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Sommario

Prendendo spunto dal lavoro della Tesi di Laurea Triennale intitolata “Analysis

and Characterization of Wi-Fi Channel State Information”, questa tesi amplia

e approfondisce la ricerca conducendo un’analisi dettagliata delle CSI, offrendo

nuovi approcci che si spingono oltre i risultati dello studio originale. L’obiettivo

del lavoro è estendere la rappresentazione matematica e statistica di un canale

wireless attraverso lo studio del comportamento e dell’evoluzione nel tempo e

nella frequenza delle CSI.

Le CSI forniscono una descrizione ad alto livello del comportamento di un

segnale che si propaga da un trasmettitore a un ricevitore, rappresentando co-

sì la struttura dell’ambiente che il segnale attraversa. Questa conoscenza può

essere utilizzata per effettuare ambient sensing, una tecnica che permette di

estrarre informazioni rilevanti sull’ambiente di propagazione in funzione delle

proprietà che il segnale presenta al ricevitore, dopo aver interagito con le super-

fici degli oggetti presenti nello spazio analizzato. L’ambient sensing svolge già

un ruolo essenziale nelle nuove reti wireless come 5G e Beyond 5G; il suo im-

piego nelle applicazioni di Joint Communication and Sensing e per l’ottimizza-

zione della propagazione del segnale tramite beamforming potrebbe supportare

ambient sensing cooperativo efficiente anche nelle reti veicolari, consentendo

la Cooperative Perception e aumentando di conseguenza la sicurezza stradale.

A causa della mancanza di ricerca sulla caratterizzazione delle CSI, l’attuale

studio intraprende un’analisi della struttura delle CSI raccolte in un ambiente

sperimentale controllato, al fine di descriverne le proprietà statistiche. I ri-

sultati potrebbero fornire un approccio matematico di supporto alle attività

di environment classification e di movement recognition che attualmente so-

no eseguite solo tramite approcci basati su Machine Learning, introducendo

invece efficienti algoritmi dedicati.
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Summary

Building upon the foundational work of the Bachelor’s Degree Thesis titled

“Analysis and Characterization of Wi-Fi Channel State Information”, this the-

sis significantly advances the research by conducting an in-depth analysis of

CSIs, offering new insights that extend well beyond the original study. The

goal of this work is to broaden the mathematical and statistical representation

of a wireless channel through the study of CSI behavior and evolution over

time and frequency.

CSI provides a high-level description of the behavior of a signal propagat-

ing from a transmitter to a receiver, thereby representing the structure of the

environment where the signal propagates. This knowledge can be used to per-

form ambient sensing, a technique that extracts relevant information about the

surroundings of the receiver from the properties of the received signal, which

are affected by interactions with the surfaces of the objects within the analyzed

environment. Ambient sensing already plays an essential role in new wireless

networks such as 5G and Beyond 5G; its use in Joint Communication and

Sensing applications and for the optimization of signal propagation through

beamforming could also enable the implementation of efficient cooperative am-

bient sensing in vehicular networks, facilitating Cooperative Perception and,

consequently, increasing road safety.

Due to the lack of research on CSI characterization, this study aims to be-

gin analyzing the structure of CSI traces collected in a controlled experimental

environment and to describe their statistical properties. The results of such

characterization could provide mathematical support for environment classi-

fication and movement recognition tasks that are currently performed only

through Machine Learning techniques, introducing instead efficient, dedicated

algorithms.

— II —



Contents

1 Introduction 1

2 Wi-Fi Fundamentals 6

2.1 Modulation Techniques . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Orthogonal Frequency-Division Multiplexing (OFDM) . . . . . . 8

2.3 802.11ax Standard Version . . . . . . . . . . . . . . . . . . . . . 10

2.4 802.11be Standard Version . . . . . . . . . . . . . . . . . . . . . 12

2.5 Channel State Information (CSI) Structure . . . . . . . . . . . . 14

3 Background and Previous Results 17

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Amplitude Evolution in Time . . . . . . . . . . . . . . . . . . . 18

3.3 Amplitude Relative Frequency Observation . . . . . . . . . . . . 19

3.4 Amplitude Increments and Auto-Correlation . . . . . . . . . . . 20

3.5 Amplitude Increments Analysis . . . . . . . . . . . . . . . . . . 20

4 Experimental Setup 22

4.1 Collected data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Additional available dataset . . . . . . . . . . . . . . . . . . . . 24

5 Notation 27

6 Normalization and Quantization 29

6.1 Estimate of the Increments Process . . . . . . . . . . . . . . . . 30

6.2 Quantization and Mapping . . . . . . . . . . . . . . . . . . . . . 32

— III —



6.3 Visualization of the Normalization and Quantization Processes . 36

7 Mutual Shannon Information 39

7.1 Future Research Directions . . . . . . . . . . . . . . . . . . . . . 45

8 Weighted Hamming Distance 46

9 CSI Processing 50

10 Results of the Normalization and Quantization Processes 55

11 Results of the Analysis of the Weighted Hamming Distance 64

11.1 Results on the Collected Dataset . . . . . . . . . . . . . . . . . 66

11.2 Results on the AntiSense dataset . . . . . . . . . . . . . . . . . 75

12 Conclusions and Future Work 80

Bibliography 83

A Detailed Classification of Collected Data 88

B Normalized Average WHD of the AntiSense Dataset 91

— IV —



1 Introduction

With the ever-increasing applications of wireless telecommunication networks

in all aspects of everyday life, ensuring users’ security and privacy has become

an increasingly delicate field of study requiring dedicated research.

As users across the world are becoming accustomed to approaching Wi-Fi

as a means of quickly transferring their own data, the ongoing development

of this technology is both guaranteeing more users access to network coverage

and high bit rates and raising awareness about previously unforeseen threats

to users’ security [1]. Aside from the challenges of Wi-Fi managed through

the introduction of cryptographic protocols employed to ensure users’ security

when accessing the Internet [2], some features of Wi-Fi can still be exploited by

attackers to violate users’ privacy. Specifically, it may become more straight-

forward in the near future to perform attacks based on Wi-Fi Channel State

Information (CSI) [3]–[5].

CSIs are pieces of information associated with packets transmitted on a

Wi-Fi channel and whose structure allows for the description of the behavior

of a signal propagating from a transmitter to a receiver. Essentially, they

provide a numerical representation of how the signal bounces off the surfaces

it meets during its propagation by including information about the signal’s

phase shift and attenuation [6]. CSIs do not intrinsically qualify as tools that

can be exploited to perform attacks on wireless networks, but rather as features

that should be used to improve the quality of telecommunications over Wi-Fi.

Newly developed technologies benefit from the use of CSIs when implementing

Multiple Input Multiple Output (MIMO) techniques and improving channel
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equalization.

In fact, CSIs can also be used to perform ambient sensing, a technique

that extracts spatial information about the environment in which a signal

propagates. Depending on the reflection, scattering, and absorption of the

signal by the surroundings of both transmitter and receiver, the content of a

CSI is altered and it can be interpreted as a representation of the environment

itself. The content of a CSI becomes a useful descriptor of both the static and

dynamic structure of an environment, while also allowing to locate electronic

devices within it. Moreover, it is not necessary for a person to be carrying a

communication device to be correctly located within the environment through

the analysis of CSI content, as the propagating signal will interact with the

person’s body regardless of the presence of any other electronic device [7], [8].

This allows to both identify the position of the person and give an idea about

their movements around the environment based solely on the properties the

signal displays once it is received and its associated CSIs are extracted [9].

Of course, this property of CSIs may be exploited by attackers to locate

users within a given environment, violating their privacy without giving them

the chance to defend themselves from sensing-based attacks [10]. Research

conducted in this field has identified signal jamming and information obfusca-

tion — which do not interfere with the quality and understandability of the

transmitted content at the receiver — as possible countermeasures to prevent

attackers from obtaining sensing information directly from extracted CSIs [11],

[12].

The feature that makes sensing attacks apparently easy to carry out is that

to effectively perform ambient sensing, the only requirements are that a fixed

transmitter be placed within the analyzed environment and that a sensing

receiver — which should also be in a fixed position so as not to externally

alter the CSI content — be used to capture and analyze the extracted CSIs.
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The feasibility of ambient sensing, for the time being, has only been tested

in indoor environments using Wi-Fi-based technologies [4], [13], but multiple

applications could benefit from its implementation in outdoor locations and

from the use of different technologies (e.g., cellular networks). Specifically, a

useful extension to ambient sensing as we know it would be Joint Communi-

cation and Sensing (JCAS), an approach that allows multiple parties to share

information alongside the more “traditional” sensing activity.

JCAS is expected to play a significant role in 5th Generation (5G) New Ra-

dio and Beyond 5G networks, where the concept of “sharing ambient sensing

information” becomes more relevant. As communications rely on increasingly

higher frequencies (over 20-30 GHz), difficulties may arise when Line of Sight

(LoS) between transmitter and receiver becomes strictly required for communi-

cations to effectively take place, as omnidirectional antennae no longer provide

sufficient power to support data exchange at such frequencies. Communica-

tions at high frequencies undergo significant signal attenuation during outdoor

propagation, requiring the implementation of beamforming to increase the di-

rectionality of a transmitter radiation pattern: this approach ensures that the

pattern covers only the area where the targeted receiver is expected to be,

significantly reducing power waste compared to omnidirectional antennae and

increasing efficiency in communication through an increment in power den-

sity in the direction of the receiver. Without beamforming, guaranteeing that

all receiving devices have LoS with an omnidirectional transmitter would be

infeasible [14].

As implementing beamforming remains technologically challenging, the in-

troduction of ambient sensing may help identify obstacles along the signal

propagation path and automatically steer beams or move transmission to a

device that guarantees better Quality of Service (QoS) when operating in a

mesh-like network topology.
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Other fields of research may draw advantage from the implementation of

CSI-based JCAS, specifically when high data rates are required. Above all

others, autonomous vehicle networks may see the implementation of JCAS as

a tool to improve the quality of shared sensing information and to make the

process of sharing such data more efficient. The main requirement for au-

tonomous vehicles to perform cooperative ambient sensing is the availability

of high data rates, as each vehicle should ultimately be able to share tens of

gigabytes of information per second with all surrounding vehicles [15]. Cooper-

ative ambient sensing allows all vehicles participating in the activity to build a

full virtual representation of the surrounding real world, deriving information

on static obstacles, Vulnerable Road Users (VRU), other vehicles, etc. from

what has been sensed and shared by the others through Vehicle to Vehicle

communication (V2V) [16]. This approach, albeit currently infeasible on a

large scale given the available technologies and supported data rates, would

greatly improve the performance of autonomous driving applications, allowing

vehicles to identify obstacles that are hidden from their own sensors through

what has been detected and shared by surrounding road users [17].

Implementing a network whose users are allowed to share gigabytes of data

per second (with each transmission possibly being similar to previous ones, as

sensor data may not change drastically from one second to another, especially

when travelling at low speed) while simultaneously granting a minimum QoS

in a safety-critical application is not a simple task; nonetheless, it may benefit

from the introduction of CSI-based ambient sensing to reduce the necessity

for an autonomous vehicle to share raw sensor data with all surrounding vehi-

cles, by instead only sending the extracted CSIs as already-parsed information

about the surrounding environment.

Studies are already being conducted on the possibility of exploiting shared

frequencies and hardware when performing JCAS to improve spectrum effi-
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ciency and reduce hardware cost: this could result in larger applicability of

JCAS, even in contexts where it is currently infeasible [18], [19], with cheaper

implementations on a larger scale from which also applications in autonomous

driving could greatly benefit.

State-of-the-art mechanisms to perform ambient sensing mainly consist of

Artificial Intelligence and Machine Learning applications [20], but they often

require more computational resources and resolution time than are available,

especially when working with safety-critical or real-time applications. More-

over, understanding the mathematical characterization of the electromagnetic

channel supporting the transmission may result in efficient dedicated algo-

rithms to extract CSIs and gain useful information to make JCAS more effi-

cient.

This work serves as a continuation of the introductory study proposed

in the Bachelor’s Degree Thesis titled “Analysis and Characterization of Wi-

Fi Channel State Information” [21]. The goal of this work is to study the

statistical properties of a Wi-Fi channel through the analysis of CSI behaviour

and evolution in time and frequency. This analytical approach aims to help

identify and describe some channel characteristics that can be used by AI and

ML techniques to classify and use CSIs to perform movement recognition.
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2 Wi-Fi Fundamentals

Wi-Fi is a trademarked brand name indicating one of the most widespread

means of wireless connection used by manufacturers to certify interoperability.

It is commonly associated with the IEEE 802.11 standard, a family of stan-

dards — strictly linked to the Ethernet 802.3 standard — that defines rules to

implement wireless communication between Wi-Fi-enabled devices.

IEEE 802.11 is the standard for Wireless Local Area Networks (WLANs)

and multiple versions exist, each one supporting different radio technologies

and therefore allowing different radio frequencies, maximum ranges, and achiev-

able speeds. Wi-Fi most commonly uses the 2.4 GHz and 5 GHz frequency

bands, but the latest versions of the standard (802.11ax and 802.11be, associ-

ated with Wi-Fi 6/6E and Wi-Fi 7 respectively) also support communication

on the 6 GHz band. Both spectra are divided into channels, each of them

identified by its own center frequency, whose number varies depending on the

supported channel bandwidth: initially, all channels had a 20 MHz bandwidth,

whereas now bandwidths of 40, 80, 160, 240, and 320 MHz are supported.

The 2.4 GHz frequency band by default is made of 14 overlapping 22 MHz

channels, with the possibility of modifying channel bandwidth to either 20 or

40 MHz when using OFDM modulation technique.

The 5 and 6 GHz frequency bands are subject to different regulations de-

pending on the Country, meaning that their channel partition may be different

from one Nation to another and that their use may be allowed for different

activities in different regions.

Each version of the 802.11 standard implements different modulation tech-
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niques by building on the same Medium Access Control (MAC) and Physical

Layer (PHY) specifications for WLANs.

The CSIs commented and analyzed in this study were collected using the

802.11ax standard on channel 157 at 5 GHz with 20-40-80 MHz bandwidths.

2.1 Modulation Techniques

Modulation is a procedure that allows the mapping of information on a phys-

ical dimension. The most straightforward technique is amplitude modulation,

which consists in mapping the information on the amplitude of a selected

dimension. An implementable example could be to map binary values onto

voltage values, such that values below a selected threshold are mapped onto 0

and values over such threshold are mapped onto 1.

Amplitude modulation only requires working with one dimension, but as

the amount of information to represent grows, the number of dimensions to

map such information onto may increase as well. From simple amplitude mod-

ulation, it is possible to switch to phase modulation (known as Phase Shift

Keying (PSK)), whose logic is based on the representation of complex num-

bers, as it represents information exploiting the phase of the exponential used

to represent the complex value. Phase modulation can be obtained through

the combination of two non-interfering orthogonal dimensions, which define

the signal space as a Cartesian plane as shown in Fig. 2.1.

Mapping onto more than two linearly independent dimensions is possible,

albeit more complex. However, one of the most widely employed modulation

techniques is called Quadrature Amplitude Modulation (QAM), which allows

for the transmission of large quantities of data with a relatively small number

of symbols. QAM consists in a representation of information through the

combination of two amplitude-modulated signals into a single channel. This

is achieved by modulating the amplitude of two carrier waves, one cosine (in-
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Figure 2.1: Example of the signal space defined for PSK modulation.

phase, indicated as I) and the other sine (quadrature-phase, indicated as Q),

which must be 90 degrees out of phase with each other.

The in-phase component I represents the x axis of the signal space, while

the quadrature component Q represents the y axis. Their combination origi-

nates the QAM signal.

A traditional representation of QAM modulation relies on the ‘constellation

diagram’, which displays a set of points, each one corresponding to a unique

combination of amplitude and phase. Depending on the number of points

making up the diagram, the amount of transmitted information varies; for

instance, the diagram for 16-QAM shown in Fig. 2.2 consists of 16 points,

allowing 4 bits per symbol.

2.2 Orthogonal Frequency-Division Multiplexing

(OFDM)

OFDM is a multi-carrier modulation and multiplexing system that transmits

data streams as multiple orthogonal narrowband signals named sub-carriers

[22], each subject to one of multiple available modulation schemes, such as

QAM, Binary Phase Shift Keying (BPSK), Quadrature Binary Phase Shift
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1000 1001 1011 1010

Figure 2.2: Example of the constellation diagram defined for QAM modulation.

Keying (QBPSK), etc. The OFDM symbol is given by a combination of all

sub-carriers, meaning that each symbol can correspond to more than one bit

of information.

Given a transmission period T , sub-carriers are linearly independent if they

are spaced by k
T

for k ∈ N. If this constraint is satisfied, their combination

shows sub-carrier nulls in correspondence to peaks of adjacent sub-carriers, as

shown in Fig. 2.3.

One of the main advantages introduced by OFDM is the scalability of the

rate of transmission: by increasing the transmission period by one symbol,

the sub-carriers ‘widen’, causing the bandwidth to increase; vice versa, it de-

creases by reducing the transmission period. Partially overlapping adjacent

sub-carriers can contribute to increasing the bandwidth; this is only feasible

because sub-carriers are mathematically orthogonal, hence they do not require
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Figure 2.3: OFDM sub-carriers orthogonality.

an interposed guard band that guarantees non-interference. Moreover, due to

sub-carrier orthogonality, possible disturbing interference, noise, and fading

phenomena only affect a portion of the sub-carriers, allowing the others to

continue their transmission unhindered.

2.3 802.11ax Standard Version

IEEE 802.11ax is associated with Wi-Fi 6 and it operates on the 2.4 and 5 GHz

bands, with an additional 6 GHz band in Wi-Fi 6E [23], [24]. Compared to

previous versions of the protocol, 802.11ax uses the frequency spectrum more

efficiently, thus increasing the overall network throughput and the per-user

performance.

The improved performances derive from the implementation — for multi-

user communications — of Orthogonal Frequency-Division Multiple Access

(OFDMA), which was already in use in cellular networks since 3rd Generation

Partnership Project (3GPP) Long Term Evolution (LTE) but comes as a new

approach in Wi-Fi. OFDMA relies on the same structure as OFDM: the avail-

able channel is divided into sub-channels, each having its assigned sub-carriers.

The user can send their data, split into packets, on a sub-channel for a specific
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amount of time (or frames)1, using one or more RUs, each one consisting of

a set of 26 sub-carriers. An Access Point (AP) can dynamically choose the

best RU for each Station (STA) it is communicating with, resulting in higher

Signal to Interference plus Noise Ratio (SINR) and throughput; OFDMA is

also more efficient when the quantity of shared data is limited, as the number

of selected RUs can vary depending on the sender’s needs.

Compared to previous versions of 802.11, 802.11ax also greatly improves

the QoS in crowded environments thanks to Uplink Multi-User MIMO.

The structure of a generic 802.11ax frame respects the following model

when implemented in Single-User mode [24]:

Legacy preamble RL-
SIG HE-SIG HE-

STF
HE-
LTF

HE-
Data

Packet
Extension

The Legacy preamble guarantees backwards compatibility with previous

versions of the 802.11 protocol. The preamble contains information that allows

time and frequency synchronization and channel estimation, together with

some data regarding payload length and rate of the transmission.

The RL-SIG (Repeated Legacy Signal) field is used to repeat the content

of the SIGNAL field of the Legacy preamble.

The rest of the preamble consists of fields that can only be decoded by

802.11ax devices and whose names start with HE (High Efficiency) to dis-

tinguish them from the homonymous parameters of the previous versions of the

standard. HE-SIG is used to signal the parameters that are needed to correctly

decode the rest of the frame (e.g. bandwidth, number of spatial streams, etc.)

while HE-STF and HE-LTF are training fields (respectively short and long) used

to perform frequency tuning and channel response estimation. The HE-Data
1The LTE implementation of OFDMA is time-based, meaning that a Resource Unit (RU)

is allocated to a single user for each specific amount of time. The implementation in Wi-Fi is
frame-based, meaning that a RU contains data belonging to different users, thus becoming
a Multi-User resource.

— 11 —



field contains the actual user’s data and is followed by a Packet Extension

field.

When used in Multi-User mode, the packet structure changes slightly: the

HE-SIG field is split into two fields (HE-SIG-A and HE-SIG-B) used to set up

and tune Multi-User MIMO (MU-MIMO) transmission.

2.4 802.11be Standard Version

The updated standard is associated with Wi-Fi 7 — released in January 2024,

final approval expected by the end of 2024 [25]–[27] —, whose key features

include [28]:

• Multi-Link Operations (MLOs);

• Support for 320 MHz-wide channels;

• 4096-QAM modulation scheme;

• Allocation of multiple RUs to a single STA;

• Uplink and Downlink single user and multi-user OFDMA and MIMO

with up to sixteen spatial streams.

The standard aims to enhance QoS and reduce latency in transmission.

The doubling in the channel’s maximum bandwidth is supported in all

Countries that allow the use of Wi-Fi on the 6 GHz band, granting speed in

the order of gigabits and higher throughput compared to previous versions

of the standard. Moreover, the channel bandwidth can be obtained through

the juxtaposition of contiguous and non-contiguous 160+160 MHz bands; an

additional bandwidth of 240/160+80 MHz is made available.

The 4096-QAM modulation scheme achieves 20% higher transmission rates

than the previously employed 1024-QAM; this improvement contributes to the
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Wi-Fi 7

802.11be

Wi-Fi 6E

802.11ax

Launch year 2024 2021
Maximum Throughput 46 Gbps 9.6 Gbps

Frequency Bands 2.4 GHz, 5 GHz, 6 GHz 2.4 GHz, 5 GHz, 6 GHz

Supported Channels
Up to 320/160+160 MHz,

240/160+80 MHz
20, 40, 80, 80+80, 160 MHz

Modulation Scheme 4096-QAM 1024-QAM
MIMO 16 × 16 UL/DL MU-MIMO 8 × 8 UL/DL MU-MIMO

RU Multi-RUs RU

Table 2.1: Main differences between 802.11ax and 802.11be standards [29].

enhancement of the QoS, combined with the possibility of allocating multiple

RUs to one STA, which enhances spectral efficiency.

The increased throughput obtained through wider channels, higher order

modulation, and MU-MIMO allows the transmission rate to reach up to 46

Gbps while maintaining backwards compatibility with previous Wi-Fi stan-

dards. An overview of the main differences between 802.11be and 802.11ax is

provided in Tab. 2.1.

The Wi-Fi standard 802.11be was not used during the experiments carried

out in this study; nonetheless, it was deemed important to highlight its main

features, as its imminent introduction to the market will soon impact studies

on CSI characterization. Analysis of the behaviour of channels up to 160 MHz

wide is going to contribute to the study of the 240 and 320 MHz channels

newly introduced by 802.11be.
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2.5 CSI Structure

CSIs can be represented mathematically as a complex number, according to

the following formula [30]:

C(n) = ||C(n)||ej∠C(n) (2.1)

In this expression, C(n) is a CSI of the n-th sub-carrier, ||C(n)|| corresponds

to its amplitude and ∠C(n) to its phase. To maintain consistency with the

notation that will be introduced further on, Eq. (2.1) can be rewritten as:

C(k, n) = AC(k, n) · ej∠C(k,n)

=
√

ℜ(C(k, n))2 + ℑ(C(k, n))2 · ej tan−1(ℑ(C(k,n))
ℜ(C(k,n)))

(2.2)

where C (k, n) represents the k-th CSI of an experiment on the n-th sub-carrier

and AC indicates its amplitude.

Amplitude and phase take on different values depending on the properties

of the signal at the receiver, according to scattering, reflection, and attenuation

of the transmitted signal.

This property of CSIs is already evident in a comparison between two basic

scenarios, the first (Fig. 2.4) representing CSIs collected in an empty room,

the second (Fig. 2.5) in the same room with one person sitting at a desk. All

CSIs plotted in the two figures were collected on channel 157 with 20 MHz

bandwidth using 802.11ax; the two experiments were performed at different

times of the day, but they both consist of about 18000 CSIs collected during

10-minute-long captures. The effect of the Automatic Gain Control (AGC)

was removed from both datasets before plotting.

It immediately comes to the eye that the two plots have different trends,
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Figure 2.4: Amplitude CSIs collected in an empty room.
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Figure 2.5: Amplitude of CSIs collected in a room with one person sitting at
a desk.

but, more importantly, that the CSIs collected in the empty room are more

similar to each other compared to those collected in the room with one person,

which have a more visible variability. This consideration highlights how the

— 15 —



presence of a person — even though they are not moving around — can be

detected based on the dispersion of the amplitudes of the CSIs. Since the mere

presence of a person affects the behavior of the traces, we can expect — and

indeed observe in Fig. 2.6 — that the more modifications the environment un-

dergoes, the more variable the corresponding CSIs become, reflecting people’s

presence and movements in their amplitudes.
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Sub-carrier index
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CSI Amplitude (Four People in a Meeting)

Figure 2.6: Amplitude of CSIs collected in a room with four people during a
meeting.

This graphical representation of CSIs helps to identify the distinction be-

tween traces collected in various environments. Since CSIs coming from dis-

tinct scenarios clearly display different characteristics, we can assume that

environment identification based on the collected CSIs is feasible. This hypoth-

esis will be thoroughly justified in the discussion carried out in the following

chapters.
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3 Background and Previous Results

During the BSc Thesis [21], the analysis of CSI traces was mainly focused on

the identification of a probability distribution that could be used to describe

the increments between consecutive CSIs. This chapter serves as a contextual-

ization for the study that is carried out in the following chapters, to provide a

uniform background. The results commented in this chapter, as well as some

considerations that were already discussed in the previous study, are reported

solely for a better understanding of the current work and to make this research

self-consistent and comprehensive of all results.

3.1 Data Collection

A relevant difference from the current study is that the data analyzed in [21]

consisted of shorter experiments than those performed for this work; specifi-

cally, albeit the number of CSI is elevated, the experiments consisted of col-

lections of bursts of CSIs with a limited duration (i.e. in the order of tens of

seconds) performed in the Telecommunications Laboratory within the Depart-

ment of Information Engineering at the University of Brescia. Each capture

was collected while one person was standing in one of eight fixed spots within

the room, with the transmitter and receivers placed along the walls of the

laboratory, as can be seen in Fig. 3.1. Moreover, being a preliminary analysis,

data categorization was not yet done as described in Chapter 4, therefore the

configuration files of the experimental setup are not available.

No experiments in an empty laboratory were available; nevertheless, com-

parison between traces collected in different environments and with a varying
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Figure 3.1: Plan of the Telecommunications Laboratory where CSIs were col-
lected. Figure taken from [12] with permission by the authors.

number of people in the room has only gained relevance in this study, therefore

its absence in previous work does not have a meaningful impact.

It must be noted that the impact of AGC was not initially eliminated

from the amplitudes, as its removal was introduced in this work, together

with normalization and quantization of both increments and amplitudes (see

Chapter 6).

3.2 Amplitude Evolution in Time

The initial goal of the study was to identify the presence of correlation in

time between the amplitudes on the same sub-carrier. As the first step in the

analysis, graphs showing the amplitude evolution in time were presented, with

discrete time being the variable on the x axis and amplitude on the y axis. An

example of such plots is shown in Fig. 3.2.

The fluctuating trend of the CSI is mainly due to the AGC, which under-

mines considerations about the stationary nature of the process.
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Figure 3.2: Example of amplitude evolution in time on sub-carrier 36. CSIs
were collected on a 20 MHz bandwidth channel. Image taken from [21].

It is relevant to specify that multiple features can be identified in various

plots showing similar trends on adjacent sub-carriers, which may imply the

presence of frequency correlation between the amplitudes.

3.3 Amplitude Relative Frequency Observation

The CSI amplitudes on the different sub-carriers were also shown using his-

tograms having normalized amplitude on the x axis and its relative frequency

on the y axis. Fig. 3.3 is an example of the analysis that was carried out. This

approach allowed to make an initial hypothesis about the family of probabil-

ity distributions that could be used to describe the process of the amplitudes.

Nonetheless, the true process that we wanted to characterize was that of the

increments, which are the next main topic in the previous research.

— 19 —



150 100 50 0 50 100 150
Magnitude

0.000

0.002

0.004

0.006

0.008

0.010
Re

la
tiv

e 
fre

qu
en

cy

SC36

Figure 3.3: Example of amplitude relative frequency on sub-carrier 36. CSIs
were collected on a 20 MHz bandwidth channel. Image taken from [21].

3.4 Amplitude Increments and Auto-Correlation

As analysis of the amplitude itself was not deemed sufficient to characterize

the evolution of CSIs, increments were then taken into account as well by

computing their auto-correlation over time on each separate sub-carrier. Their

values were assumed to belong to a Markovian process — hence memoryless

—, which means that the increments auto-correlation should appear to be

noise-like around value 0. This assumption was tested through the empirical

evaluation of the auto-correlation of the increments, as shown in Fig. 3.4, which

displays a rapid reduction of the values towards zero, as expected. Whether

the process can actually be described as Markovian remains to be explored by

observing longer experiments performed in different contexts.

3.5 Amplitude Increments Analysis

The distributions of the increments — see Fig. 3.5 for an example — were

compared to a set of known distributions; the Gaussian distribution turned
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Figure 3.4: Example of increments auto-correlation on sub-carrier 36. CSIs
were collected on a 20 MHz bandwidth channel. Image taken from [21].
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Figure 3.5: Example of increments distribution on sub-carrier 36. CSIs were
collected on a 20 MHz bandwidth channel. Image taken from [21].

out to be the best-fitting one and was hence chosen as the best approximation

and the final proposed model.
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4 Experimental Setup

The collection of all CSIs used in the analysis proposed in this thesis was built

through multiple separate experiments, with different possible configurations.

Two datasets have been analyzed for this work, as described in the following

sections.

4.1 Collected data

The main dataset employed in this study was collected within the same office

in the Department of Information Engineering at the University of Brescia

by Elena Tonini. An approximate layout of the office is provided in Fig. 4.1,

which shows the locations of the transmitter and the receiver alongside the

main working stations used during office hours.

CSI captures were performed in three distinct scenarios:

• Empty Scenario: empty office;

• Static Scenario: one person sitting in the office and working at the desk;

RX

TX

TX

RX

Figure 4.1: Layout of the office where all CSIs were collected.
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• Fully Dynamic Scenario: multiple people moving around the office.

An additional setup called ‘Dynamic Scenario’ (i.e., one person moving around

the office) has been defined and will be taken into account in the future to

compare its results with those obtained for the Static and Fully Dynamic

scenarios, as it could be considered an intermediate setup between these two.

By associating a json file to each capture, all experiments are categorized

according to their own scenario. The file also contains other mandatory fields

used to keep track of configuration parameters needed by the hardware itself to

set up the data exchange from which CSIs are collected; other complementary

fields provide corollary information that can be used to fully characterize the

experiment. An example of the json configuration file is shown in Lst. 4.1,

while a thorough description of the metadata it contains is provided in App. A.
1 {
2 "date": {
3 "day": 12,
4 " month ": 12,
5 "year": 2023
6 },
7 " locationID ": "U004",
8 " experiment ": " capture ",
9 " adHocTransmission ": true ,

10 " usleep ": 10000 ,
11 " avgDuration ": 600 ,
12 " bandwidth ": 20,
13 " modulation ": "ax",
14 " numRx ": 1,
15 " numTx ": 1,
16 " numAntennasTx ": 1,
17 " numAntennasRx ": 1,
18 " numSpatialStreams ": 1,
19 " people ":{
20 " present ": true ,
21 "num": 2,
22 " moving ": false ,
23 " names ": ["John Smith ", "Jane Doe"]
24 },
25 " notes ": "JS sitting at the main desk , JD facing him."
26 }

Listing 4.1: Example of configuration file.
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SCENARIO Empty Static Fully Dynamic

802.11 ax ax ax
BW (MHz) 20 40 80 20 40 80 20 40 80
# Spatial

Streams
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# Experiments 4 5 3 1 4 5 1 1 4 2 1 1 2 2 1 1 1
Avg. Duration

(sec.)
600 10 600 600 600 10 600 600 600 600 600 600 600 600 600 600 60

#CSI/exp.

(approx.)
18k 300 18k 18k 18k 300 18k 18k 18k 18k 18k 18k 18k 18k 18k 18k 2.6k

# People 0 0 0 0 1 1 1 1 4 2 3 4 5 2 3 4 5

Table 4.1: Summary of the experiments performed for this study. Collected
CSIs are classified primarily by scenario, additional parameters are then spec-
ified as they may vary from one experiment to another.

All CSI traces are extracted from OFDM-modulated Wi-Fi frames trans-

mitted over a channel regulated by the 802.11ax protocol. The used channel is

number 157 (whose center frequency is 5785 MHz) within the 5 GHz frequency

band with 20, 40, and 80 MHz bandwidth.

The traces were extracted using Nexmon Channel State Information Ex-

tractor [31], [32]. The analyzed traffic is generated by a board communicating

with a receiving device: looking at Fig. 4.1, the transmitter was placed on the

bottom right corner of the rightmost desk, whereas the receiver was placed on

a rigid support close to the closet on the top left of the room.

The collected data are summarized in Tab. 4.1.

4.2 Additional available dataset

Some additional collections of CSIs have been made available by the authors of

[11]. In this work, the data is analyzed to implement CSI obfuscation against

unauthorized Wi-Fi sensing, therefore most of it consists of obfuscated traces.

Nonetheless, some ‘clean’ collections are available — i.e., retrieved without

activating the obfuscator — which are the ones that have been used in this

thesis. The goal of studying the channel characterization using data that orig-
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inates from a different work is to support the sensing techniques implemented

in other studies with an innovative approach, leveraging the quantification of

the information content of a CSI instead of Machine Learning (ML) alone.

This dataset was collected on an 80 MHz 802.11ac channel in the Telecom-

munications Laboratory of the Department of Information Engineering at the

University of Brescia in August 2021 by Dr. Marco Cominelli, Prof. Francesco

Gringoli, and Prof. Renato Lo Cigno, and it has been used to study device-

free localization and test the performance of different obfuscation systems in

[11]. From this point onward, the dataset will be referred to as the ‘AntiSense

dataset’. Its content is relative to CSIs captured with the same person standing

in one of 8 pre-determined target positions and with a receiver placed in one

of 5 fixed spots just outside the perimeter of the laboratory, as displayed in

Fig. 4.2.

Figure 4.2: Plan of the lab where the AntiSense dataset was collected. The
blue squares represent the eight possible locations of the person within the
room; the red boxes labelled A, B, and C are the locations of the obfuscator
in different scenarios: for the scope of this work, their effect is irrelevant; the
transmitter inside the room is used for passive attacks, the one outside is used
for active ones. Figure taken from [11] with permission by the authors.
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The transmitter was placed either on the left wall of the laboratory or just

outside the door at the bottom of Fig. 4.2, depending on the experiment. In

our study, we will only focus on the CSIs collected when the active transmitter

was that outside of the laboratory. The technology used to extract the CSIs

is the same as that described in Sect. 4.1.

For each of the two positions of the transmitter, the dataset has then been

partitioned into a training, a testing, and a validation dataset, each consisting

of eight captures for each position the receiver was placed in. For the scope of

this work, only the training and testing datasets will be analyzed. As a whole,

the dataset employed in this study consists of 120 captures, 40 of which are

discarded (the validation partition), divided as shown in Tab. 4.2.

PARTITION TRAINING TESTING VALIDATION

RX POS. rx1 rx2 rx3 rx4 rx5 rx1 rx2 rx3 rx4 rx5 rx1 rx2 rx3 rx4 rx5

P1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P2 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P3 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P6 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
P7 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200P

O
S.

O
F

P
E

R
SO

N

IN
T

H
E

R
O

O
M

P8 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 200 200 200 200 200
TOT. CSI 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 1600 1600 1600 1600 1600

Table 4.2: Summary of the experiments making up the AntiSense dataset.
Collected CSIs are classified according to the dataset partition they belong to,
the position of the receiver and that of the person in the room. P1 through
P8 reference the positions displayed in Fig. 4.2.
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5 Notation

Let C(k, n) be the CSI collected during a generic experiment; k ∈ [1, MC]

is the sequence number (ordering) of the collection, which consists of MC

samples, and n ∈ [1, NSC] is the index of the sub-carrier. NSC is the number of

useful sub-carriers, i.e., those that are not suppressed in transmission and can

be usefully employed to estimate the CSI. C(k, n) is a bi-dimensional vector

containing the I/Q samples of the CSI, represented as a complex number with

real and imaginary parts, so that

AC(k, n) =
√

ℜ(C(k, n))2 + ℑ(C(k, n))2

is the amplitude of C(k, n).

The total collection of the samples of an experiment C(·, ·) can be (and

normally is) annotated with additional data such as the descriptor of the ex-

periment, the sub-carrier spacing, and so forth, as described in Chapter 4,

while each sample C(k, ·) is annotated at least with the absolute time δtk =

tr[C(k, ·)]−tr[C(k−1, ·)], where tr(·) is a function measuring the actual recep-

tion time of the frame with the collected CSI. Clearly, δt0 = NaN is undefined

and irrelevant.

Tab. 5.1 summarizes relevant symbols, including those that have not been

introduced yet in this chapter as they will be encountered further on in the

discussion.
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SYMBOL DESCRIPTION

C(k, n) CSI collected during a generic experiment
k ∈ [1, MC] Sequence number of a CSI within the collection

MC Number of samples of the collection
n ∈ [1, NSC] Index of the sub-carrier

NSC Number of useful sub-carriers
AC(k, n) Amplitude of C(k, n)

δtk Absolute time of C(k, n)
tr(·) Reception time of the frame with the collected CSI
AC Energy of a CSI

Amin
C Minimum amplitude value across all CSIs

Amax
C Maximum amplitude value across all CSIs

A⋆
C(n) Reference CSI computed on each experiment

δC(k, n) Increment between two CSIs on the same sub-carrier n

δmin
C Minimum increment value across all CSIs

δmax
C Maximum increment value across all CSIs

N (σ) Gaussian distribution with standard deviation σ

N ′(σ) Quantized Gaussian distribution with standard deviation σ

qinc Number of bits used to quantize the increments
qamp Number of bits used to quantize the amplitude
Pw Probability weight of the tails of N

δ⋆ Value of the increments after which tails are discarded
I(X; Y ) Mutual information between random variables X and Y

IA Internal Mutual Information (MI) for experiment A

EA,B External Mutual Information (MI) between experiment A and B

WHD(A⋆
C, AC(k, ·)) Weighted Hamming Distance between A⋆

C and AC

WHD(A⋆
C, AC) Average WHD between A⋆

C and AC

Table 5.1: Summary of the used symbols, in order of appearance.
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6 Normalization and Quantization

Before delving into the processing and analysis of the collected data, it is

necessary to introduce a standard representation of AC(k, n) to ensure the

feasibility of the comparisons between different experiments. The following

processing is done separately on each experiment.

The first step in the conditioning of the collected data is the normaliza-

tion of the CSI amplitude in the assumption that the transmitted energy is

constant, as it should be, and variations in the collected data are due only to

different gains of the AGC at the receiver1:

AC = 1
NSC

NSC∑
n=1

AC(k, n); AC(k, n) = AC(k, n)
AC

∀n ∈ [1, NSC] (6.1)

Next, all values are mapped in the [0, 1] interval as follows. First, the

minimum amplitude value is computed and subtracted from all values across

all CSIs and sub-carriers:

Amin
C = min

k∈[1,MC],n∈[1,NSC]
AC(k, n) (6.2)

AC(k, n) = AC(k, n) − Amin
C , k ∈ [1, MC], n ∈ [1, NSC] (6.3)

Next, the maximum is computed; this is in practice the maximum difference

between the minimum and the maximum of the original sequence. Its value is
1Note that whenever the same variable appears on both sides of an equation, the equal

sign should be interpreted as an assignment rather than a comparison between left and right
sides.
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employed to normalize the amplitude to one:

Amax
C = max

k∈[1,MC],n∈[1,NSC]
AC(k, n) (6.4)

AC(k, n) = AC(k, n)
Amax

C
, k ∈ [1, MC], n ∈ [1, NSC] (6.5)

Since the minimum and maximum amplitude values are computed over the

whole experiment rather than referring to a single trace, it is possible for some

CSIs to not fully cover the interval from 0 to 1. Hence, some traces may

not reach the limits of the normalization interval at all, but, over the entire

experiment, there will be at least one CSI that is equal to 0 — and, similarly,

to 1 — on at least one sub-carrier. The CSIs taking on these two values may

be distinct traces.

Finally, a reference CSI amplitude is calculated for each experiment as the

average over k ∈ [1, MC] of all the CSIs collected during the experiment:

A⋆
C(n) = 1

MC

MC∑
k=1

AC(k, n) (6.6)

This reference CSI is taken as the representative of the experiment to estimate

the information content embedded in the CSI by the propagation environment

in the different experiments.

6.1 Estimate of the Increments Process

Once the amplitude of the CSIs is properly normalized, the process of the

increments can be estimated. An increment in amplitude is defined as the

difference between the values of the amplitude of two different (not necessarily

consecutive) CSIs on the same sub-carrier. Mathematically:

δC(k, n) = AC(k + δt, n) − AC(k, n) (6.7)
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This topic has been analyzed more in-depth in [21], whose goal is to provide

a simple mathematical model that can be used to approximate the process of

the increments on each sub-carrier. The work suggests that — at least in an

initial approach to the process estimation — it is possible and sufficient to use a

Normal distribution to approximate the process on each sub-carrier. Through

the properties of Gaussian distributions, it is possible to combine the Normal

distribution of each sub-carrier to create a single Gaussian distribution N (σ)

that can be used to represent the entire process of the increments across all

sub-carriers used during transmission. In this process, the average is zero by

construction, but it must be zero also because an increment process with non-

zero mean implies a non-stationary process on the one hand, and, on the other

hand, either a diverging received — and transmitted — power or a vanishing

signal, and both cases are not meaningful in this work.

In other words, this work assumes that all increments of each element

AC(k, n) of the CSI are i.i.d..

Given these assumptions, a stochastic model of the CSI amplitude evolution

is:

AC(k, n) = AC(k − 1, n) + N (σ), k ∈ [2, MC], n ∈ [1, NSC], (6.8)

thus there is only the need to estimate σ given all the available increment

samples δC(k, n) = AC(k, n) − AC(k − 1, n), k ∈ [2, MC], n ∈ [1, NSC]. To

avoid cluttering the notation, σ and its estimate are indicated with the same

symbol:

σ = 1
NSC

NSC∑
n=1

 1
MC − 1

√√√√MC∑
k=2

δ2
C(k, n)

 (6.9)

Indeed, σ can be estimated differently, as the evolution of AC(k, n) has

memory. In a process with memory, Eq. (6.9) correctly estimates the one-step

increment marginal distribution, but may not represent the n-step increment

marginal distribution correctly, as well known, as memory may even eventually

— 31 —



make processes self-similar. Although this discussion will not be brought on

further, note that σ can be estimated as:

σ = 1
NSC

NSC∑
n=1

 1
MCT − 1

√√√√MCT∑
h

δh2
C(k, n)

 (6.10)

where

MCT = (MC − 1) + (MC − 2) + · · · + (MC −
⌊

MC

2

⌋
)

and δhC = AC(k, n)−AC(k−h, n), k ∈ [2, MC−h+1], n ∈ [1, NSC]. The n-step

increments are limited to
⌊

MC
2

⌋
to have enough samples for each increment

gap. This latter estimate should yield a larger variance of the process as

normally δhC > δC for h ≥ 2. Which estimate is better and hence chosen

will be decided based on the effectiveness of the modelling in predicting the

information content of experiments.

6.2 Quantization and Mapping

Amplitude AC(·, ·) needs to be quantized for two reasons. First and foremost,

working with real numbers makes estimating information content (in the sense

of Shannon theory) of CSIs extremely difficult. Second, indeed, the measure of

the CSI itself is already quantized by the hardware that collects it but, unfortu-

nately, access to the low-level measures is not given. The hardware exports AC

values in floating point format, so knowing the exact representation of C(·, ·)

is impossible and, in any case, the pre-processing described so far is best done

using floating point. Since both AC and δC values need to be quantized to

provide a correct and comprehensive representation of the collected data, this

section will start with the approach to quantization of δC values.

Before quantizing the increments, it is necessary to apply the same pro-

cedure used on the amplitudes to ensure that δC(k, n) ∈ [0, 1]. Firstly, we
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compute the minimum value of the increments:

δmin
C = min

k∈[1,MC],n∈[1,NSC]
δC(k, n) (6.11)

δC(k, n) = δC(k, n) − δmin
C , k ∈ [1, MC], n ∈ [1, NSC] (6.12)

Next, compute the maximum and normalize the increments to one:

δmax
C = max

k∈[1,MC],n∈[1,NSC]
δC(k, n) (6.13)

δC(k, n) = δC(k, n)
δmax

C
, k ∈ [1, MC], n ∈ [1, NSC] (6.14)

The approach to increment normalization is clearly the same as that used with

amplitudes, as shown by Eq. (6.2) to Eq. (6.5).

For the reasons mentioned at the beginning of this section, the quantization

process of the increments is based on some simple reasoning: the number of

used bits should be the smallest possible to represent the increments reasonably

accurately; in other words, the Probability Density Function (PDF) of N (σ)

should be reasonably approximated by the Probability Mass Function (PMF)

of N ′(σ), where N ′(σ) is the quantized version of N (σ); notice that there is

no need to quantize σ, but only the output of the distribution (whether it

is used as a random generator of synthetic δC values or empirically built on

experimental data).

There are many ways of defining a good approximation, both in terms of

residual errors and in probabilistic terms. Let us, for the time being, neglect

this specific step and assume that qinc bits are used to represent N ′(σ), or,

equivalently, the quantized version of δC(k, n).

First of all, a maximum (and minimum) value of N (σ) needs to be set.

This helps to define a symmetrical and finite interval of values that N can be

defined on, essentially cutting off the tails of the distribution that would make
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its domain infinite and hard to work with. This is easily done by defining

the probability weight Pw of the tails that are thus discarded and selecting an

appropriate value. The reference equation is:

Pw = 2σ√
π

∫ ∞

δ⋆
N (σ)dδ (6.15)

To properly select δ⋆ given a desired Pw, error function tables or calculators can

be used. To maintain discussion and implementation simple, δ⋆ is set to a value

that is an integer multiple of the standard deviation of the Normal distribution;

specifically, δ⋆ = nσ with n integer such that Eq. (6.15) is smaller than the

desired probability. This probability can be selected simply by observing that,

given a certain number of collected samples, probabilities smaller than the

inverse of the number itself cannot be estimated. Therefore, in this case,

selecting 1
NSC

< Pw < 10
NSC

is appropriate.

For reasons that will become clear later in the discussion, qinc can be selected

such that N ′(σ) is centred around zero (obvious) and its support is over 7, 15,

or 31 values only. As qinc bits are used to represent the entire interval [0, 1]

with uniform quantization, qinc selection as a function of δ⋆ and the cardinality

of N ′(σ) support is straightforward. Indeed, there are boundary conditions to

be fixed in the numerical computation as δ⋆ may not be coincident with any

sampling interval and N ′(σ) must be normalized to be a proper distribution,

i.e., the weight Pw must be accounted for.

A simple and effective way of fixing the boundary conditions is to approx-

imate δ⋆ with the nearest sampling interval larger than δ⋆ and accumulate

Pw on the boundary intervals. This is a good approximation method as long

as the probabilities that are accumulated on the boundary intervals do not

alter the structure of the Normal distribution, i.e. as long as they do not in-

crease the probability of the outermost intervals to the point that the resulting
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distribution no longer resembles a Normal distribution.

By leveraging the boundary conditions — and therefore limiting the domain

of N ′(σ) to [−δ⋆, δ⋆] — symmetry of N ′ around zero is ensured.

Up to this point, only quantization of the distribution of the increments

has been taken into account, but AC needs to be quantized as well. This

will allow to finally switch to work with integer, finite numbers representing

both the absolute amplitude values and the increments of the CSIs coherently.

Coherent representation means that the quantization interval of both N and

AC must be the same, which implies that the number of bits used to quantize

N is smaller than the number of bits used to represent AC.

Switching to this representation, a CSI is a vector of integer positive num-

bers of dimension NSC. The generation of a synthetic trace of AC values —

that is, a new CSI — is obtained by adding a vector of increments (δC) with

the same dimension to generate a new CSI; iterating the procedure produces

new CSIs. To be able to add δC to AC(k, n) we have to make sure that the

quantization process uses the same quantization interval for increments and

amplitudes, which may require the introduction of some tricks to obtain a

coherent and consistent result.

Forcing the quantization intervals of the increments and the amplitudes to

be exactly the same is not easy because δ⋆ is not necessarily equal to k · 2−n

with k, n ∈ N. Therefore, we first have to set the number of quantization bits

of AC to

qamp =
⌈
log2

( 1
δ⋆

× (2qinc + 1)
)⌉

(6.16)

where qinc is the number of bits used to quantize δC. Next, we have to ‘tune’

δ⋆ on the first sampling interval boundary larger than δ⋆ and re-sample the

increments. From now on δ⋆ refers to the tuned version, so that AC and δC are

sampled with exactly the same sampling interval and each value of N ′(σ) has

the appropriate probability value. It is important to note that in a generative
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process all of this will be done before generating increments.

With this approach, the study is not strictly bound to use Normal distri-

butions and it is also possible to compute a quantized empirical distribution

starting from measured values.

This approach ensures that both quantities are defined and quantized over

the same interval and using the appropriate numbers of bits, allowing easy

and correct summation of AC and δC values. Since a CSI normalized between

0 and 1 may not reach the ends of the normalization interval, as said in the

paragraph following Eq. (6.5), the quantized CSIs are naturally subject to the

same consideration. Therefore, the generic quantized CSI may not be equal to

0 or 2qamp − 1 on any sub-carrier, but at least one CSI within each experiment

will reach such values on at least one sub-carrier.

Again, to avoid cluttering the notation, from now on we will assume that all

the quantities have been correctly quantized and mapped; the same symbols

(AC, δC, N , . . . ) introduced so far will be used to represent the quantized

version of the variables.

6.3 Visualization of the Normalization and Quan-

tization Processes

To support the understanding of the normalization and quantization processes,

a visual representation of the variations that amplitudes undergo is shown in

the following paragraphs. Two examples of randomly chosen CSIs are selected:

the first, displayed on the left column of Fig. 6.1, belongs to a ten-minute-long

experiment performed in the Empty Scenario, and the second (right column)

comes from an equally long experiment performed in the Static Scenario. Both

setups are described in Chapter 4. The original amplitude values indicated on

the y-axis in Fig. 6.1a and 6.1b are arbitrary values detected by the receiver,

therefore the measurement has no reference scale. This consideration is at the
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base of the whole normalization and quantization processes, as without such

processing the comparison of different CSIs would be harder to carry out.

The relevant feature that comes across by looking at Fig. 6.1 is that the

structure of the CSIs remains unaltered after each step of elaboration. The

changing element of the displayed plots is the scale on the y axis, as the value

of the amplitude is scaled on different intervals. Specifically, the mitigation of

the effects of AGC through the normalization with respect to the energy of

the CSI (Eq. (6.1)) brings the amplitude values closer to 1, which is then set

as the maximum value by the normalization described through Eq. (6.2) to

Eq. (6.5).

As already highlighted in the comments to Eq. (6.5), it is possible that

some CSIs across the experiment do not reach the values 0 and 1 (i.e., both

ends of the normalization range) because the normalization is done using the

maximum amplitude reached during the whole experiment, rather than that

of the individual CSI. The traces displayed in Fig. 6.1 are an example of this

behavior.

The amplitudes in the [0, 1] interval are then mapped onto the [0, 2qamp −

1] interval through quantization. Moreover, it is also evident that the CSI

collected in the Static scenario (i.e., with one person in the room sitting at the

desk while working on a laptop) differs from the one collected in the empty

room, highlighting how CSIs directly reflect the properties of the environment

in the changes of their amplitude structure.
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Figure 6.1: Visualization of the numerical processing on the CSIs in the Empty
(left) and Static (right) Scenarios. Data collected on a 40 MHz bandwidth
channel using 802.11ax. — 38 —



7 Mutual Shannon Information

The Mutual Information (MI) between two random variables is a measure of

the mutual dependence of the two variables. In terms of PMFs for discrete

distributions, the MI between two discrete random variables X and Y is com-

puted as a double sum:

I(X; Y ) =
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) log
(

P(X,Y )(x, y)
PX(x)PY (y)

)

=
∑
y∈Y

∑
x∈X

P (x|y) · PY (y) log
(

P (x|y) · PY (y)
PX(x)PY (y)

)

=
∑
y∈Y

∑
x∈X

P (x|y) · PY (y) log
(

P (x|y)
PX(x)

) (7.1)

where P(X,Y ) is the joint probability mass function of X and Y and PX and

PY are the marginal probability functions of X and Y respectively. In terms

of PDFs for continuous distributions, the sums in the formula are exchanged

for integrals, allowing integration in dx and dy respectively.

MI essentially measures how knowledge of the probability of an event im-

pacts knowledge about the other. In the analysis of CSIs, MI represents the

amount of information that a reference CSI A⋆
C provides about another CSI AC

or vice versa. If X and Y are two disjoint discrete random variables, knowing

anything about either of them provides no additional information about the

other variable. Contrarily, if the value of X can be deterministically calculated

based on that of Y , the MI is the same as the uncertainty about either of the

two variables’ values (i.e., the entropy of X or Y ).

Some relevant properties of the MI are:
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• I(X; Y ) = 0 ⇔ X and Y are independent random variables. This is

due to the fact that p(X,Y )(x, y) = pX(x) · pY (y), causing the content of

the logarithm function to be equal to 1, meaning that log
(

p(X,Y )(x,y)
pX(x)pY (y)

)
=

log(1) = 0;

• Non-negativity: I(X; Y ) ≥ 0;

• Symmetry: I(X; Y ) = I(Y ; X).

Note that the non-negativity holds when
(

P (x|y)·PY (y)
PX(x)PY (y)

)
= 0 and log(0) is unde-

fined by leveraging the properties of infinitesimal calculus: in such condition,

in fact, P (x|y) is what causes the argument of the logarithm to be zero, but

this value also multiplies the logarithm, making it unnecessary to compute the

product between their finite values as it will always be equal to zero regardless

of the resulting logarithm.

MI can alternatively be computed as a function of entropy and conditional

entropy:

I(X; Y ) ≡ H(X) − H(X|Y )

≡ H(Y ) − H(Y |X)

≡ H(X) + H(Y ) − H(X, Y )

≡ H(X, Y ) − H(X|Y ) − H(Y |X)

(7.2)

where H(X) represents the entropy of X, H(X|Y ) represents the conditional

entropy of X given the knowledge about Y , and H(X, Y ) is the joint entropy

of X and Y .

The application of the MI equation in this study works as a quantitative

measurement to determine whether two CSIs belong to the same experiment,

assuming that two CSIs coming from different captures (i.e., different loca-

tions, number of people in the room, etc.) bear little additional information
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about each other, whereas two samples belonging to the same experiment have

a higher MI value. Numerically, we assume that samples belonging to experi-

ments performed in distinct environments have a MI value closer to (or equal

to, in case of complete independence) zero, whereas samples coming from ex-

periments performed with the same setup have a value asymptotically growing

to infinity. To represent an infinite value using a finite set of numbers, an

upper limit is set to the value of the MI.

The analysis can start by computing the MI between the value taken by

the average CSI A⋆
C — which is representative of the whole experiment — and

that of another CSI AC(k, n) on a chosen sub-carrier n ∈ [0, NSC], with any

k ∈ [1, MC]. To derive each AC(k, n), an increment δC is added to AC(k−1, n),

with δC belonging to a known discrete probability distribution that can be

modelled as a quantized Gaussian distribution (according to the quantization

process described in Chapter 6). This characterization of the increments as

belonging to a Normal distribution simplifies the computation of the probabil-

ities of an increment δC being added to AC(k − 1, n) and that of δC occurring

at all. From now on we will consider AC(k − 1, n) = A⋆
C(n) to compute the

MI between the reference CSI and another one from the same capture.

Once k ∈ [1, MC] is defined as the index of the CSI to consider within

the experiment and n ∈ [0, NSC] is chosen as the analyzed sub-carrier, the

computation of the MI requires knowing some probability values, such as:

• P (AC(k, n)|A⋆
C(n)): it can be computed as the probability of drawing a

specific δC value from the quantized Normal distribution and obtaining

AC(k, n) by adding the increment δC to A⋆
C(n). Essentially, it is equal

to P [δC : A⋆
C(n) + δC == AC(k, n)];

• P (AC(k, n))

• P (A⋆
C(n))
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Computing these probabilities allows to calculate the MI between two ampli-

tude values at consecutive time steps on a fixed sub-carrier.

Given that the goal is to compute the MI between CSIs as a whole and

not on each sub-carrier by itself, a value to represent the probability of an

entire CSI C(k) happening in an experiment is also needed. Assuming, as a

simplification, that all sub-carriers are independent, this is given by:

P (C(k)) =
∏

n∈[0,NSC]
P (AC(k, n)) (7.3)

Considering that an analysis that only looks at MI sub-carrier by sub-

carrier would be too limited and that it would not return the actual MI between

CSIs, it becomes necessary to translate what has been described in this chapter

up to this point to work with CSIs as a whole rather than splitting them NSC

times.

We can, at this point, consider the amplitudes of the CSI AC across the NSC

sub-carriers as symbols of an alphabet. The alphabet is very large, but finite,

having 2(NSC·qamp) symbols, hence MI is always finite and numerical evaluations

can proceed, albeit with care to avoid numerical problems in case of very large

(or very small) numbers.

First of all, Eq. (7.3) can be extended as follows:

P (C(k)) =
∏

n∈[0,NSC]
P (AC(k, n))

=
∏

n∈[0,NSC]

1
2qamp

= 1
2NSC·qamp

(7.4)

This implies that — ignoring cross-sub-carrier dependence — any CSI C(k)

has the same probability of happening, given the available alphabet. Unfor-

tunately, it is clear that, given any reasonable NSC and qamp, 1
2NSC·qamp is way
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too small to allow any numerical evaluation of Eq. (7.1) or derivations thereof

without further manipulation or approximation.

One possible, quick solution is to use a polynomial expansion of the loga-

rithm and exploit the fact that P (C(k)) is constant. One possibility is to use

the bilinear expansion:

log(x) = 2
[(

x − 1
x + 1

)
+ 1

3

(
x − 1
x + 1

)3
+ 1

5

(
x − 1
x + 1

)5
+ . . .

]
(7.5)

An alternative method to approximate the logarithm could be the following:

it is known that

log(x) − log(1) = (x − 1) − (x − 1)2

2 + (x − 1)3

3 − (x − 1)4

4 + . . . (7.6)

and that the logarithm of a fraction can be computed as the difference of two

logarithms:

log
(

x

y

)
= log(x) − log(y)

In the computations presented up to this point, it has been stated that P (C(k))

is constant, therefore P (AC) = P (A⋆
C) and log

(
P (AC|A⋆

C)
P (AC)

)
can be expanded as

log
(

P (AC|A⋆
C)

a

)
with a constant.

log(x) − log(a) = 1
a

(x − a) − (x − a)2

2a2 + (x − a)3

3a3 − (x − a)4

4a4 + . . . (7.7)
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This simplifies Eq. (7.1) to:

I(X; Y ) =
∑∑

P (AC|A⋆
C) · P (A⋆

C) log
(

P (AC|A⋆
C)

P (AC)

)

=
∑∑

P (AC|A⋆
C) · P (A⋆

C)·[
log(P (AC)) + P (AC|A⋆

C)
P (AC) − P (AC)

P (AC) − log(P (AC))
]

=
∑∑

P (AC|A⋆
C) · P (A⋆

C)
[

P (AC|A⋆
C)

P (AC) − 1
]

=
∑∑

P (AC|A⋆
C) · [P (AC|A⋆

C) − P (AC)]

(7.8)

Where P (AC) and P (A⋆
C) can be simplified with each other because they are

equal. The MI of any two CSIs can be evaluated exploiting Eq. (7.8) and the

probability model derived in Chapter 6.

Once again, unfortunately, the probability values that are needed to com-

pute the MI are infinitesimal, resulting in calculations that are not only difficult

to carry out but also hardly significant. Nonetheless, it is deemed appropriate

to complete the mathematical reasoning behind the computation of the MI, as

it still maintains theoretical relevance.

In particular, once a solution to the numerical representation of infinitely

small numbers has been found, it would be possible to estimate the average MI

of CSIs collected in the same experiment using the experimental distribution

of increments; it still remains feasible to compute the theoretical MI based

on the Gaussian approximation performed in Chapter 61. For the time being,

as these final considerations are merely theoretical, no distinction is assumed

between the two distributions and a little overloaded notation is used.
1Note that any other distribution can be used rather than Gaussian, so additional inves-

tigation may lead to other, better approximations.
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Let IA be the internal MI for an experiment A

IA =
MA∑

i

I(A∗, A(i)) (7.9)

and similarly for any other experiment B, C, D, . . ..

A larger internal MI would identify experiments that are intrinsically more

variable, which does not necessarily imply noisier, as for instance experiments

performed with people moving inside the room have an obviously larger vari-

ability.

It would also be interesting to compute a pair of external MI values between

any two experiments A, B, using the increment process estimated either in A

or B, according to which experiment the average CSI belongs to:

EA,B =
MB∑

i

I(A∗, B(i)) (7.10)

and

EB,A =
MA∑

i

I(B∗, A(i)) (7.11)

The two will be different because the process of the increments is distinct in

any experiment.

7.1 Future Research Directions

Further investigation is needed to identify alternative solutions to the quan-

titative representation of MI, as its theoretical analysis only becomes more

significant after it is correlated with empirical results. For the time being, the

hypothesis of using MI as a measurement of the mutual additional information

content is set aside and other options are analyzed to compute the distance

between CSIs belonging to either the same or a different experiment.

— 45 —



8 Weighted Hamming Distance

As the computation of the MI has been proven, for the time being, infeasible,

the characterization of CSI amplitude requires the introduction of a new unit

of measurement to quantify the information carried by each trace. The task

of associating a CSI to a specific scenario can now be reformulated as follows:

after computing the distance between a CSI AC and the reference CSI A⋆
C

of a selected experiment, the more similar AC is to A⋆
C, the shorter the dis-

tance between the two CSIs. Consequently, the shorter the distance, the more

likely AC is to belong to the same experiment as A⋆
C. The choice of unit of

measurement to fulfill this goal has fallen on the Hamming Distance.

By definition, the Hamming distance between two equal-length strings of

symbols is the number of positions at which the corresponding symbols are

different. Contextualizing the use of the Hamming distance in this work, we

can see it as a tool to measure the difference between two equally long strings

of bits. Whether the comparison starts from the most or least significant bit

of the string is irrelevant when computing the standard Hamming distance, as

it does not account for the position of the differing symbols but rather looks

at their difference itself. For binary strings a and b, the Hamming distance is

equal to the number of ones in the result of the a ⊕ b operation.

An intuitive example of its computation is provided below:

10011011

11010001

Given the two bytes above, the Hamming distance between them is 3, as the

mismatched bits highlighted in red indicate.
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Directly implementing the computation of the Hamming distance, albeit

straightforward, bypasses some necessary logical assumptions. Its implemen-

tation would be used to quantify the difference in the information contents of

two CSIs. In particular, the standard Hamming distance as-is would only be

capable of representing the existence of a difference between the CSIs but it

would not show how they differ. Specifically, two CSIs — represented as binary

strings after quantization — differing by the most significant bit would have

the same Hamming distance as two CSIs differing by the least significant bit.

Of course, this would result in inconsistent interpretations of the experimental

results because the positions of the differing bits would not be accounted for.

The mismatch in the most significant bits should be weighed differently than

that in the least significant ones, as the information content brought along by

the discrepancies of the strings in the two cases is different.

These considerations lead to the need for the identification of a Weighted

Hamming Distance (WHD) as a more appropriate metric to compute the in-

formation content linked to the differences between two CSIs. We propose that

such a metric associates a larger weight to differences in the more significant

bits of the compared strings. To do so, we need to introduce a list of weights

that is as long as the strings of bits being considered. Such weights should be

set by default and left unaltered within the same experiment regardless of the

compared strings to ensure that all measures belonging to the same experiment

are consistent with one another (provided that the strings of bits belonging to

the same experiment all have the same length, which is also compatible with

the length of the list of weights). The list of weights should be configured

so that it gives an arbitrarily larger or smaller weight to differences in more

significant bits; in this study, the choice was made to assign a larger weight

to differences in more significant bits, while mismatches in less significant bits

will have a smaller impact on the value of the metric.
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Let’s assume that we have a dataset of 8-bit strings to compute the WHD

on. The list of weights can be represented as an array of integer values, such

as:

w = [8 7 6 5 4 3 2 1]

This array allows for the computation of the WHD between string a and string

b as:

WHD =
∑

i

|a[i] − b[i]| · w[i] (8.1)

Eq. (8.1) implies that 0 ≤ WHD ≤ ∑
i w[i], where WHD = 0 when a and b are

equal and WHD = ∑
i w[i] when a and b are one’s complements of each other.

For example,

a = 10110010

b = 11101100

w = [8 7 6 5 4 3 2 1]

WHD = 7 + 5 + 4 + 3 + 2 = 21

Given the suggested characterization of the WHD, the closer the value of

the measure to its maximum reachable value, the more likely it is that more

significant bits are different in the considered strings.

In this study, after quantization of CSI amplitudes, we do not work directly

with strings of bits but rather with their representation in base 10. This

implies that the weight that has to be given to mismatching bits in different

positions along the strings is implicitly accounted for in the binary-to-decimal

conversion. Therefore, the array of weights can be left out of Eq. (8.1) as all its

items will be equal to 1 in the base 10 representation of the compared strings.

As an initial characterization of the experiments, we compute the WHD

between the reference CSI A⋆
C of each experiment and each CSI k ∈ MC of the
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experiment. The formula presented in Eq. (8.1) becomes:

WHD(A⋆
C, AC(k, ·)) =

NSC∑
n=0

|AC(k, n) − A⋆
C(k, n)| (8.2)

This equation is used to compute the ‘internal’ WHD of an experiment, as well

as the ‘external’ distance between two different experiments. The ‘internal’

WHD is defined as the average distance between the reference CSI A⋆
C and

all CSIs of the experiment that A⋆
C is computed on. Contrarily, the ‘external’

distance is defined as the average distance between A⋆
C and all CSIs of an

experiment different than the one A⋆
C is computed on but belonging to the

same experimental setup. Moreover, ‘cross-setup’ distance (also called ‘cross

distance’) is defined as a variation of the external distance such that the A⋆
C

and the CSIs used to compute the WHD belong to experiments with different

experimental setups, e.g. A⋆
C is computed on data collected within the Empty

Scenario and it is compared to data collected in the Static Scenario.

The expected results of these computations are that the ‘internal’ and

‘external’ distances take on significantly lower values than the ‘cross-setup’

distance, with the ‘internal’ distance possibly remaining lower than the ‘ex-

ternal’, albeit with less substantial variation. Such results would provide a

basic tool to support environment identification: given a CSI extracted from

an unknown environment, the closer it is to correctly classified reference CSIs,

the more likely it is that it was collected within the same scenario.
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9 CSI Processing

Before proceeding with the analysis of the results derived from the elaboration

of the collected CSIs, we provide an overview of the process that was followed

to obtain them.

Upon extraction, CSI traces are represented as non-null complex numbers

within which amplitude and phase can be identified and separated. All CSIs

belonging to the same experiment are saved in a csv file, with each row cor-

responding to a different CSI. Each CSI is composed of one complex number

for each sub-carrier; all traces belonging to the same capture are made of the

same number of values, as the number of sub-carriers NSC obviously remains

unaltered throughout the experiment. Depending on the used bandwidth, the

number of sub-carriers changes as displayed in Lst. 9.1.
1 # if working with 802.11 ac
2 nsc = 3.2 * BW
3 if STD == ’ax ’: # if working with 802.11 ax
4 nsc = nsc * 4

Listing 9.1: Computation of the number of sub-carriers as a function of

bandwidth (20, 40, 80 MHz) and 802.11 standard.

Some sub-carriers are suppressed during transmission and therefore the

corresponding CSI values are set to 0i + 0. Such sub-carriers are identified

and removed from each sample, as they do not carry information about the

environment where the trace was captured.

At this point, only CSI amplitudes are kept into account, while phase

values are discarded, as they are not analyzed within this thesis. Since CSIs

are subject to the effect of AGC, its impact is removed before further processing
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is carried out.

Then, CSIs are normalized and quantized, according to what has been de-

scribed in Chapter 6. All remaining elaboration is performed on the quantized

version of both CSI increments and amplitude values.

Fig. 9.1 depicts a summarized overview of the followed workflow.

Capture CSI

Compute #SC

Remove suppressed SC

Convert to complex numbers
and discard phase

Remove AGC

Normalize CSIs to 1

Compute increments

Quantize Normal distribution and CSIs

Compute MI Compute WHD

Figure 9.1: Overview of the workflow followed during CSI processing.

Chapter 3 provides a summary of the results produced in the previous work,

to improve contextualization of this analysis. The current version of the code

maintains backwards compatibility with the processing carried out throughout

the BSc Thesis. To support this statement, we reproduce the results showcased

in Chapter 3 on the new dataset.

Fig. 9.2 displays the evolution in time of the amplitude of CSIs collected

on a randomly chosen sub-carrier in two different scenarios. Each plot repre-
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sents two distinct yet visibly superimposable graphs: in red, referencing the

left y-axis, the normalized amplitude is displayed, whereas in blue, referencing

the right y-axis, the quantized version is plotted. Note that the line widths

used to represent the two processes have been set to different values to allow

distinction of the two series that are otherwise almost exactly superimposed

within each of the two scenarios. By observing these figures, we come to the

conclusion that CSI amplitude before and after quantization remains struc-

turally unaltered, regardless of the scenario the traces were collected in. As

one can expect, the CSIs representing a more dynamic scenario (Fig. 9.2b)

display higher variability in their evolution in time, which highlights how the

amplitude indeed reflects the structure of the environment. It must be noted

that the removal of the effects of the AGC positively contributes to enhancing

the ‘true’ behavior of the CSIs, mitigating the fluctuations that their ampli-

tudes undergo and that were more evident in the results commented in [21].
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(a) CSIs collected on a 20 MHz channel
using 802.11ax in an empty room.
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(b) CSIs collected on a 20 MHz channel
using 802.11ax in a room with four people
in it.

Figure 9.2: Example of amplitude evolution in time on sub-carrier 135 in the
Empty and Fully Dynamic Scenarios.

To provide a complete evaluation of the available captures, the code devel-

oped for [21] was also tested against the AntiSense dataset; an example of the

results is showcased in Fig. 9.3.
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Figure 9.3: Example of amplitude evolution in time on sub-carrier 94. CSIs
belong to the AntiSense dataset.

Fig. 9.4 displays the distribution of the amplitude increments measured on

sub-carrier 135: it can be observed that the histogram resembles a Gaussian

distribution, which is coherent with the model proposed in [21].

Finally, by examining the results of the auto-correlation function computed

on the amplitudes (Fig. 9.5a), we observe that the process indeed has memory.

However, when looking at the auto-correlation of the increments (Fig. 9.5b),

we find that the function returns noise-like values, which are consistent with

the results expected from a Markovian process. Whether such mathematical

description could accurately represent the behavior of the increments will be

the subject to future further analysis.
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Figure 9.4: Example of increments distribution on sub-carrier 135. CSIs were
collected on a 20 MHz channel using 802.11ax in an empty room.

0 25 50 75 100 125 150 175 200
Tau

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

-c
or

re
la

tio
n

Auto-correlation SC135

(a) Amplitudes auto-correlation.
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(b) Increments auto-correlation.

Figure 9.5: Examples of amplitudes and increments auto-correlation on sub-
carrier 135. CSIs collected on a 20 MHz channel using 802.11ax in a room
with four people.
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10 Results of the Normalization and Quan-

tization Processes

Following the theoretical considerations carried out in Sect. 6.2, we provide a

sketch of the implementation of the quantization of N (σ) to obtain N ′(σ).

The pseudo-code for the quantization process is briefly displayed in the

following snippet.
1 csi = csi - min(csi)
2 csi = csi / max(csi) # CSI ranges from 0 to 1
3 a = 0
4 b = 2 ** (2 * q_amp ) - 1
5 csi_quant = round (csi * (b - a) + a) # quantize CSI
6
7 incr = csi.diff () # computes increments using normalized CSI
8 mu , sigma = norm.fit(incr)
9 dstar = 3 * sigma

10 sample = numpy . random . normal (loc=mu , scale =sigma , size=incr.size)
11 sample = filterTails (sample , dstar ) # fix boundary conditions
12 # apply the same logic used to quantize amplitudes on increments
13 incr_quant = int( round (( sample - min( sample )) / (max( sample ) - min(

sample )) * (2 ** q_inc - 2) - (2 ** ( q_inc - 1) - 1)))

Listing 10.1: Pseudo-code of the algorithm used to normalize and quantize

CSI and increments.

By running this code on the collected data, we create a quantized version of

the Normal distribution that is used to approximate the empirical distribution

of the increments. This is evident in the presented pseudo-code, as the values

of the sample array are randomly selected from a Normal distribution with

the same mean and standard deviation as the distribution of the increments.

Should the approximation prove ineffective in correctly representing the em-

pirical increments, the overall logic of the code would remain unaltered and
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all computations would be carried out on the original incr array instead of

sample. As stated at the end of Sect. 6.2, we will assume that the Gaussian

distribution correctly approximates the increments distribution.

To choose a suitable qinc value to quantize the increments and to compute

the correct qamp, values qinc = 3, 4, 5 have been selected for evaluation. To

support the final choice of qinc = 4, we present three histograms comparing

the increments obtained from the collected data and an equally large sam-

ple of values randomly extracted from the Gaussian distribution, as described

in Lst. 10.1. The three plots displayed in Fig. 10.1, 10.2 and 10.3 compare

increments and sampled values after quantization over 3, 4, and 5 bits respec-

tively. All three histograms have been normalized with respect to the integral

of the distribution and use a logarithmic scale on the y-axis to simplify data

comparison.
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Figure 10.1: Distribution of increments VS sample from Gaussian distribution
after quantization over 3 bits. Increments are computed on an experiment
performed in the Empty Scenario at 20 MHz.

It is easily observable that the measured increments follow a slightly more
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peaked trend, with the central and the outermost values (i.e. the tails of the

quantized distribution) appearing more often than they do in the sampled

version of the increments. In contrast, the intermediate values appear less

frequently than in the sampled increments.

Choosing 3 bits to quantize the Gaussian distribution is limiting in terms of

information that can be represented. The quantization over 4 bits, even though

the resulting empirical distribution has a higher probability of the external in-

tervals compared to the values sampled from the Gaussian distribution, results

in a sufficiently informative representation of the increments. Moreover, the

tails of the Normal distribution are correctly quantized and do not alter the

distribution itself. We will use the Gaussian distribution with 4-bit quanti-

zation to approximate the increments, as it allows a sufficiently informative

representation of the δC values, without misrepresenting the process due to

the use of too many quantization bits. Contrarily, quantization over 5 bits
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Figure 10.2: Distribution of increments VS sample from Gaussian distribution
after quantization over 4 bits. Increments are computed on an experiment
performed in the Empty Scenario at 20 MHz.
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using 3 ·σ to fix boundary conditions results in evident excessive accumulation

of the tails of both the Normal and empirical distribution on the boundary

quantization intervals; this excludes the possibility of using 5 bits to quantize

the Gaussian distribution, as the behavior of its tails is altered.
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Sample from Normal distr. quantized on 5 bits
Empirical distr. quantized on 5 bits

Figure 10.3: Distribution of increments VS sample from Gaussian distribution
after quantization over 5 bits. Increments are computed on an experiment
performed in the Empty Scenario at 20 MHz.

To further support the choice of qinc = 4, we provide an example of the

distribution of the quantized increments of CSIs belonging to the AntiSense

dataset in Fig. 10.4. In this case, the increments behave almost exactly like

the Gaussian distribution, without facing any distortion of the values of the

boundary intervals. Regardless of the number of quantization bits and the

technology used to capture the CSIs, the original distribution of the increments

is symmetric around zero, as can also be seen in Fig. 10.5 and 10.6 where the

results of the quantization over 4 bits of the increments computed on traces

collected at 40 and 80 MHz are displayed. This consideration remains valid

even in those cases where the empirical distribution no longer resembles the
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Figure 10.4: Distribution of increments VS sample from Gaussian distribution
after quantization over 4 bits. Increments are computed on an experiment
belonging to the AntiSense dataset.

Gaussian curve.

Fig. 10.7, 10.8 and 10.9 offer a straightforward comparison between AC val-

ues before and after undergoing quantization. The trends followed by the two

processes can be superimposed with an irrelevant mismatch, as highlighted in

the third plot of each figure. The third plot is obtained by displaying the dif-

ference between normalized AC(k, n) and the value computed after reversing

the quantization process and re-normalizing the resulting values. Regardless

of the bandwidth the collection was obtained on, qamp = 10 has been chosen as

a function of qinc, as per Eq. (6.16): this choice should provide a semantically

equal representation of the amplitudes across scenarios and experiments, facil-

itating comparison of the results obtained through different technologies and

setups.
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Figure 10.5: Distribution of increments VS sample from Gaussian distribution
after quantization over 4 bits. Increments are computed on an experiment
performed in the Empty Scenario at 40 MHz.
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Figure 10.6: Distribution of increments VS sample from Gaussian distribution
after quantization over 4 bits. Increments are computed on an experiment
performed in the Empty Scenario at 80 MHz.
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Figure 10.7: Comparison of the structure of AC before and after quantization.
The third plot shows the difference between the original normalized AC and
that obtained after reversing the quantization process and normalizing the
result between 0 and 1. The represented CSIs are randomly selected from an
experiment performed at 20 MHz in the Fully Dynamic Scenario, with 4 people
in the room.
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Figure 10.8: Comparison of the structure of AC before and after quantization.
The third plot shows the difference between the original normalized AC and
that obtained after reversing the quantization process and normalizing the
result between 0 and 1. The represented CSIs are randomly selected from an
experiment performed at 40 MHz in the Fully Dynamic Scenario, with 5 people
in the room.
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Figure 10.9: Comparison of the structure of AC before and after quantization.
The third plot shows the difference between the original normalized AC and
that obtained after reversing the quantization process and normalizing the
result between 0 and 1. The represented CSIs are randomly selected from an
experiment performed at 80 MHz in the Fully Dynamic Scenario, with 5 people
in the room.
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11 Results of the Analysis of the Weighted

Hamming Distance

In Chapter 8, the following different characterizations of the WHD have been

introduced:

• Internal: WHD(A⋆
C, AC(k, ·)) with A⋆

C belonging to the same experiment

as all AC;

• External: WHD(A⋆
C, AC(k, ·)) with A⋆

C belonging to the same scenario

as all AC but to a distinct experiment;

• Cross-setup: WHD(A⋆
C, AC(k, ·)) with A⋆

C belonging to a different sce-

nario than all AC.

Considering that a 10-minute-long experiment consists of nearly twenty thou-

sand CSIs, albeit feasible, computing all distances between each and every CSI

and A⋆
C would make the discussion of the results ineffective and impossible to

compact into a limited yet meaningful amount of data. Therefore, the discus-

sion will initially revolve around the average distances between A⋆
C and all AC

of an experiment. The computation of the average WHD will be performed as

follows:

WHD(A⋆
C, AC) = 1

MC

MC∑
k=1

WHD(A⋆
C, AC(k, ·)) (11.1)

where WHD(A⋆
C, AC) employs the symbol AC to indicate the whole considered

experiment through its generic CSI. The classification of the average WHDs

as internal, external or cross-setup remains the same as that described at the

beginning of this chapter.
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Together with the average WHD, the standard deviation of the WHD is also

computed, to provide a numerical evaluation of the dispersion of the distance

values.

Initially, we compute the internal and external WHD under the assump-

tion that the average distance between an experiment and its mean CSI A⋆
C

should be slightly lower than the external distance of an experiment. Such a

difference may not be extremely noticeable (i.e. they may not differ by or-

ders of magnitude) as the compared experiments belong to the same scenario.

Data collected in the same scenario is expected to display similar behavior,

especially in static environments: the Empty and Static Scenarios, given the

minor modifications that the propagation environments undergoes by nature,

should produce CSIs that are — to some extent — similar to each other.

Since the average distances are computed as floating point values that do

not have a reference scale, comparison of the results obtained across different

scenarios is ineffective.

To correctly compare the measurements, we normalize the distances di-

viding each value by the maximum achievable distance. According to the

quantization process that each CSI undergoes, the minimum and maximum

values that they can take on each sub-carrier are 0 and 2qamp − 1 respectively.

Therefore, the minimum distance between two CSIs is obviously zero — in

case the CSIs take the same value on all sub-carriers —, whereas the maxi-

mum distance is reached when one CSI is ‘null’ (i.e. zero on all sub-carriers)

and the other is equal to 2qamp − 1 on all sub-carriers. Hence,

0 ≤ WHD(A⋆
C, AC)

NSC · (2qamp − 1) ≤ 1 (11.2)

Using this normalization of WHD(A⋆
C, AC), the values obtained from different

experiments across distinct setups become comparable, as they reference a
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E0 E1 E2 E3 S0 S1 S2 S3 FD0 FD1 FD2 FD3

A⋆
C E0 0.008 0.021 0.021 0.016 0.083 0.069 0.073 0.086 0.145 0.217 0.191 0.108

A⋆
C E1 0.021 0.007 0.007 0.012 0.102 0.089 0.091 0.105 0.163 0.231 0.204 0.125

A⋆
C E2 0.021 0.007 0.006 0.012 0.102 0.089 0.091 0.105 0.163 0.231 0.204 0.125

A⋆
C E3 0.017 0.012 0.012 0.006 0.095 0.082 0.086 0.098 0.153 0.220 0.193 0.115

A⋆
C S0 0.081 0.101 0.101 0.094 0.018 0.025 0.032 0.020 0.085 0.155 0.136 0.059

A⋆
C S1 0.067 0.087 0.087 0.080 0.025 0.017 0.030 0.029 0.093 0.168 0.147 0.065

A⋆
C S2 0.070 0.089 0.088 0.083 0.030 0.026 0.022 0.028 0.102 0.179 0.156 0.072

A⋆
C S3 0.084 0.104 0.103 0.097 0.020 0.029 0.030 0.019 0.087 0.159 0.139 0.061

A⋆
C FD0 0.142 0.159 0.161 0.150 0.079 0.087 0.097 0.081 0.041 0.108 0.090 0.050

A⋆
C FD1 0.212 0.226 0.227 0.216 0.149 0.163 0.174 0.153 0.104 0.049 0.062 0.115

A⋆
C FD2 0.187 0.201 0.201 0.190 0.128 0.140 0.151 0.132 0.087 0.063 0.047 0.092

A⋆
C FD3 0.106 0.123 0.123 0.113 0.056 0.062 0.070 0.057 0.057 0.122 0.097 0.030

Table 11.1: Normalized average WHD between each experiment performed in
the Empty, Static, and Fully Dynamic Scenarios and the reference average CSI
computed on the same experiments. Data collected on a 20 MHz channel using
802.11ax. The FD Scenario consisted of four people in the room.

scale going from 0 to 1. From this point on, WHD(A⋆
C, AC) will be used to

refer to the normalized average WHD, to avoid overloading the notation.

11.1 Results on the Collected Dataset

To answer the question of whether it is easily understandable if a given CSI

belongs to a specific experimental setup, Tab. 11.1 presents the normalized av-

erage WHD obtained from computing the internal, external and cross-distance

between A⋆
C and the CSIs collected at 20 MHz in the Empty, Static, and Fully

Dynamic Scenarios. Values highlighted in yellow represent the internal and

external WHD for the Empty, Static and Fully Dynamic Scenarios. Specif-

ically, on the diagonal of the matrix, the values of the internal distances of

the experiments are displayed. Values highlighted in green, orange, and blue

represent the ‘cross-setup’ distances between each couple of scenarios.

It is evident that the internal WHD always takes the lowest value compared
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to all other distances — i.e., the lowest values of Tab. 11.1 are on the diagonal

of the matrix. Similarly, the highest values of WHD can be found in the blue

and orange sub-matrices: this is representative of the fact that the Fully Dy-

namic Scenario is a more changing environment, which results in more varying

CSI traces. Such variability of the environment is reflected in higher distance

values.

These considerations can be extended to data collected on the 40 and 80

MHz bandwidths, as can be seen in Tab. 11.2 and 11.3. The color coding of

these two tables remains the same as that of Tab. 11.1. Once again, the lowest

values can be found on the diagonals of the matrices, corresponding to the

internal WHD. Contrarily, the largest differences can be found in the orange

sections of the tables, as they contain the distances between the Fully Dynamic

and the Empty Scenario: the great variability of the Fully Dynamic Scenario —

where multiple people are present in the room and possibly moving around —

is compared to the extremely static nature of the Empty Scenario, originating

the highest WHD values. This corroborates the assumption that both the

presence and the movements of people within an environment significantly

affect the behavior of the signal traveling from the transmitter to the receiver.

It is important to highlight that, since the maximum distance between two

CSIs is an edge case that is extremely unlikely to happen, if not impossible

to reach at all, values of the WHD around 0.2 can be considered large, as

they identify substantially different environments. This is supported by the

fact that the distance between each experiment and its own A⋆
C is in the order

of 10−2 and lower, which means that most collections of CSIs are extremely

close to their representative CSI A⋆
C. It is important to note that the Fully

Dynamic Scenario intrinsically has such higher variability compared to other

experimental setups that the computation of the distances on this scenario

may be affected by the significant variations of the amplitudes in the captures.
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EMPTY STATIC FULLY DYNAMIC

# PPL 0 0 0 1 2 3 4 4 5 5

0 0.004 0.247 0.244 0.232 0.164 0.135 0.169 0.157 0.146 0.169
0 0.246 0.007 0.008 0.344 0.292 0.184 0.119 0.131 0.175 0.210

EMPTY

A⋆
C 0 0.243 0.008 0.005 0.341 0.289 0.182 0.117 0.129 0.173 0.208

STATIC

A⋆
C

1 0.230 0.344 0.341 0.031 0.182 0.264 0.267 0.259 0.258 0.245

2 0.150 0.278 0.275 0.168 0.060 0.223 0.201 0.178 0.210 0.182
3 0.127 0.180 0.179 0.263 0.233 0.044 0.130 0.162 0.096 0.166
4 0.154 0.099 0.097 0.257 0.211 0.119 0.074 0.094 0.109 0.154
4 0.134 0.113 0.110 0.245 0.189 0.149 0.087 0.080 0.128 0.154
5 0.132 0.162 0.160 0.248 0.219 0.082 0.107 0.132 0.067 0.129

FULLY

DYNAMIC

A⋆
C

5 0.117 0.183 0.180 0.213 0.176 0.129 0.119 0.124 0.094 0.116

Table 11.2: Normalized average WHD between each experiment performed in
the Empty, Static, and Fully Dynamic Scenarios and the reference average CSI
computed on the same experiments. Data collected on a 40 MHz channel using
802.11ax.

EMPTY STATIC FULLY DYNAMIC

# PPL 0 1 2 2 3 4 5

EMPTY

A⋆
C

0 0.005 0.075 0.181 0.163 0.231 0.232 0.221

STATIC

A⋆
C

1 0.072 0.027 0.143 0.128 0.208 0.206 0.188

2 0.176 0.137 0.047 0.082 0.149 0.142 0.152
2 0.156 0.122 0.080 0.045 0.160 0.154 0.139
3 0.228 0.207 0.152 0.161 0.034 0.085 0.111
4 0.224 0.200 0.139 0.149 0.074 0.055 0.114

FULLY

DYNAMIC

A⋆
C

5 0.210 0.176 0.147 0.133 0.101 0.112 0.063

Table 11.3: Normalized average WHD between each experiment performed
in the Empty, Static, and Fully Dynamic Scenarios and the reference average
CSI computed on the same experiments. Data collected on an 80 MHz channel
using 802.11ax.

Tab. 11.1, 11.2 and 11.3 all display the interesting feature of being almost

symmetrical. Semantically, symmetry means that comparing an experiment A
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with the average CSI of experiment B produces the same result that can be

obtained by comparing B with the average CSI of A. In this case, comparing

experiments consists in computing the normalized WHD between them, as

per Eq. (11.1) and (11.2). Especially in the Empty Scenario, the modifications

that the environment undergoes are microscopic, therefore the symmetry of the

matrix is more accentuated. Contrarily, more dynamic scenarios are subject

to more impactful and macroscopic alterations, which implies the possibility

of less symmetric distances.

Exact symmetry of the external or cross-setup WHD between experiments

is difficult to obtain: the WHD is computed as the average distance between

each CSI of an experiment A and the average CSI of another experiment B.

Since the average CSI is a summarized visualization of a whole experiment,

its use implies that some information about the experiment is discarded or

lost, decreasing the accuracy of the representation. Nonetheless, comparing all

experiments CSI by CSI would result in an unmanageable amount of distances,

therefore it is necessary to merge such information into a single significant

number for each couple of experiments. Computing, once again, an average

implies losing some additional information, which can result in minimal — or

more significant, depending on the case — asymmetries of the WHD values.

The average WHD is deemed an initial effective approach to the computation

of the ‘distance’ between CSI captures and is used as a preliminary metric to

evaluate the behavior of the collected data. Should a more effective metric

be identified, the WHD could still be used as an approximated indicator of

the similarity between captures, while for a more detailed description of the

experiments the new metric would be used.

To provide a more compact visualization of the average internal distances

depending on the experiment, we focus the categorization of the collections

of CSI on the number of people that were in the room when the data was
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captured. This way, we can summarize the values of the internal distance in

distributions of the WHD, which allow us to avoid the computation of the

average WHD. Such an approach simplifies comparison between the different

experimental setups, allowing to infer how the CSIs are modified according

to the variability of the environment: before looking at the resulting distribu-

tions, we can assume that the Empty and Static Scenarios will undergo fewer

modifications than the Fully Dynamic one, as the latter also encompasses

movements of people in the room, whereas the former are only affected by the

furniture and appliances and, possibly, the presence of a person sitting almost

still. Therefore, the distributions of distances relative to an Empty or Static

Scenario can be expected to be much less spread out than those describing

a Fully Dynamic Scenario with four or five people moving around the room.

These considerations are supported by figure Fig. 11.1.

In Fig. 11.1a we can observe that the distribution of the internal WHD

derived from data collected in an empty room is significantly more peaked

compared to the distributions relative to the Static and Fully Dynamic Scenar-

ios. By juxtaposing the three distributions, we can notice that the increasing

number of people altering the structure of the experimental setup with their

movements impacts the spread-out of the distributions.

Fig. 11.1b highlights how easily distinguishable the Empty Scenario is com-

pared to any other scenario. This means that the Empty Scenario is extremely

self-similar, with internal distances being the closest to 0 across all scenarios.

Looking at the other distributions, they maintain the expected behavior of

an increasing standard deviation as the number of people in the room grows,

albeit they are often overlapped.

The same considerations can be made about the distributions in Fig. 11.1c,

with the Empty Scenario clearly distinct from all others and the remaining

experiments showing an increasingly higher dispersion of the distances. It
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Figure 11.1: Distribution of the normalized internal WHD across different
experiments, each characterized by a distinct number of people in the environ-
ment.
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can be noted that, since the 5-people Fully Dynamic Scenario consists of one-

minute-long experiments — compared to the 10 minutes of the other captures

—, the behavior of the corresponding distribution is slightly more fluctuating

than the other ones due to the fewer available CSIs to compute the WHD on.

It is necessary to state that analyzing the dispersion of the distances is in-

sufficient to determine the number of people within the room: while the Empty

Scenario is easily distinguishable from the others, telling Dynamic Scenarios

apart based on the WHD distributions alone is a tough task, due to the dis-

tributions being significantly overlapped. A more in-depth and sophisticated

analysis is required to determine a tool or metric to perform this task.

Nevertheless, an intuitive representation of the differences between cap-

tures collected with a varying number of people in the room is provided by

Fig. 11.2, 11.3, 11.4 and 11.5. Each figure represents the comparison between

two experiments performed on either the 40 or the 80 MHz bandwidth. The

first two plots of each figure represent the evolution in time of the quantized

CSI amplitude for the selected experiments: the y-axis corresponds to the sub-

carriers (excluding those suppressed in transmission) and the x-axis represents

the CSI index within the experiments. The third plot depicts the difference

between the first two (specifically, the first minus the second). The color bar

indicates that lower amplitude — or difference — values correspond to the

color blue and that higher ones are red, with 0 being white.

These figures allow us to easily identify the overall structure of an ex-

periment: for instance, in Fig. 11.2 we can observe that the first heatmap,

describing an experiment performed in the Empty Scenario, maintains a static

behavior over time on each sub-carrier, with higher amplitude values in the

first 150 sub-carriers and lower values in the central band. Similarly, the am-

plitude trend of the central heatmap — relative to an experiment performed in

the Static Scenario — keeps a stationary behavior with lower absolute values.
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Figure 11.2: Difference in quantized CSI amplitude values between an exper-
iment performed in the Empty Scenario and one in the Static Scenario. The
third heatmap depicts their difference. Data collected on a 40 MHz bandwidth
channel using 802.11ax.

As can be seen in the third plot, the difference between the two scenarios is

very distinct, as the three main ‘bands’ that can be identified in the heatmap

take on values that are far from 0. This simple consideration allows for the hy-

pothesis that the two scenarios will be easily distinguishable from one another,

as their difference is hardly ever close to zero.

Similar considerations can be made on the CSIs represented in Fig. 11.3:

the Empty Scenario is characterized by an extremely static behavior in time,

whereas the Fully Dynamic Scenario with five people in the room has more

variable amplitudes. In this second experimental setup, by looking at each sub-

carrier by itself, we can observe that they all undergo modifications in time,

necessarily due to the alterations of the environment due to the presence of

multiple people. This implies that the higher variability of the Fully Dynamic
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Figure 11.3: Difference in quantized CSI amplitude values between an experi-
ment performed in the Empty Scenario and one in the Fully Dynamic Scenario
with 5 people in the room. The third heatmap depicts their difference. Data
collected on an 80 MHz bandwidth channel using 802.11ax.

Scenario makes it easily distinguishable from the Empty one.

Fig. 11.4 indicates the opposite situation: the two analyzed experiments

were both performed in the Fully Dynamic Scenario with 5 and 4 people in

the room respectively. As can be noticed in the third heatmap, the difference

between the two collections is more limited compared to the previous examples,

especially in the second half of the experiment. It is also less definite in its

structure, as the colored bands are much more variable in height and color

intensity, indicating that distinguishing between the two scenarios may be less

straightforward.

Contrarily, comparing the Fully Dynamic Scenario (5 people) with the

Static one (see Fig. 11.5) results in more marked differences that set the two

environments apart.
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Figure 11.4: Difference in quantized CSI amplitude values between two exper-
iments performed in the fully Dynamic Scenario with 5 and 4 people in the
room. The third heatmap depicts their difference. Data collected on an 80
MHz bandwidth channel using 802.11ax.

Since these results and figures provide a more qualitative insight into the

differences between two experiments, a metric to quantify such distance needs

to be introduced. The goal would be to produce a distribution of CSIs around

the average CSI of each experiment; the main difficulty in achieving this char-

acterization of the captures consists in finding a one-dimensional representation

of a CSI, accounting for the amplitude values on all sub-carriers simultaneously.

11.2 Results on the AntiSense dataset

Considering that the goal of this work is to provide a mathematical back-

ground to ML-based positioning and localization algorithms, testing the code

written to carry out the current analysis against CSI traces that have already

been classified through ML techniques could provide quantitative results that
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Figure 11.5: Difference in quantized CSI amplitude values between an experi-
ment performed in the Fully Dynamic Scenario with 5 people in the room and
one in the Static Scenario. The third heatmap depicts their difference. Data
collected on an 80 MHz bandwidth channel using 802.11ax.

support such classifications.

Similarly to what has been done for the 20, 40, and 80 MHz bandwidth,

we provide a summary of the normalized WHD computed on the data within

the AntiSense dataset.

The results showcased in Tab. 11.4 and 11.5 highlight that each experiment

is significantly self-similar, as the normalized WHD between each capture and

its A⋆
C is at most in the order of 10−2. This initial consideration can be observed

on the main diagonal of the two matrices.

The green and blue sub-matrices represent the distance between the train-

ing and testing partitions of the dataset; their contents allow to highlight the

correspondences between the values of the WHD and the performances of the

neural network used in [11] to carry out the positioning task. By observing
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TRAINING TESTING

POS 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 006 232 019 033 179 019 054 047 066 256 223 036 047 263 259 232
2 231 019 242 210 102 243 180 189 167 034 037 201 235 061 052 041
3 016 242 009 036 189 020 065 055 076 266 233 045 051 274 269 241
4 033 211 038 006 160 039 040 036 050 236 201 017 047 243 238 210
5 178 103 189 159 018 183 158 160 144 112 102 153 172 113 112 109
6 019 243 023 039 018 007 065 057 078 266 235 046 045 273 269 243
7 054 180 066 039 158 065 009 024 034 205 173 033 062 213 207 182

A
⋆ C

T
R

A
IN

IN
G

8 047 190 057 035 161 057 023 010 031 216 180 029 061 224 218 187
1 066 168 077 050 145 077 034 031 007 193 158 042 074 202 196 167
2 255 036 267 236 113 266 205 216 192 014 048 227 259 049 055 053
3 223 040 234 201 102 235 173 180 158 048 016 192 227 062 063 041
4 034 202 045 016 154 046 032 029 042 227 192 009 048 234 229 201
5 040 233 045 039 170 037 056 057 069 257 224 043 017 264 259 233
6 263 062 275 243 113 273 213 223 202 049 061 234 265 017 059 075
7 258 051 270 238 111 269 206 218 196 052 061 229 260 059 021 054

A
⋆ C

T
E

ST
IN

G

8 232 042 242 209 109 243 182 187 167 052 039 201 235 075 055 017

Table 11.4: Normalized average WHD computed on the partitions of the An-
tiSense dataset dedicated to training and testing with the receiver located in
position 1 (rx1). The integer values are the first three digits after the comma,
rounded to the nearest value. The POS parameter indicates the position of
the person standing still within the experimental environment.

the green1 matrix in Tab. 11.4, we can see that some values on its diagonal

significantly differ from those in the yellow matrix on its left, especially for

experiments 3, 5, 6, 7, and 8. This result should correspond to degraded per-

formances of the neural network: the larger the distance between testing and

training, the more likely a neural network is to misinterpret the corresponding

data, classifying a set of CSIs as belonging to the wrong experimental setup. If

the positioning results obtained from evaluating the WHD are consistent with

those produced by the neural network in [11], the WHD would gain significance

and reliability.

By looking at the results of [11], many of these larger WHD values are
1The same reasoning can be done on the blue sub-matrix, comparing it to the yellow one

on its right.
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consistent with misclassifications by the neural network: over 1000 samples,

the neural network has a success rate of over 90% (except for ‘rx5’, which will

be discussed later) but the classifications relative to ‘rx1’ show higher failure

rates for experiments 3, 6, 7, and 8, which is coherent with the content of

Tab. 11.4. Unfortunately, the average WHD is too ‘summarizing’ to be used

for classification while expecting the same level of precision and detail as a

neural network.

The results relative to the set of experiments tagged ‘rx5’ under ‘active

attack’ were not analyzed in depth in [11], as the classification performed by

the neural network was close to a random guess. Tab. 11.5 contains the WHD

values relative to the experiments performed in such setup of the laboratory,

where the receiver was placed extremely close to the transmitter; this caused

the CSIs to be dominated by the transmitted signal itself rather than reflect-

ing the modifications it undergoes after propagating through the environment.

Whether we observe the training or testing partition of the dataset, the dis-

tances contained in Tab. 11.5 are all similar to each other, regardless of the

compared experiments. This behaviour directly impacted the performance of

the neural network used in the cited work, as values that are similar across

all experiments make it harder to correctly classify a collection of CSIs as

belonging to a specific experimental setup.

These results confirm the behavior of the neural network, while simulta-

neously allowing to make preliminary predictions on its ability to succeed in

locating a person within the chosen room. Hence, the WHD turns out to be a

useful metric that can be exploited to make assumptions on the quality of the

performance of neural networks in the positioning task. Nonetheless, it is still

too coarse a metric to grasp the subtleties in CSI values that a neural network

is capable of identifying, making it hard to position a person within a room

based solely on the WHD.
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TRAINING TESTING

POS 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 006 012 010 007 013 021 011 018 017 017 010 008 011 010 022 035
2 012 006 007 011 008 012 010 011 009 008 008 012 008 007 014 025
3 010 007 005 010 009 013 010 012 010 010 006 010 008 008 015 027
4 007 011 010 006 012 019 011 016 016 016 010 007 010 010 021 033
5 013 008 009 012 006 011 011 011 010 009 010 012 007 008 014 023
6 021 012 013 019 011 006 015 010 008 009 015 019 013 014 011 015
7 011 009 009 010 011 014 007 014 012 013 010 011 010 010 017 028

A
⋆ C

T
R

A
IN

IN
G

8 018 011 011 016 011 010 014 007 010 010 013 017 012 013 012 018
1 017 010 010 016 010 009 013 011 005 008 012 016 011 011 012 019
2 017 009 010 016 009 009 013 011 008 005 011 016 011 011 011 019
3 010 008 006 010 011 015 011 013 012 011 006 010 009 008 017 028
4 008 011 010 007 012 019 011 017 015 016 010 006 011 010 021 033
5 011 007 008 011 007 013 010 012 011 011 009 011 006 008 016 026
6 010 008 008 010 009 014 011 013 011 011 008 010 008 006 016 027
7 022 013 015 020 013 009 017 011 011 010 016 021 015 015 008 016

A
⋆ C

T
E

ST
IN

G

8 035 025 026 033 023 015 028 018 019 019 028 033 026 027 016 006

Table 11.5: Normalized average WHD computed on the partitions of the An-
tiSense dataset dedicated to training and testing with the receiver located in
position 5 (rx5). The integer values are the first three digits after the comma,
rounded to the nearest value. The POS parameter indicates the position of
the person standing still within the experimental environment.

The three tables that have not been explicitly commented in this section

can be found in App. B, but the results of the analysis that was carried out

on Tab. 11.4 and 11.5 remain consistent if extended to those tables as well.
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12 Conclusions and Future Work

This work took off from the findings of the Bachelor’s Degree Thesis and

focused on expanding the characterization of a Wi-Fi channel through Channel

State Information (CSI) analysis. Given the complexity of the goal, the study

was centered on the amplitude of the CSIs, temporarily discarding the phase

values.

To favor a step-by-step approach, the work was subdivided into multiple

tasks, the first consisting in identifying a representation of CSI amplitudes that

can simplify the comparison of the values across different experimental setups.

For each CSI, other than normalizing its amplitudes by the integral of the

energy to remove the effect of the Automatic Gain Control (AGC), the values

it takes on each Orthogonal Frequency-Division Multiplexing (OFDM) sub-

carrier are normalized between 0 and 1 and then quantized on a finite number

of bits. The quantization allows for a more compact representation of the CSIs,

introducing an upper bound to the amplitudes that was not implicitly present

upon CSI extraction. This approach lets us describe the traces on a closed

set of finite values that remains unaltered across the different experiments,

facilitating simultaneous analysis and comparison of the results relative to

different captures, possibly even done with distinct technologies.

Once a unique representation for the CSIs had been found, the second task

consisted in considering each collection of traces as a source of information

about the environment, which meant quantifying the amount of knowledge

carried by each CSI. This sub-goal was first approached through the compu-

tation of Mutual Information (MI), which should provide a measure of the
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information that can be gathered about ‘environment A’, given a capture per-

formed in ‘environment B’. Computing the MI has proven less straightforward

than expected, as each CSI has one in 2NSC·qamp chances of ‘happening’, which

of course results in unmanageable values, given that the number of useful sub-

carriers is NSC = 256, 512, 1024 and the quantization bits are qamp = 10.

Nonetheless, this approach would have allowed us to account for the probabil-

ity of a CSI belonging to a specific experiment, making MI a possibly extremely

useful metric for the environment classification task. Therefore, more research

is needed to see whether the MI could come in handy if its computation is

implemented following an alternative path.

To avoid incurring problems linked to the numerical representation of the

information content of CSIs, the study was redirected towards the measure-

ment of the Weighted Hamming Distance (WHD) between two CSI traces.

This metric calculates the number of mismatching bits in the binary repre-

sentation of two quantized CSIs, resulting in the determination of the number

of differences between such traces. By switching to the integer representation

of the quantized CSI, the weight of the differing bits within the two traces is

automatically accounted for, making mismatches in more significant bits more

impactful on the resulting distance.

As the WHD can only be computed between single CSIs, the comparison

of whole experiments was carried out by measuring the WHDs between the

reference CSI of the first experiment and all CSIs of the second one and then

averaging them. To ensure symmetry of the distances, the inverse was also

computed. Results show that each capture is extremely self-similar (i.e., the

average WHD between an experiment and its reference CSI is close to zero),

with increasingly larger values as the variability of the experimental setup

grows. For instance, as the number of people in the room where the CSIs

were collected increases, thus causing more changes in the environment, the
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distance between different experiments grows. As can be imagined, the small-

est distances can be found in correspondence to the Empty Scenario (i.e., an

empty room), whereas the largest ones can be obtained by comparing it with

the Fully Dynamic Scenario with five people in the room.

By only looking at the results relative to the WHD, we do not have enough

information to tell environments apart based solely on the dispersion of the av-

erage distance from the reference CSI representing an experiment. Specifically,

this task can only be carried out for the Empty Scenario, as its variability is

minimized and the distances from the reference CSI are less dispersed, but,

as the number of people in the room increases, the distribution of the average

WHD loses such powerful meaning.

Further research is needed to identify an ulterior metric that allows com-

parison of the distribution of CSIs: such a representation of the dispersion of

CSIs within each capture would make it possible to find any overlap in the

distributions relative to different experiments, enabling the computation of

the probability of wrongly classifying an experimental setup. Reaching this

goal would provide mathematical and probabilistic support to Machine Learn-

ing (ML) classification algorithms, offering an insight into how they work and

reducing their use as ‘black boxes’.

This work paves the road to such extension, having introduced a quan-

tization mechanism to simplify manipulation of CSI amplitudes, providing a

method to view them as items within a finite set, which significantly simplifies

theoretical reasoning and computations.
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A Detailed Classification of Collected Data

The collection of the CSI traces used in this work is obtained through multiple

experiments, which are classified according to metadata that is specific to each

set of captures.

Each experiment consists of a single capture of CSIs performed within a

continuous period of time; stopping the traces capture and restarting it after

a few minutes have passed without altering any configuration parameter still

counts as the end of an experiment and the start of a new one. This leads

to the possibility of having multiple experiments with the same configuration,

hence the same metadata can be shared among different captures.

The metadata are structured as fields of a json file, containing all infor-

mation required to classify an experiment. The content of the file is organized

as follows:

• Date: day, month, and year where the capture took place. All three

sub-fields are integer values;

• Location ID: the unique identifier of the environment where the capture

took place. The association of each ID with the corresponding descrip-

tion (e.g. the address or the geographical coordinates of the location) is

contained in a separate file, as will be described further on;

• Experiment: a string that describes the type of experiment performed;

• Ad hoc transmission: a boolean field that qualifies the traffic transmitted

through the environment as artificially or user-generated;
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• usleep: integer value indicating the interval — in microseconds — be-

tween each transmitted packet and the following one;

• Average duration: integer value indicating the duration (on average) of

an experiment associated with the current metadata. The duration is

expressed in seconds;

• Bandwidth: integer value indicating the bandwidth of the channel used

to transmit traffic;

• Modulation: string indicating the type of 802.11 modulation used for

transmission;

• Number of receivers: integer value indicating the number of receivers

involved in the experiment;

• Number of transmitters: integer value indicating the number of trans-

mitters involved in the experiment;

• Number of antennas used at the transmitter (integer);

• Number of antennas used at the receiver (integer);

• People: field used to identify the presence of people in the location where

the experiment was performed. It is composed of four sub-fields:

– Present: boolean field to state if anyone was within the environment

where the CSIs were captured;

– Number: integer value indicating the number of people in the loca-

tion;

– Moving: boolean field assessing whether the people in the room are

walking around or standing still/sitting down. If no one is in the

room, this field is set to false;
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– Names: list of the names of the people in the room (if any, empty

list otherwise).

• Notes: additional information that is deemed relevant.

To uniquely identify the locations of the experiments, an additional json

file is generated, which contains all location IDs and corresponding descrip-

tions.

This description of the classification of the captures corresponds to the

latest version employed up to September 2024. Studies after this date may

alter the structure of the json files containing the metadata of each experiment

or even base the classification on entirely different mechanisms.

All CSI traces collected within this study will be published as open data

according to the necessities of the projects listed in the acknowledgements of

this work.
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B Normalized Average WHD of the Anti-

Sense Dataset

The tables containing the normalized WHD computed on the AntiSense dataset

that were not explicitly commented in Chapter 11 are here displayed. They

reference the experiments identified as ‘rx2’, ‘rx3’, and ‘rx4’ according to the

position of the receiver, as shown in Fig. 4.2.

TRAINING TESTING

POS 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 009 028 023 017 024 025 028 032 028 029 023 022 020 023 028 036
2 028 010 024 021 028 022 026 028 036 015 026 025 026 023 024 029
3 023 025 008 019 021 018 027 020 026 024 015 029 022 020 023 025
4 018 022 019 009 020 021 024 025 028 021 020 016 018 019 023 030
5 024 028 021 020 010 020 030 026 023 028 019 026 012 018 028 029
6 025 021 017 020 019 011 024 023 029 021 019 026 020 015 022 028
7 027 026 026 023 029 024 012 027 041 024 028 021 030 021 021 033

A
⋆ C

T
R

A
IN

IN
G

8 032 028 020 025 026 024 027 010 032 029 021 030 028 023 025 017
1 028 036 026 028 023 030 042 032 009 037 021 035 022 030 033 032
2 029 015 024 021 028 022 025 029 037 009 026 023 027 022 024 032
3 023 026 014 019 019 021 029 021 021 026 009 027 018 019 023 023
4 022 025 029 016 027 027 023 030 035 023 027 009 022 024 028 034
5 020 026 022 018 012 021 031 028 022 027 018 022 009 019 029 030
6 024 024 019 019 018 016 022 023 030 022 019 023 019 009 022 028
7 027 024 022 022 027 023 021 024 032 023 022 027 028 021 011 026

A
⋆ C

T
E

ST
IN

G

8 036 029 024 029 028 028 033 017 032 031 023 034 030 028 027 010

Table B.1: Average normalized WHD computed on the partitions of the An-
tiSense dataset dedicated to training and testing with the receiver located in
position 2 (rx2). The integer values are the first three digits after the comma,
rounded to the nearest value. The POS parameter indicates the position of
the person standing still within the experimental environment.
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TRAINING TESTING

POS 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 018 051 065 076 071 057 086 116 036 049 074 226 073 064 070 131
2 045 027 053 058 078 052 077 118 052 037 063 213 070 063 060 143
3 064 055 021 072 089 073 086 117 079 062 038 190 083 084 071 139
4 076 063 073 016 068 064 055 080 072 073 088 203 064 066 053 107
5 069 080 088 065 021 057 053 077 067 088 112 217 035 050 046 092
6 056 055 075 062 058 020 057 088 050 066 090 232 048 030 048 113
7 086 080 087 053 054 058 020 066 082 091 107 206 050 056 033 097

A
⋆ C

T
R

A
IN

IN
G

8 114 119 116 079 075 085 065 026 111 129 140 215 081 083 076 043
1 036 057 080 072 068 051 083 113 017 061 090 245 069 051 070 132
2 050 042 063 073 089 067 092 130 061 017 073 222 082 080 076 156
3 073 067 040 088 113 091 107 141 089 073 019 179 105 102 091 164
4 226 213 190 202 217 232 206 215 245 222 179 010 222 228 197 207
5 072 073 083 062 036 049 050 083 068 082 105 222 019 041 047 106
6 064 066 085 066 050 031 056 086 051 080 102 228 042 018 049 109
7 070 064 072 052 047 049 033 078 069 076 091 197 048 048 018 106

A
⋆ C

T
E

ST
IN

G

8 131 145 139 107 092 113 096 046 132 156 164 207 106 109 106 020

Table B.2: Average normalized WHD computed on the partitions of the An-
tiSense dataset dedicated to training and testing with the receiver located in
position 3 (rx3). The integer values are the first three digits after the comma,
rounded to the nearest value. The POS parameter indicates the position of
the person standing still within the experimental environment.
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TRAINING TESTING

POS 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 021 052 201 057 225 052 089 169 033 063 038 063 260 047 069 087
2 053 020 221 061 232 052 085 186 048 033 044 057 275 054 064 083
3 200 220 011 236 211 213 249 054 226 230 212 242 111 214 229 252
4 059 061 236 019 260 049 068 201 043 063 046 037 300 050 058 066
5 224 231 208 259 035 246 254 211 234 240 230 248 196 237 244 253
6 051 053 213 048 247 020 073 177 043 059 050 047 275 037 058 065
7 089 085 249 067 255 071 022 213 075 073 079 067 305 068 039 052

A
⋆ C

T
R

A
IN

IN
G

8 169 187 052 201 217 177 213 016 193 199 180 206 137 180 194 217
1 035 050 227 043 236 045 076 193 017 059 034 050 282 042 062 071
2 065 035 231 064 242 061 074 199 059 016 053 063 293 061 058 077
3 041 046 213 046 231 053 080 180 035 052 016 055 274 050 065 077
4 063 057 243 035 249 046 067 206 048 061 053 021 300 052 056 060
5 258 273 105 299 194 274 304 132 281 290 273 299 023 271 284 306
6 046 053 215 048 239 035 067 180 038 057 046 051 273 023 055 062
7 068 063 230 055 245 055 038 194 059 055 062 054 285 055 024 054

A
⋆ C

T
E

ST
IN

G

8 085 081 252 063 254 062 050 217 068 074 073 059 308 059 054 027

Table B.3: Average normalized WHD computed on the partitions of the An-
tiSense dataset dedicated to training and testing with the receiver located in
position 4 (rx4). The integer values are the first three digits after the comma,
rounded to the nearest value. The POS parameter indicates the position of
the person standing still within the experimental environment.
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