows their association, which may help in decoding data in

Tab. B.1.

7.5.2 – Experiment #2

The same experiment previously run in Sect. 5.1.1.3 has been performed

with the setup modifications indicated in Sect. 7.5.2 but maintaining the

same STA configurations. We found the number of recorded frames to

closely match what previously benchmarked.

The sniffer was placed in time-switching mode in order to be compared

to the Intel AX210.

Repeating the experiment analysis, whose graphs are reported in

— 82 —



0 0.2 0.4 0.6 0.8
·10−2

100

102

104

106

(a). Inter frame interval distribution,
∆switch = 0.001s

0 0.5 1 1.5
·10−2

100

102

104

106

(b). Inter frame interval distribution,
∆switch = 0.01s

0 5 10 15
·10−2

100

102

104

106

(c). Inter frame interval distribution,
∆switch = 0.05s

0 2 4 6 8 10
·10−2

100

102

104

106

(d). Inter frame interval distribution,
∆switch = 0.1s

Figure 7.9: Inter-Frame time distruibution per switching time interval. Broad-
com Sniffer.

— 83 —



Table 7.3: Setup 1, Experiment 3, Results.

Metric Value per ∆switch

0.001s 0.01s 0.05s 0.10ms
# of packets transferred 2330490 2358323 2260490 2206048
# of packet for AID1 1150172 1155346 1057491 1125952
# of packet for AID2 1180316 1202975 1202997 1080094
# of packet sniffed 742250 727628 740587 745918
# of packet sniffed for AID1 366454 363418 364356 370585
# of packet sniffed for AID2 366454 363418 364356 370585

Fig. 7.9, we can observe an improved jitter and switching time precision at

even 1ms of switching time. In fact, it is possible to observe a well-defined

peak of inter-frame times in the correspondence of the switching period,

conferming the better jitter resistance of the system.

Also, capture statistics of the experiments are represented in Tab. 7.3.

From Tab. 7.3, it is evident that the two systems reach comparable

performances in terms of sniffing capabilities. The Broadcom based tool

developed while working on this topic, though, highlights better jitter if

used in time-switch mode other than allowing for up to four spatial streams

communications to be captured.

As a final note, an additional step during this experiment has been

taken. In order to provide an estimate on the fidelity in representing net-

work behavior, the sniffer was placed in frame-switching mode, utilizing

the Algorithm 1.

Fig. 7.10 shows the similarity in inter-frame interval distribution be-

tween a capture made with a single recording AID and a capture where the

sniffer was configured for switching each frame between two AIDs.

It is possible to observe a similar trend between the two distribution,

where the one in Fig. 7.10a shows a slight increase of occurrences of intervals

bigger than 5ms.

— 84 —



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
·10−2

100

101

102

103

104

105

106

(a). Frame swithcing mode inter-frame intervals

0 0.1 0.2 0.3 0.4 0.5 0.6
·10−2

100

101

102

103

104

105

106

(b). Single AID reference capture

Figure 7.10: Inter-frame timing behavior with and without switching.

— 85 —



Considering that, with the AP configuration used for this experiment,

the maximum frame duration was calculated to be 3ms, the two distri-

bution are closely related. This allows us to state that the system could

approximate the network traffic behavior correctly with a resolution in the

order of 5ms intervals.

7.6 – AID Discovery

When analyzing a real network with both DL-OFDMA and UL-OFDMA,

it is possible to recover present AID informations.

Given the procedure utilized by 802.11ax compatible AP to retrieve

data in uplink OFDMA, discussed in Fig. 3.1b, it is possible to gather

information about the AID in the network by decoding the trigger frames.

By decoding the trigger frames set by the AP, the sniffer can gather

information about the AID in the network and insert them in the sniffing

list. Because, usually, the network’s connected clients are not changing

rapidly, after three to five trigger frames we could be reasonably sure the

AID in the network have been already seen. Then, the trigger frame and

list update can be kept working while sniffing in order to catch network

layout evolution, where AID gets disconnected or added.

Additionally, a timeout can be associated to each AID in order to prune

the list of inactive members. In this case, an AID gets discarded whenever

no trigger frames reference it for a given period of time or no frames gets

received in that interval.

The probability of discarding an active AID, because of the per-frame

cycling, tends to zero; given that multi-user traffic happens when multiple

data streams are sent to the network. This makes sure that, granted a long

enough period of time allowing for a couple of frames per selected AID to

— 86 —



be sent, which usually may not extend over ten milliseconds, no active AID

will be discarded by the system.

Updating the list of switching AID needs only a shared memory update

increasing or decreasing the index the D11 uses for sniffing, and a small

reordering of the list in order to not leave invalid aids in the structure.

For example, adding an AID to the list may simply insert the value at

the end of the list and increment its length by one. For removal, the length

of the list shall be reduced and the last element (if it is not the one to

be eliminated) should overwrite the element being removed. The index of

the switching will be updated automatically by the next switching event

because the increment with modulus is executed before the change in the

registers.

— 87 —



8 — Conclusions and future work

This work has successfully demonstrated the potential to develop a more

comprehensive sniffing tool compared to existing solutions. Considering

the importance of network sniffing within research environments, e.g. for

the development of advanced scheduling algorithms, this enhanced set of

tools enables users to observe network activities and derive statistically

meaningful parameters for their analysis.

We showcased the capability of the Broadcom sniffer in performing mon-

itoring activities, even in scenarios where other consumer-grade hardware

had proven limited. One of the BCM46384’s strength lies in its four-antenna

configuration, which allows the sniffing of up to four spatial stream commu-

nications, achieving a theoretical monitoring throughput exceeding 8Gbps.

Moreover, we developed and tested a novel capturing method for

OFDMA multi-user frames, facilitating network research under conditions

where high network load is induced. By leveraging the ability to switch

AID with each incoming frame directly in the real time processor, we

successfully captured multi-user traffic with minimal deviation from real

network behavior, as demonstrated in Sect. 7.5.2. Although this method

does not capture all the transmitted packets, it enables the detection and

understanding of behavioral changes within the network, such as bursts or

other peculiar occurrences.

This work represents a significant advancement in the tools available

for wireless network analysis by enhancing the instrument’s capabilities.

As these modifications are based on Nexmon, the reverse engineering and

patching tool for Broadcom-based chipsets, the firmware developed here can

— 88 —



be ported to other devices with additional capabilities, thereby further ex-

panding the range of available options. Additionally, Nexmon’s open-source

distribution ensures unrestricted access for researchers, hence maximizing

the potential for new discoveries in the field.

The development of these tools was not without its challenges. As it is

common in reverse engineering efforts, considerable energy and time were

required to understand the hardware and existing firmware, particularly in

the absence of comprehensive documentation. The work presented in this

thesis only skims the surface of the effort required to bring this tool to

fruition.

Unfortunately, the complete capture of multi-user frames could not be

implemented due to hardware limitations. Future research will focus on

overcoming these limitations and further enhancing the tools developed in

this work.

Finally, a thorough and comprehensive statistical validation of the sniff-

ing methods presented here should be run, which would further broaden

the scope for research in this critical area.

— 89 —



Bibliography

[1] R. Mubashar, M. A. Siddique, A. Rehman, A. Asad, and A. Rasool,

“Comparative performance analysis of short-range wireless protocols

for wireless personal area network”, Iran Journal of Computer Sci-

ence, vol. 4, Sep. 2021.

[2] A. Halbouni, L.-Y. Ong, and M.-C. Leow, “Wireless Security Proto-

cols WPA3: A Systematic Literature Review”, IEEE Access, vol. 11,

pp. 112 438–112 450, 2023.

[3] P. Machań and J. Woźniak, “On the fast BSS transition algorithms in

the IEEE 802.11 r local area wireless networks P Machań, J Wozniak

Telecommunication Systems, 1-8”, Telecommunication Systems, Jan.

2011.

[4] “IEEE Standard for Information Technology - Telecommunications

and Information Exchange Between Systems - Local and Metropoli-

tan Area Networks - Specific Requirements - Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifica-

tions”, IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999),

pp. 1–1076, 2007.

[5] N. Gupta and R. Gupta, “Routing protocols in Mobile Ad-Hoc Net-

works: An overview”, pp. 173–177, 2010.

[6] K. Haseeb, I. Ud Din, N. Islam, A. Altameem, and A. Almogren,

“RTS: A Robust and Trusted Scheme for IoT- based Mobile Wireless

Mesh Networks”, IEEE Access, vol. 8, pp. 1–10, Apr. 2020.

— 90 —



[7] “IEEE Standard for Information Technology–Telecommunications

and Information Exchange between Systems Local and Metropolitan

Area Networks–Specific Requirements Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications Amendment 1: Enhancements for High-Efficiency

WLAN”, IEEE Std 802.11ax-2021 (Amendment to IEEE Std

802.11-2020), pp. 1–767, 2021.

[8] Y. Shen, R. Bootsman, M. S. Alavi, and L. de Vreede, “A 0.5-3 GHz

I/Q Interleaved Direct-Digital RF Modulator with up to 320 MHz

Modulation Bandwidth in 40 nm CMOS”, in 2020 IEEE Custom

Integrated Circuits Conference (CICC), 2020, pp. 1–4.

[9] G. Agrawal, P. Sinha, J. Dhar, C. Rao, and R. Jyoti, “Design and

Development of Broadband and Compact Size IQ demodulator at

850±112.5 MHz”, in 2021 6th International Conference for Conver-

gence in Technology (I2CT), 2021, pp. 1–4.

[10] B. Hirosaki, “An Analysis of Automatic Equalizers for

Orthogonally Multiplexed QAM Systems”, IEEE Transactions on

Communications, vol. 28, no. 1, pp. 73–83, 1980.

[11] K. Vaigandla, S. R. Allanki, K. Srikanth, Study, and E. Ijmtst, “Study

of Modulation Schemes over a Multipath Fading Channels”, Interna-

tional Journal for Modern Trends in Science and Technology, vol. 7,

pp. 34–39, Oct. 2021.

[12] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi:

a free and open-source IEEE802.11 SDR implementation on

SoC”, in 2020 IEEE 91st Vehicular Technology Conference

(VTC2020-Spring), 2020, pp. 1–2.

— 91 —



[13] F. Gringoli, M. Cominelli, A. Blanco, and J. Widmer, “AX-CSI:

Enabling CSI Extraction on Commercial 802.11ax Wi-Fi

Platforms”, in Proceedings of the 15th ACM Workshop on Wireless

Network Testbeds, Experimental Evaluation & CHaracterization,

ser. WiNTECH ’21, New Orleans, LA, USA: Association for

Computing Machinery, 2021, pp. 46–53. [Online]. Available:

https://doi.org/10.1145/3477086.3480833.

[14] F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free Your CSI:

A Channel State Information Extraction Platform For Modern Wi-

Fi Chipsets”, in Proceedings of the 13th International Workshop on

Wireless Network Testbeds, Experimental Evaluation & Characteri-

zation, ser. WiNTECH ’19, Los Cabos, Mexico: Association for Com-

puting Machinery, 2019, pp. 21–28. [Online]. Available: https://

doi.org/10.1145/3349623.3355477.

[15] R. Laufer and L. Kleinrock, “The Capacity of Wireless CSMA/CA

Networks”, IEEE/ACM Transactions on Networking, vol. 24, no. 3,

pp. 1518–1532, 2016.

[16] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under

high traffic conditions: throughput and delay analysis”, Comput.

Commun., vol. 25, no. 3, pp. 313–321, Feb. 2002. [Online]. Available:

https://doi.org/10.1016/S0140-3664(01)00369-3.

[17] P. Chatzimisios, A. Boucouvalas, and V. Vitsas, “Effectiveness of RT-

S/CTS handshake in IEEE 802.11a Wireless LANs”, Electronics Let-

ters, vol. 40, pp. 915–916, Aug. 2004.

— 92 —

https://doi.org/10.1145/3477086.3480833
https://doi.org/10.1145/3349623.3355477
https://doi.org/10.1145/3349623.3355477
https://doi.org/10.1016/S0140-3664(01)00369-3


[18] Y.-J. Cheng, “The impact of RTS/CTS exchange on the performance

of multi-rate IEEE 802.11 wireless networks”, Ph.D. dissertation, In-

diana University South Bend, 2008.

[19] J. Kim and I. Lee, “802.11 WLAN: history and new enabling MIMO

techniques for next generation standards”, IEEE Communications

Magazine, vol. 53, no. 3, pp. 134–140, 2015.

[20] B. Bellalta, J. Barcelo, D. Staehle, A. Vinel, and M. Oliver, “On the

Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO

WLANs”, 2012. arXiv: 1204 . 0643 [cs.NI]. [Online]. Available:

https://arxiv.org/abs/1204.0643.

[21] O. Bejarano, E. W. Knightly, and M. Park, “IEEE 802.11ac: from

channelization to multi-user MIMO”, IEEE Communications Maga-

zine, vol. 51, no. 10, pp. 84–90, 2013.

[22] M. S. Gast, 802.11ac: A Survival Guide. O’Reilly Media, Inc., 2013.

[23] “IEEE Standard for Information technology– Telecommunications

and information exchange between systemsLocal and metropolitan

area networks– Specific requirements–Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications–

Amendment 4: Enhancements for Very High Throughput for Opera-

tion in Bands below 6 GHz.”, IEEE Std 802.11ac-2013 (Amendment

to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012,

IEEE Std 802.11aa-2012, and IEEE Std 802.11ad-2012), pp. 1–425,

2013.

[24] F. Siddiqui, S. Zeadally, and K. Salah, “Gigabit Wireless Networking

with IEEE 802.11ac:Technical Overview and Challenges”, Journal of

Networks, vol. 10, Apr. 2015.

— 93 —

https://arxiv.org/abs/1204.0643
https://arxiv.org/abs/1204.0643


[25] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “OFDM and Its

Wireless Applications: A Survey”, IEEE Transactions on Vehicular

Technology, vol. 58, no. 4, pp. 1673–1694, 2009.

[26] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial

on IEEE 802.11ax High Efficiency WLANs”, IEEE Communications

Surveys & Tutorials, vol. 21, no. 1, pp. 197–216, 2019.

[27] R. Goodwins, Next-generation 802.11 ax wi-fi: Dense, fast, delayed,

visited: 28/08/2024, 2021. [Online]. Available: https://www.zdnet.

com/home-and-office/networking/next-generation-802-11ax-

wi-fi-dense-fast-delayed/.

[28] S. Avallone, P. Imputato, G. Redieteab, C. Ghosh, and S. Roy, “Will

OFDMA Improve the Performance of 802.11 Wifi Networks?”, IEEE

Wireless Communications, vol. 28, no. 3, pp. 100–107, 2021.

[29] E. Perahia and R. Stacey, Next Generation Wireless LANs: 802.11n

and 802.11ac, 2nd ed. Cambridge University Press, 2013.

[30] M. Natkaniec and N. Bieryt, “An Analysis of the Mixed IEEE

802.11ax Wireless Networks in the 5 GHz Band”, Sensors, vol. 23,

p. 4964, May 2023.

[31] F. Frommel, G. Capdehourat, and B. Rodríguez, “Performance Anal-

ysis of Wi-Fi Networks based on IEEE 802.11ax and the Coexistence

with Legacy IEEE 802.11n Standard”, pp. 492–495, Nov. 2021.

[32] P. Imputato, S. Avallone, M. Smith, D. Nunez, and B. Bellalta, “Be-

yond Wi-Fi 7: Spatial reuse through multi-AP coordination”, Com-

put. Netw., vol. 239, no. C, Apr. 2024. [Online]. Available: https:

//doi.org/10.1016/j.comnet.2023.110160.

— 94 —

https://www.zdnet.com/home-and-office/networking/next-generation-802-11ax-wi-fi-dense-fast-delayed/
https://www.zdnet.com/home-and-office/networking/next-generation-802-11ax-wi-fi-dense-fast-delayed/
https://www.zdnet.com/home-and-office/networking/next-generation-802-11ax-wi-fi-dense-fast-delayed/
https://doi.org/10.1016/j.comnet.2023.110160
https://doi.org/10.1016/j.comnet.2023.110160


[33] K. Wang and K. Psounis, “Efficient scheduling and resource allocation

in 802.11ax multi-user transmissions”, Computer Communications,

vol. 152, Feb. 2020.

[34] D. Magrin, S. Avallone, S. Roy, and M. Zorzi, “Performance Evalu-

ation of 802.11ax OFDMA Through Theoretical Analysis and Sim-

ulations”, IEEE Transactions on Wireless Communications, vol. 22,

no. 8, pp. 5070–5083, 2023.

[35] R. Karthik and S. Palaniswamy, “Resource Unit (RU) based OFDMA

Scheduling in IEEE 802.11ax system”, in 2018 International Confer-

ence on Advances in Computing, Communications and Informatics

(ICACCI), 2018, pp. 1297–1302.

[36] A. A. E. Boukebous, M. I. Fettache, G. Bendiab, and S. Shiaeles, “A

Comparative Analysis of Snort 3 and Suricata”, in 2023 IEEE IAS

Global Conference on Emerging Technologies (GlobConET), 2023,

pp. 1–6.

[37] R. Singh and S. Kumar, “A Comparative Study of Various Wireless

Network Monitoring Tools”, in 2018 First International Conference

on Secure Cyber Computing and Communication (ICSCCC), 2018,

pp. 379–384.

[38] WiGLE, WiGLE: Wireless Network Mapping, https://wigle.net/

[Accessed: 18/08/2024], 2001.

[39] Council of European Union, Council regulation (EU) no 679/2016,

2016.

[40] Ministero della Giustizia, Accesso abusivo a un sistema informatico

o telematico, Art 615 ter c.p.

— 95 —

https://wigle.net/


[41] G. Harris, Ed. and M. Richardson, “PCAP Capture File Format”,

RFC Editor, RFC, Dec. 2021. [Online]. Available: https://www.

ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html.

[42] Intel, iwlwifi. [Online]. Available: https://github.dev/torvalds/

linux/blob/master/drivers/net/wireless/intel/iwlwifi/.

[43] N. Iooss and G. Campana, Ghost in the Wireless, iwlwifi edition,

2022.

[44] M. Schulz, D. Wegemer, and M. Hollick, Nexmon: The C-based

Firmware Patching Framework, version 2.2.2, Sep. 2017. [Online].

Available: https://github.com/seemoo-lab/nexmon.

[45] M. Schulz, “Teaching Your Wireless Card New Tricks: Smartphone

Performance and Security Enhancements Through Wi-Fi Firmware

Modifications”, en, Ph.D. dissertation, Technische Universität Darm-

stadt, Darmstadt, 2018. [Online]. Available: http://tubiblio.ulb.

tu-darmstadt.de/105239/.

List of Figures

2.1 Schematic representation of a Wi-Fi network infrastructure

with multiple APs and roaming devices in the process of

changing BSS. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

— 96 —

https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
https://www.ietf.org/archive/id/draft-gharris-opsawg-pcap-01.html
https://github.dev/torvalds/linux/blob/master/drivers/net/wireless/intel/iwlwifi/
https://github.dev/torvalds/linux/blob/master/drivers/net/wireless/intel/iwlwifi/
https://github.com/seemoo-lab/nexmon
http://tubiblio.ulb.tu-darmstadt.de/105239/
http://tubiblio.ulb.tu-darmstadt.de/105239/


2.2 16-QAM Constellation after symbol decoding. This constel-

lation represents the I and Q component of the decoded sig-

nal at multiple points in time. The points are not perfectly

overlapped due to the presence of noise in the received signal. 8

2.3 Conceptual diagram of the IQ modulation and demodulation

process. The signal is first modulated in order to generate

the signal S(t) which is sent into the air and later receiver

and demodulated by the decoder. . . . . . . . . . . . . . . . 10

2.4 IQ Modulator and demodulator example signals. . . . . . . . 11

2.5 Legacy PLCP Header structure [4] for OFDM modulated

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Contention window mediation for channel access between

two STA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 RTS-CTS channel access dialogue. . . . . . . . . . . . . . . . 18

2.8 MU-MIMO channel access and data transmission process de-

scription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 NDPA Frame structure [22]. . . . . . . . . . . . . . . . . . . 21

2.10 802.11ac sounding procedure. This procedure allows for the

reporting of CSI information to the AP. . . . . . . . . . . . 21

2.11 Fourier transform of a signal with frequency fi = 240Hz,

δs = 1s with relative OFDM zeros. . . . . . . . . . . . . . . 26

2.12 OFDMA encoding FFT and multiple decoders. The two

symbol streams get encoded into a spectrum representation

which is then converted in the time domain thanks to the

Inverse FFT function. At the receiver side, each device will

decode only the portion of spectrum allocated to it. . . . . . 27

3.1 Multi user communications in 802.11ax . . . . . . . . . . . . 31

— 97 —



3.2 Difference between BPSK and QBPSK constellation diagrams. 32

3.3 Full description of an 802.11ax HE PLCP. . . . . . . . . . . 35

3.4 BSS Color carrier sensing procedure [30]. . . . . . . . . . . . 36

3.5 BSS Color Distribution. Note the interference radius is in-

creased because distance between BSS with the same channel

number and color is maximized. . . . . . . . . . . . . . . . . 37

4.1 PCAP format definitions. . . . . . . . . . . . . . . . . . . . 47

5.1 Physical location of the hardware in the experiment room.

No people were inside the room at the time of the experiment. 51

5.2 Experiment 2, Number of received packets per time period

by the AX210 sniffer. . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Experiment 3, Number of packets sniffed per time interval

and AID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Experiment 3, Inter-Frame time distruibution per switching

time interval. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Layer organization of the Broadcom hardware and software

interface to the user space. . . . . . . . . . . . . . . . . . . . 61

6.2 D11 internal layout. . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 SDR reception test configuration. All receiving chains ex-

cept for the connected one were disabled on the sniffer. Ca-

ble connection was preferred because of transmissing power

limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 RU allocation of the transmitting frame. . . . . . . . . . . . 72

7.3 RU allocation of the non-standard transmitting frame. . . . 73

— 98 —



7.4 Physical location of the hardware in the experiment room.

No people were inside the room at the time of the experiment. 75

7.5 Experiment 1 results for Intel and Broadcom single AID

sniffing performances. MCS 6, NSS 2. . . . . . . . . . . . . . 77

7.6 Experiment 1 results for Intel and Broadcom single AID

sniffing performances against the real values from the STA

counters. MCS 3, NSS 4. . . . . . . . . . . . . . . . . . . . . 78

7.7 Memory representation for the control structure controlling

AID switching. . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.8 RU allocation of the testing frame in transmission. . . . . . 81

7.9 Inter-Frame time distruibution per switching time interval.

Broadcom Sniffer. . . . . . . . . . . . . . . . . . . . . . . . . 83

7.10 Inter-frame timing behavior with and without switching. . . 85

List of Tables

3.1 802.11ax RU sizes [7]. . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Setup 1, Experiment 2, Results . . . . . . . . . . . . . . . . 53

5.2 Setup 1, Experiment 3, Results. . . . . . . . . . . . . . . . . 57

7.1 Experiment Results for AID configuration registers. . . . . . 71

7.2 Receiving MAC address per AID in Experiment #1 . . . . . 82

7.3 Setup 1, Experiment 3, Results. . . . . . . . . . . . . . . . . 84

B.1 Experiment Results for AID configuration registers . . . . . 104

— 99 —



List of Acronyms

ACK Acknowledgement

ADC Analog to Digital Converter

AID Association Index

AMPDU Aggregated MAC Protocol Data Unit

AMSDU Aggregated MAC Service Data Unit

AP Access Point

ASK Amplitude Shift Keying

BB Base Band

BO Back-Off counter

BPSK Binary Phase Shift Keying

BSR Buffer State Request

BSS Basic Service Set

BSSID Basic Service Set Identifier

CCI Co-Channel Interference

CRC Cyclic Redundancy Check

CSI Channel State Information

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear to Send

CW Contention Window

DAC Digital to Analog Converter

DIFS Distributed Interframe Space

DL-OFDMA Downlink Orthogonal Frequency Division Multiple Access

DMA Direct Memory Access

FCS Frame Check Sequence

— 100 —



FFT Fast Fourier Transform

FIFO First Input First Output queue

GDPR Genral Data Protection Regulation

GPL GNU General Public License

HE High Efficiency

IDS Intrusion Detection System

IFFT Inverse Fast Fourier Transform

ISM Industrial, Scientific and Medical

LO Local Oscillator

LTF Long Training Field

MAC Medium Access Control

MCS Modulation Coding Scheme

MIMO Multiple Input Multiple Output

MU Multi User

MU-MIMO Multi User Multiple Input Multiple Output

NDP Null Data Packet

NDPA Null Data Packet Announcment

NSS Number of Spatial Streams

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PCAP Packet Capture Protocol

PCIe Peripheral Component Interconnect Express

PHY Physical Layer

PLCP Physical Layer Convergence Protocol

QAM Quadrature Amplitude Modulation

QBPSK Quadrature Binary Phase Shift Keying

RF Radio Frequency

— 101 —



RTS Request To Send

RU Resource Unit

SDR Software Defined Radio

SIFS Short Interframe Space

SNR Signal to Noise Ratio

SOF Start of Frame

STA Station

STF Short Training Field

SU Single User

TCP Transmission Control Protocol

UL-OFDMA Uplink Orthogonal Frequency Division Multiple Access

WPA3 Wi-Fi Protected Access version 3

— 102 —



A — AX210 monitor mode

In order to put the AX210 in monitor mode the following steps need to be

taken.
1 export IFACE=" wlp4s0 "

2 export IFACE_PCI_ADDRESS =" 00:04.000 "

3 export CHANNEL ="157 80 MHz"

4 export AID="c"

5 export DEVICE =" 00:00:00:00:00:00 "

6
7 # Ensure the interface is down

8 ip link sed $IFACE down

9
10 #Setup monitor mode

11 iw dev $IFACE set monitor none

12
13 #Bring up the interface and confure the channel

14 ip link sed $IFACE up

15 iw dev $IFACE set channel $CHANNEL

16
17 # Configure an AID to listen at when receiving OFDMA

frames

18 echo $AID $DEVICE | tee sys/ kernel /debug/ iwlwifi /

$IFACE_PCI_ADDRESS / iwlmvm / he_sniffer_params

This snippet will configure the chipset for sniffing wifi traffic and, in

the event of a OFDMA frame it will try to decode the content for the

supplied AID. If a valid mac address is specified in the variable DEVICE the

chipset will decode UL-OFDMA frames coming after a trigger frame if the

corresponding AID has been identified.

— 103 —



B — Extended SDR experiment results

Table B.1: Experiment Results for AID configuration registers

No. AID MCS Frame

Counter

Payload

1 0x405 0 0x0000 88 02 00 00 24 4b fe 32 11 11 ...

2 0x405 0 0x1000 88 02 00 00 24 4b fe 32 11 11 ...

3 0x405 0 0x2000 88 02 00 00 24 4b fe 32 11 11 ...

4 0x405 0 0x3000 88 02 00 00 24 4b fe 32 11 11 ...

5 0x405 0 0x4000 88 02 00 00 24 4b fe 32 11 11 ...

6 0x405 0 0x5000 88 02 00 00 24 4b fe 32 11 11 ...

7 0x406 0 0x0000 88 02 00 00 24 4b fe 32 22 22 ...

8 0x406 0 0x1000 88 02 00 00 24 4b fe 32 22 22 ...

9 0x406 0 0x2000 88 02 00 00 24 4b fe 32 22 22 ...

10 0x406 0 0x3000 88 02 00 00 24 4b fe 32 22 22 ...

11 0x406 0 0x4000 88 02 00 00 24 4b fe 32 22 22 ...

12 0x406 0 0x5000 88 02 00 00 24 4b fe 32 22 22 ...

13 0x407 0 0x0000 88 02 00 00 24 4b fe 32 33 33 ...

14 0x407 0 0x1000 88 02 00 00 24 4b fe 32 33 33 ...

15 0x407 0 0x2000 88 02 00 00 24 4b fe 32 33 33 ...

16 0x407 0 0x3000 88 02 00 00 24 4b fe 32 33 33 ...

17 0x407 0 0x4000 88 02 00 00 24 4b fe 32 33 33 ...

18 0x407 0 0x5000 88 02 00 00 24 4b fe 32 33 33 ...

20 0x408 3 0x0000 88 02 00 00 24 4b fe 32 44 44 ...

21 0x408 3 0x1000 88 02 00 00 24 4b fe 32 44 44 ...

— 104 —



22 0x408 3 0x2000 88 02 00 00 24 4b fe 32 44 44 ...

23 0x408 3 0x3000 88 02 00 00 24 4b fe 32 44 44 ...

... 15 more ...

39 0x408 3 0x1000 88 02 00 00 24 4b fe 32 44 44 ...

40 0x408 3 0x2000 88 02 00 00 24 4b fe 32 44 44 ...

41 0x408 3 0x3000 88 02 00 00 24 4b fe 32 44 44 ...

42 0x408 3 0x4000 88 02 00 00 24 4b fe 32 44 44 ...

43 0x409 0 0x0000 88 02 00 00 24 4b fe 32 55 55 ...

44 0x409 0 0x1000 88 02 00 00 24 4b fe 32 55 55 ...

45 0x409 0 0x2000 88 02 00 00 24 4b fe 32 55 55 ...

46 0x409 0 0x3000 88 02 00 00 24 4b fe 32 55 55 ...

47 0x409 0 0x4000 88 02 00 00 24 4b fe 32 55 55 ...

48 0x409 0 0x5000 88 02 00 00 24 4b fe 32 55 55 ...

49 0x40a 0 0x0000 88 02 00 00 24 4b fe 32 66 66 ...

50 0x40a 0 0x1000 88 02 00 00 24 4b fe 32 66 66 ...

51 0x40a 0 0x2000 88 02 00 00 24 4b fe 32 66 66 ...

52 0x40a 0 0x3000 88 02 00 00 24 4b fe 32 66 66 ...

53 0x40a 0 0x4000 88 02 00 00 24 4b fe 32 66 66 ...

54 0x40a 0 0x5000 88 02 00 00 24 4b fe 32 66 66 ...

55 0x40b 0 0x0000 88 02 00 00 24 4b fe 32 77 77 ...

56 0x40b 0 0x1000 88 02 00 00 24 4b fe 32 77 77 ...

57 0x40b 0 0x2000 88 02 00 00 24 4b fe 32 77 77 ...

58 0x40b 0 0x3000 88 02 00 00 24 4b fe 32 77 77 ...

59 0x40b 0 0x4000 88 02 00 00 24 4b fe 32 77 77 ...

60 0x40b 0 0x5000 88 02 00 00 24 4b fe 32 77 77 ...

61 0x40c 0 0x0000 88 02 00 00 24 4b fe 32 88 88 ...

62 0x40c 0 0x1000 88 02 00 00 24 4b fe 32 88 88 ...

— 105 —



63 0x40c 0 0x2000 88 02 00 00 24 4b fe 32 88 88 ...

64 0x40c 0 0x3000 88 02 00 00 24 4b fe 32 88 88 ...

65 0x40c 0 0x4000 88 02 00 00 24 4b fe 32 88 88 ...

66 0x40c 0 0x5000 88 02 00 00 24 4b fe 32 88 88 ...

... ... ... ... ...

— 106 —



Ringraziamenti

Questo lavoro è frutto di una bellissima intesa nata tra me e il Professor

Gringoli. Grazie a lui e al gruppo ANS, ho potuto comprendere a pieno la

bellezza della ricerca e della sperimentazione.

Questo percorso è nato ormai un anno fa, quando un gruppo di persone

si sono ritrovate in un ufficio per discutere della stesura di un articolo a

partire da un lavoro svolto a fine di sostenere un esame. Ringrazio queste

persone per avermi permesso di tastare così per la prima volta il mondo

accademico “dalla parte opposta”, dove l’obbiettivo non è “dimostrare di

essere in grado” quanto “apportare un contributo al mondo della ricerca”.

Grazie a ciò è nata la voglia di portare oggi questa tesi sperimentale,

dopo aver conosciuto il relatore, Francesco Gringoli, ed esssere rimasto

estasiato dal suo approccio alla ricerca. Grazie ai suoi insegnamenti e al

suo entusiasmo ho potuto scrivere questa tesi. Lo ringrazio in quanto il

suo impegno in questo progetto è stato infinitamente più grande di quanto

mi aspettassi, essendo sempre stato disponibile anche alle ore più folli della

notte.

Ringrazio la mia famiglia per avermi spronato costantemente soprat-

tutto nei momenti di difficoltà, i miei genitori e nonni, che non si sono mai

tirati indietro e non sono mai mancati.

Ringrazio tutti i ragazzi che mi sono sempre stati vicino, chi proseguirà

la carriera accademica e chi invece ha preferito dedicarsi alla vita lavorativa,

per avermi sostenuto e aiutato nel momento del bisogno, oltre che per aver

condiviso ogni momento all’interno dell’università.

A chi mi è sempre stato vicino e ha condiviso ogni momento, dentro e

— 107 —



fuori la vita accademica, che mi ha fatto sorridere quando afflitto da ansie

e paure: grazie.

Mi rendo conto che da questo momento tutto sta per cambiare: co-

munque sia, spero che i legami formati con tutti voi possano persistere

anche nel futuro più lontano.

- Stefano

— 108 —


	Summary
	Introduction
	Wi-Fi Fundamentals
	Modulation
	Physical Header and Equalization
	Channel access
	Multi-User Multiple Input and Multiple Output
	Limitations
	Orthogonal Frequency Division Multiple Access


	The 802.11ax standard
	802.11ax PLCP
	BSS Coloring
	Multi User Scheduling

	Sniffing
	Brief overview of sniffing history
	Sniffing applications
	Ethical considerations
	Implementation
	The PCAP File format


	Validation and testing of State-of-the-art technologies
	Sniffing with Intel AX210
	Setup
	Experiment #1
	Experiment #2
	Experiment #3
	Results

	Limitations


	Changing approach: Broadcom hardware
	D11 Core
	MAC Layer
	Data Reception
	Data Transmission

	Tool development
	Understanding the Hardware
	Testing the hardware
	AID Register settings
	Non-Standard Frames
	Decoding data

	Performance Evaluation
	Tool Implementation
	Results
	Experiment #1
	Experiment #2

	AID Discovery

	Conclusions and future work
	Bibliography
	AX210 monitor mode
	Extended SDR experiment results

