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Abstract

Trusting autonomous, connected vehicles is necessary to build Cooperative Driving applications and enhance
Smart Mobility. A necessary step is trusting communications beyond identification, pseudonyms and
certificates: Messages must be unquestionably trustworthy to enable cooperation, even if errors are due to
errors of trusted entities. Extreme reliability requires multiple evaluation tools, as independent as they can
be, to fuse estimation into a dependable decision. This work proposes to combine two methods of evaluating
messages, one based on Artificial Intelligence (AI) analysis and one on physical coherence of message content,
achieving extremely good performance both on the VeReMi dataset, and in run-time execution in a highway
scenario simulated with PLEXE. Moreover, the paper proposes a simple protocol demonstrating how to safely
dismantle a platoon of Cooperative Driving vehicles returning to autonomous (or human) driving when
misbehaving messages are received.
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and Reliability

1. Introduction

Vehicular networks are built upon a range of com-
munication technologies including Cellular V2X (C-
V2X) and IEEE-based Direct Short Range Com-
municationss (DSRCs). These technologies are sup-
posed to support Cooperative Driving (CD) applica-
tions, which are central to the development of Smart
Mobility. Such applications rely on the timely and
reliable exchange of information between Connected
Vehicles (CVs) to enable coordinated actions on the
road.

While the communication layer in vehicular net-
works has been extensively studied, this alone is not
sufficient to ensure the safe and effective deployment
of CD applications. In fact, CD requires more than
just the correct delivery of messages, it also demands
messages to be semantically accurate and trustwor-
thy. When this is not the case, robust emergency
protocols must be in place to prevent potentially
dangerous situations. Wrong and untrustworthy
messages arise from misbehaviors, which can result
from unintentional faults, such as sensor errors due
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to GPS drift or radar malfunction or by intentional
actions, where an attacker forges and transmits in-
correct messages to disrupt the coordination among
vehicles. In both cases, the consequences can com-
promise the safety and efficiency of the entire system.

To mitigate such risks, Misbehavior Detection
Systems (MDSs) are required to analyze messages
and identify anomalies that deviate from expected
patterns. Two key contributions in this area are the
VeReMi |1, 2] dataset and the F2MD framework |[3].
VeReMi provides a large collection of vehicular mes-
sages affected by different types of misbehavior in
urban scenarios, making it a widely used resource
for training MDSs. F2MD provides an extension
to Veins' supporting the modeling of misbehaviors
and the evaluation of candidate detection methods,
including both heuristic and machine learning ap-
proaches.

Despite these efforts, several open questions re-

Veins https://veins.car2x.org/ is an open source
framework to jointly simulate vehicular traffic and
communications [4].
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main. Existing studies do not evaluate the perfor-
mance of MDS in the context of full CD applications
like platooning. There is also no systematic investi-
gation into the benefits of hybrid detection systems
that combine AI models with heuristics based on
physical models. Moreover, previous evaluations
have mostly been limited to off-line datasets and do
not explore the impact of misbehaviors on CD at
run time.

This paper addresses these gaps by introducing
a complete framework for detecting misbehavior
during platooning operations, extending the paper
presented at WONS 2025 [5]. The main contribu-
tions of this work are:

e A new hybrid MDS model that fuses two evalu-
ation components, one Al based and one based
on physics consideration we call RULE based;

e The separate analysis of Al and RULE based
components as well as their fusion strategy and
performance;

e The run-time evaluation of the MDSs;

e A protocol to safely dismantle a Cooperative
Driving platoon in presence of misbehaviors.

2. Background and Related Work

Several surveys have been conducted on the secu-
rity of vehicular networks [6, 7, 8, 9]. These works
broadly categorize threats into external and internal
attacks.

External attacks, such as jamming and denial-of-
service (DoS), are typically countered through the
use of authentication and authorization credentials
[3, 10, 11]. Internal misbehaviors, instead, are more
problematic. They originate from vehicles that are
correctly authenticated but transmit false data, ei-
ther intentionally to induce critical CD systems to
make unsafe decisions, or randomly due to malfunc-
tions. Regardless of their intentional or uninten-
tional origin, false data are a danger and demand
the development of Misbehavior Detection Systems
(MDSs) that go beyond identification, authentica-
tion, and authorization to analyze the semantics of
the messages.

2.1. MDSs in V2X

MDSs can be broadly divided into two categories:
Rule-based and Al-based systems. Rule-based sys-
tems verify the plausibility of received messages

against physical and kinematic laws, along with
system and logical constraints. Al-driven ones, on
the other hand, use structures learned from labeled
datasets to assess message correctness. Reinforce-
ment learning [12] adds continuity to the learning
process, possibly leading to better results in dy-
namic environments. Some authors also consider
federated learning [13, 14, 15]. Although the ap-
proach is promising, the need for real-time packet
analysis in dynamic environments renders the feder-
ation of learned knowledge particularly difficult to
realize in practice. Cooperation is often considered
(see for instance [16]) as a means to inform Mis-
behavior Authorities for authorization revocation
processes.

Another common distinction lies in the deploy-
ment location of the MDS: on-board, edge, or cloud.
This work focuses on on-board MDSs, as they are
inherently better suited for low-latency safety appli-
cations such as platooning and CD. In fact, designing
real-time edge or cloud-based MDS architectures is
inherently challenging, since the strict latency re-
quirements of message-by-message analysis make
off-board processing a less viable option from the
outset.

In the following we recap the main works (or
surveys summarizing the state of the art) for Al
and RULE based methods, with focus on methods
suitable for on-board implementation.

2.1.1. Al-based Methods

In the wake of Al and Machine Learning interest,
Al-based MDSs have received great attention and
surveys like [17, 18, 19, 20, 21, 22] offer a compre-
hensive overview of the proposed approaches. These
include supervised learning and unsupervised mod-
els [23, 24], as well as advanced architectures like
Recurrent Neural Networks [12], Long Short-Term
Memorys (LSTMs) [25, 26, 27] and Federated learn-
ing [13].

Each technique offers trade-offs: Supervised mod-
els require labeled data and offer usually higher
accuracy, still, high accuracy is often achieved over-
fitting training data and damaging the transfer of
knowledge to driving scenarios different from the
one where labeled data were collected. Conversely,
unsupervised ones can adapt more easily to new
data distributions but may lack precision.

Deep learning methods, especially LSTM-based
models, are popular due to their ability to handle
sequential time-series data such as streams of Coop-
erative Awareness Messages (CAMs); however, they



require large and diverse training datasets and, even
when such datasets are available, transfer learning
to new scenarios remains challenging.

In general, Al-based model performance is evalu-
ated only offline on simulation-based datasets, while
the performance of such systems at run-time is not
explored.

2.1.2. Rule-based Methods

Rule-based approaches evaluate message plausi-
bility by comparing data with model-driven predic-
tions. Examples of plausibility checks can be found
in [1, 28].

Plausibility checks for CAMs (we use this term
for any message for simplicity) should first of all
be based on the message standard generation rules,
as those reported in [29]. However, implementing
the full set of generation rules is a complex task,
also because these rules are still evolving. A pre-
liminary effort in this direction is presented in [30].
Moreover, CAMs in widely used datasets are typ-
ically not generated according to these standards,
but rather emitted at a fixed rate (e.g., 1 Hz in the
case of VeReMi), disregarding the actual generation
conditions defined in the specifications.

Examples of RULE methods can be found in
[31, 32, 33, 34]. Particularly interesting is [33] that
combines RULE and AI (Deep Learning) as we do in
this paper, but in the context of an edge (Road Side
Unit (RSU)) implementation. Also notable are the
ideas reported in [32], where RULE are expressed in
terms of spatio-temporal coherence evaluated with
appropriate filtering techniques.

2.2. The VeReMi dataset

Most of the MDS for Vehicular Networks (VNs)
discussed in Section 2.1.1 require the training of
a neural network based on a dateset of messages
labeled either as genuine or malicious: The only
well known open dataset of this kind is the VeReMi
dataset [1, 2|, which contains tens of millions of
messages collected during simulations of different
kind of misbehaviors in VNs involving thousands
of vehicles, traveling for several hours in an urban
scenario. We exploit the VeReMi dataset to design
an MDS crafted to tackle the selection of attacks
reported in Tab. 1. The key simulation assumptions
that characterize the VeReMi dataset are:

e They are based on the well-known Luxembourg
SUMO Traffic (LuST) scenario [35];

e Simulations span over a 24h time-horizon, but
messages are collected only during 2 main time
intervals, i.e., TAM-9AM (rush hour) and 2PM-
4PM (medium density traffic);

e In all simulations a fraction of vehicles, namely,
the 30% of them, are malicious/malfunctioning,
while the remaining 70% always generate gen-
uine messages;

e Messages (genuine or not) are standard CAMs
or similar messages sent at 1 Hz.

This last hypothesis has unfortunately a major im-
pact on performance evaluation, as CAMs are not
generated following the standard procedures [29],
and the low transmission frequency of 1Hz intro-
duces substantial communication delays. As a result,
previously received information quickly becomes out-
dated, making accurate model predictions particu-
larly challenging.

3. Hybrid AI+RULE MDS

The proposed Hybrid MDS architecture, shown
in Fig. 1, consists of two main components: the
AI-MDS and the RULE-based MDS, detailed in Sec-
tion 4 and Section 5. This section focuses on the
overall structure and the additional components that
complete the MDS.

The Hybrid MDS is designed to be installed on
board of each CV; its duty is to raise a warning when
received CAMs are believed to be symptomatic of a
malfunction or an ongoing attack. To this purpose,
the first component is the CAM Stream Processor
(Section 3.1), that in our architecture is responsi-
ble to group together CAMs coming from the same
transmitter and to preprocess them to simplify the
task for the subsequent AI-MDS and RULE-MDS
blocks. The two MDS are fed by the Stream Proces-
sor in parallel and they independently emit a verdict
A ={0,1}, with 0 indicating genuine messages and 1
wrong ones associated with confidence level v € [0, 1]
that can be interpreted as the probability that the
verdict is correct. Unlike model-driven approaches
such as RULE-MDS, which are not trained on la-
beled data, the AI-MDS is capable of associating
each verdict with a misbehavior label, as illustrated
in Tab. 1.

Verdicts are combined in the DECIDER, described
in Section 3.2. If this output exceeds a given thresh-
old, then the DECIDER triggers a warning that can
activate countermeasures. In Section 7.1 we propose



Misb.

Family Misb. Label Description
Constant Cros  Transmit the same GNSS coordinates over time
Position Random Rpos  Transmit random GNSS coordinates
RndOffset Opos  Transmit true GNSS coordinates shifted with a random offset
Eventual Stop EvSt  As for Constant, but speed is also set to 0. This attack also falls in the
Speed-based category
Speed Random Rspa  Transmit random speed values
p RndOffset Ospa  Transmit true speed of the vehicle shifted with a random offset
Information Data Replay Dyep  Transmit information previously received from a specific target neighbor
Replication  Disruptive Dis  Transmit information previously received from a random target neighbor

Table 1: Misbehaviors selected from the VeReMi dataset used for training the proposed MDS.
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Figure 1: Hybrid MDS architecture: a DECIDER com-
bines the outputs of the AT and RULE components by
weighting them according to their respective confidence
levels.

and evaluate an emergency protocol to dismantle
a platoon if the misbehavior of a fellow platooning
vehicle is detected.

3.1. CAM Stream Processor

The CAM Stream Processor performs two main
tasks: (i) grouping messages, and (ii) normalizing
them. The first task is essential for both the RULE-
MDS and the AI-MDS. The second, however, is
specific to the AI-MDS, as normalization enhances
generalization during learning. In contrast, the

RULE-MDS relies on the semantics of individual
CAM fields to build predictions and assess plausi-
bility without the need for normalization.

The CAM Stream Processor has an additional
task related to the AI-MDS training: CAM labeling.
This step is necessary because of the structure of the
extended VeReMi dataset [2], which organizes data
into folders according to the simulated misbehavior
scenario. While this structure provides a high-level
indication of the type of attack, it does not include
message-level labels. As a result, individual CAMs
must be labeled explicitly before they can be used to
train a neural network. To address this, the Stream
Processor infers the correct label for each CAM by
exploiting the dataset structure where each folder
contains:

1. Log files with the messages received by each
vehicle, potentially including incorrect data if
the sender was misbehaving.

2. Ground truth files with the actual data sent
by each vehicle, recorded directly at the trans-
mitter side.

The CAM Stream Processor labels each message by
comparing the logs with the ground truth: if the
version of the message found in the logs (i.e., at
the receiver side) matches the corresponding ground
truth, the message is labeled as “genuine”. Other-
wise, the message is labeled according to the misbe-
havior type defined by the corresponding VeReMi
folder. The resulting dataset of classified messages
is structured as shown in Tab. 2.

3.1.1. Message Grouping
The traces of messages exchanged between each
transmitter—receiver pair constitute CAM streams,



Feature Description

Label A number in the range [0 — 8]. 0 if the mes-
sage is classified as “genuine”, 1 to 8 refer
to the misbehaviors presented in Tab. 1.

sendTime Timestamp added by the sender vehicle.

sender Id of the sender vehicle.

receiver Id of the receiver vehicle.

pos(x,y) X,Y GNSS coordinates of the sender. All
recorded positions are in the municipal area
of the city of Luxembourg.

spd(x,y) X,Y speed components of the sender.

acl(x,y) X,Y acceleration components of the sender.

hed(x,y) X,Y heading components of the sender,

computed by an on-board compass.

Table 2: Features of classified messages. Some features
originally available in the VeReMi dataset are not used
in this work, so they are not reported in this table.
The heading feature is used by the RULE-MDS but not
by the AI-MDS; AI-MDS uses only the absolute value

lacl(x,y)]-

reflecting how messages would be received by ve-
hicles in real-world scenarios. For MDS purposes,
these streams are modeled as time-ordered sequences.
To evaluate the k-th CAM, an MDS considers the
most recent w messages, including the k-th itself.
In this work, we set w = 2 for the RULE-MDS and
w = 5 for the AI-MDS; these values are chosen to
maintain low computational complexity while still
achieving good detection performance. In the case
of the AI-MDS, if the w = 5 messages do not fall
within a reasonable temporal window, the k-th mes-
sage is labeled as undecidable, and the window slides
on. While in real deployments this temporal window
would need to be relatively short, for consistency
with existing literature —where all messages are con-
sidered valid regardless of timing— we set it to oo in
our VeReMi-based analysis.

In AT literature, and specifically for LSTM, mes-
sage grouping has been performed with both sliding
and jumping windows, with varying window sizes
from a few units up to hundreds of them. For ex-
ample, in [36] a sliding window of size 10 is used.
A larger window size favors the learning of long-
horizon latent features, however, it increases the
classification delay hampering driving safety. In [5],
we adopted jumping window approach with w = 5,
reducing this way the computational complexity as
classification was performed only once every 5 mes-
sages. However, this introduces a delay in decision-
making, which may be detrimental for CD applica-

AT  A(z,y) Aspd(z,y) Aacl

[s] [m] [m/s]  [m/s*]

mi — Mo 1 (05,0) (1,0) 0
ma — Mo 2 (2, 0) (2, 0) 0
ms —mo 3 (4.5,0) (3,0) 0
ma — mo 4 (8,0) (4,0) 0

Table 3: Example of the differential features for w =5
for a vehicle that constantly accelerates 1 m/s? driving
on a straight road sending CAMs at 1 Hz. The vehicle
departs (at time of message mo) from position z,y =
(Om,0m) and with initial speed vp = (0m/s,0m/s).
The x coordinate is always aligned with the vehicle
direction, thus the y coordinate is always 0 both for
position and speed.

tions that are highly sensitive to latency. For this
reason, in the present work we shift to a sliding
window approach, enabling timely per-message eval-
uation. The sliding approach proposed now still has
low computational requirements, making it suitable
for on-board implementation. As for the RULE-
MDS, its computational overhead is negligible and
does not pose any performance concerns.

3.1.2. Message Normalization for AI-MDS

During the offline training, it is necessary to elim-
inate the bias related to positions, all in the munici-
pality of Luxembourg. To de-correlate the position
from locality and allow generalization, we fix the
first message of each window as reference for the
rest of the group. Then we compute the feature-wise
differences between the remaining 4 messages and
the reference one. Tab. 3 illustrates the result of
this operation. This “progressive difference table”
captures well the regularity of CAMs in time, al-
lowing a neural network to learn the plausibility of
messages.

3.2. DECIDER

AI-MDS and RULE-MDS verdicts A, and Ay
associated with their confidence levels v, and vy are
combined by the DECIDER with Eq. (1).

Sa=Vr  (2Ar — 1)+ v, - (2A, — 1)
L (1)
Ap = sign[sy]
where sign[] is a function that returns 1 (misbehaved
CAM) if the argument is > 0 and 0 (genuine CAM)
otherwise. This decision rule is designed to favor
agreement between the AI-MDS and RULE-MDS,
but when their outputs differ, it selects the verdict
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Figure 2: Architecture of the neural network proposed
to enhance the first one published in [5] and format of
the VeReMi processed data provided as input.

with the greater confidence. We call this simple de-
cision method Confidence-based Score Fusion (CSF).
In case Ay or A, are undecided (see Sections 3.1.1
and 5 for the explanation why this can happen), the
decision relies solely on the available verdict, i.e.,
we assume a confidence 0 from the MDS that has
not classified the message.

4. AI-MDS

The AI-MDS works on the “message progressive
differences” exemplified in Tab. 3 on groups of w =5
messages, but since we use a sliding window deci-
sions are taken message per message.

Fig. 2 illustrates the architecture of the optimized
neural network we devised starting from the one
presented in [5]. The novel architecture has =~ 39k
parameters, while the previous one ~ 311k, thus
the model complexity is reduced by a x8 factor.
A smaller model improves the training speed, and
most of all has a smaller computing and memory
footprint for the on-board implementation, even if
a modern CV can be considered an unconstrained
computing unit from the perspective of a simple
CAM classification task.

The initial Conv1D layer perform BATCH-
NORMALIZATION. This front-end layer captures local
regularities in the input, and also denoises and com-
presses it. The presence of this layer (compared to
the architecture proposed in [5]) allows reducing the
size of the expensive LSTM layer from 256 to 64
neurons without loss of accuracy.

The LSTM architecture is designed to capture
temporal correlations between consecutive messages,
with the final 9-neurons softmax layer that outputs
the logit() over the classification space {0,1,...,8},
where 0 indicates genuine messages while labels
greater than zero indicate one of the misbehavior
reported in Tab. 1.

To estimate the confidence level v,, we introduce
two DROPOUT filters —one after the LSTM and
another after the subsequent dense layer— each with
a drop rate of 10%. This means that, during each
forward-pass, the output of each neuron in the pre-
ceding layer is randomly suppressed with probability
0.1. During training this technique reduces the risk
of overfitting. More critically, at inference time,
DropOut enables multiple stochastic forward passes
through the network, allowing confidence estimation
via the standard Monte Carlo method [37].

Although it increases computational load due to
repeated network evaluations, this cost is essential
for enabling reliability assessment, crucial to the
functioning of the Hybrid MDS, where the DECIDER
fuses verdicts based on confidence scores (Eq. (1)).
In the results presented in Sections 6 and 8, we
perform 10 stochastic forward passes and compute
the average logit vector L() across repetitions. The
predicted class is then selected by identifying the
index ¢ corresponding to the highest average com-
ponent L(i). Accordingly, the verdict A, is set to
1 (indicating misbehavior) for all ¢ > 0, and to 0
otherwise. The confidence level ¢; is computed using
the standard T-Student technique, taking L(i) as
the point estimate and defining a confidence interval
of £10% L(i), with saturation at the bounds 0 and
1. Finally, the confidence v, is computed as:

vy = L) - ¢ (2)

This formulation ensures that the final confidence
reflects both the predicted class probability and its
variability across the multiple network evaluations.

Clearly v, tends to 1 when repeated forward-
passes are highly consistent, with most of the soft-
max probability mass concentrated on the same label
consistently. Conversely, v, rapidly drops toward 0
when the logit() of different runs are inconsistent or
simply scattered uniformly across all possible labels.

5. RULE-MDS

The RULE-MDS operates on pairs of consecu-
tive CAMs and assesses the plausibility of the most
recent message based on physical and kinematic
extrapolations from the previous one.

Let M, and M. be the previous and current CAMs
transmitted by the same vehicle vy, and received by
the ego vehicle. For RULE-MDS purposes the CAMs
are the time stamped (¢) collection of vectorial rep-
resentation of position p, speed ¥, and acceleration
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Figure 3: Plausibility function for j, n,, and 7, (err)
modeled as a trapezium.

a, as well as associated communication level infor-
mation 6, such as the signal strength, signal to noise
ratio, and other useful information to characterize
the frame:

Mp = (p;7v;aa;atp76p); M, = (p_éav_é7a_é,tc,9c)
The time interval between the previous and the
current CAM is Ay =t — ¢p.

The acceleration cannot be predicted, as it is
the consequence of driving conditions and decisions.
Thus we can only check that the acceleration vari-
ation, the jerk j = ||a, — a¢||/A¢ in m/s?, never
exceed plausible values. If j is plausible, we use the
previous d; to predict vz and p; from M, values:

U =Up + apA¢ 3)
D=1y + U0 + 2y A

Finally, we compute the distance, or error, between
the estimates and the M, values:

np = |1 — pel|

The jerk j, and errors 1, and 7, are used to assign
metric-specific scores (s,, sy, $p), that in turn will
define the confidence vy of the RULE-MDS related
verdict. The scores are computed with a simple
trapezoid function (see Fig. 3) that assigns score
1 (fully plausible) if the error (or jerk) is below a
lower bound LB; a linearly decreasing score between
LB and an upper bound UB, and 0 (completely non
plausible) outside the trapezoid base. The values
selected for LB and UB for the three metrics are
reported in Tab. 4, with position errors that are re-
Up+ D A,

lated to the expected displacement A, =

LB UB

7 8m/s*  20m/s?
7 10% D 25% 0
ne 20%A,  30%A,

Table 4: Bounds LB and UB for 3, n,, and n,.

Jerk values are set considering comfort in standard
driving conditions (LB) and physical limits of ve-
hicles (UB) [38]. The other limits simply derive
from reasonable approximations and safety consider-
ations: UBs are set at values that define dangerous
situations for CD, and LBs to values compatible
with sensors errors and uncertainties.

Additional coherence checks should be done at
the transmission and electromagnetic (EM) level
on a set of parameters we called §. Unfortunately
the VeReMi dataset does not include any feature re-
lated to communications, which makes impossible to
propose consistency and plausibility checks. These
checks should start from the characteristics of the
communication standard adopted and appropriate
propagation models, and also include the distance
between the transmitter and the ego vehicle as well
as the relative speed to estimate, for instance, the
Doppler spread of the signal. Given the impossibility
to include these checks with a realistic detail, we in-
clude in RULE-MDS two extremes: i) no EM checks
at all, and ii) a trivial unit-radius transmission range
approximation.

For the second case, we note that the simula-
tions used to construct the VeReMi dataset were
conducted using 802.11p technology with a trans-
mission power of 100mW (20dBm). According to
the 802.11p standard, the outdoor communication
range with a transmission power of 20dBm is 200 m.
We thus consider any message originating from a
vehicle located beyond a distance of 220 m —as com-
puted from the CAMs content— to be non-plausible.
This threshold corresponds to a 10% margin above
the estimated maximum communication range. In
other words for this test we set LB= 200m and
UB= 220m. We refer to this check as the Ele-
croMagnetic Coherence (EMC) test, to reflect its
intended purpose. While we acknowledge that this
is a coarse approximation, it is introduced solely to
evaluate whether such a constraint has any impact
on the overall results. This type of test was origi-
nally introduced in [28] as one of the features, where
it was referred to as the Accepted Range Threshold
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Figure 4: Piecewise linear function used to compute vg
as a function of N, and sg. vr is high (1) for sg well
apart from the critical threshold 1/N,, and drops to the
its minimum for scores getting closer to 1/Ny,.

(ART) check.

Summing up, the RULE-MDS evaluates V,,, phys-
ical metrics related to kinematics, EM propagation,
and possibly other model-based characteristics, each
of these metrics is assigned a score s € [0,1] with
0 indicating perfect adherence to the model and
1 complete disagreement. Based on these metrics
the RULE-MDS should emit the verdict Ay and its
confidence level vy. We proceed as follows. First we
compute the average score sy as

1 N,

Sr N, i:1s (5)

where s; are the scores of the single metrics, e.g, 7,
7y, and 7,. Then the verdict is assigned:

Ar = sign |:SR - ]\;m} (6)
and vy is computed with the piecewise linear func-
tion in Fig. 4, which is a function of the number of
metrics Ny,.

In the VeReMi dataset, due to the way CAMs are
generated, around 10% of (M, M,.) pairs exhibit
data implying an “unbelievable” vehicle behavior,
e.g., full 180° turns or acceleration and speed modulo
sign change. This usually happens for large A; likely
due to message collisions or losses. As a result,
model-based prediction is not applicable, and the
RULE-MDS returns “undecidable” as Ay verdict.

In practice, the RULE-MDS classifies a CAM as
misbehaved either when at least one plausibility
score equals 1, or when the sum of multiple sub-
threshold scores reaches a total weight equivalent to
a single score of 1. The confidence vy, however, is set

to 1 for Agx = 0 only if sy is smaller than ﬁ, and
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Figure 5: Boxplots of sg for all message types computed
without EMC (N,,, = 3) in the upper plot and with the
approximated EMC (N,, = 4) in the lower plot.

for Ap = 1 only if sy is larger than Nim—i_%(l_ Nim)

Prior to discussing the results on VeReMi (Sec-
tion 6) and in a real-time CD scenario (Section 8),
we examine the influence of the EMC-based rules,
though they are applied in a simplified form as noted
above. Fig. 5 shows the sz obtained without EMC
(upper plot) and with EMC (lower plot) separated
for each message type. It is evident that kinematic
models alone are insufficient to detect misbehav-
iors that involve only incorrect position information,
especially in cases such as Constant Position and
Eventual Stop, which are inherently similar. In the
Eventual Stop scenario, all kinematic parameters
appear plausible, effectively mimicking the behavior
of a parked vehicle (note that the VeReMi dataset
does not include actual parked vehicles). However,
the vehicle is in fact moving, and its growing dis-
tance from the ego vehicle becomes implausible. As
a result, even the approximated EMC test is able to
detect the anomaly. In a real implementation of an
EMC-based model, received packets should be con-
sistent with the observed variation in inter-vehicle
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Figure 6: Precision, Recall and F1-Score metrics evalu-
ated on VeReMi with AI-MDS only (top plot), RULE-
MDS only (middle plot) and HyBRID-MDS (lower plot).

distance, making this type of test both robust and
reliable. For this reason, from now on, all results
are shown for N, = 4 including EMC.

6. Offline MDSs Performance

Fig. 6 report the performance in terms of Pre-
cision, Recall and F1-Score for the AI-MDS, the
RULE-MDS and the HYBRID-MDS evaluated on the
VeReMi dataset. The AI-MDS distinguishes all
types of messages, as they are labeled in VeReMi,
while the RULE-MDS instead performs a binary clas-
sification.

The first clear observation is that the HYBRID-
MDS achieves significantly better performance than
the AI-MDS or RULE-MDS used individually. A
joint analysis of Fig. 6 and the lower plot of Fig. 5
highlights that the Data Reply misbehavior poses
the greatest challenge for the detection of incorrect
messages. In this scenario, the messages are struc-
turally valid but are simply replayed with a delay;
without additional checks, many of them may there-
fore appear legitimate. This type of misbehavior is
also close to what could be considered an intentional
attack. Other techniques might be required to de-
tect it effectively. A deeper inspection of real CAMs
and their encapsulating frames could reveal useful
features for AI-MDS and inspire additional rules for
RULE-MDS, thus improving detection capabilities.

The confusion matrices in Fig. 7 provide a more
detailed view of the system’s performance. Again,
the top plot corresponds to the AI-MDS, the mid-
dle to the RULE-MDS, and the bottom to the Hy-
BRID-MDS. First of all, the AI-MDS alone already
achieves a good classification precision in general,
since most of the diagonal values exceeds 88%, with
few exceptions, namely, Cpos and D¢, With Cpos
that tends to be confused with EvSt (= on the 14%
of the Cpos samples). The similar nature of the 2
misbehaviors explains this evidence: In fact, with
both Constant Position and the Eventual Stop, mis-
behaving messages are characterized by the “frozen”
Global Navigation Satellite System (GNSS) coor-
dinates, with EvSt messages further characterized
by zeros as speed and acceleration values, still, the
common position patterns mildly confuses the classi-
fier. Some D, (Data Replay) messages are instead
falsely reported as genuine: This can happen espe-
cially for those messages that are replayed after a
small casual delay, small enough to make the re-
played message extremely similar to the genuine
message they were copied from. The RULE-MDS
appears less accurate in its classifications, primarily
due to the high number of outliers in the computed
plausibility scores (see Fig. 5). Notably, the Hy-
BRID-MDS achieves near-perfect classification per-
formance, with the only significant exception being
the D,., messages, consistent with the challenges
previously discussed.

Fig. 8 offers a final insight into the causes of the
residual classification errors, which, although mini-
mal, are still present. The HYBRID-MDS correctly
classifies the vast majority of messages, but the pres-
ence of clear outliers explains the remaining errors.
Particularly puzzling are the outliers among genuine
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Figure 7: Confusion matrices evaluated on VeReMi with
AI-MDS only (top plot), RULE-MDS only (middle plot)
and HYBRID-MDS (lower plot).

messages. This can be attributed to the way the
VeReMi dataset is built: CAMs are sent at a fixed
rate of 1 Hz, without following the standard gener-
ation rules. As a result, a one-second interval may
be too long for model-based prediction —especially
when relying on sample-and-hold assumptions— af-
fecting both the AI-MDS and RULE-MDS. Addi-
tionally, in SUMO simulations actions are atomic:
for example, a 90° turn may occur within a single
simulation step of 0.1s. Thus, a vehicle that turns
immediately after sending a CAM may appear at a
position significantly different from what any model
could plausibly predict, an artifact unlikely to occur
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in datasets built according to the standard CAM
generation rules.

Considering only studies with comparable method-
ologies [2, 3, 28, 30, 39, 40, 41], the HYBRID-MDS
demonstrates consistently superior performance over
existing literature approaches. The remarkable
works [3, 39] exhibit indeed nearly optimal detection
accuracy in line with our HYBRID-MDS, however,
the proposed HYBRID-MDS architecture is lighter
and simpler, its Rule based component offers an
easier tuning interface and, above all, in Section 8
we prove its ability to be successfully transferred to
novel, runtime scenarios different from the offline
analysis of VeReMi.

7. Emergency Platoon Disassemble

One of the main motivations and contributions of
this work is to assess whether the results obtained
in offline settings are confirmed in an online imple-
mentation, and to evaluate the extent to which this
improves CD safety. A particularly relevant aspect,
already partially explored in [5], is the deployment
of the AI-MDS in a completely different scenario.
Although it was designed with the specific goal of
learning generalizable rather than scenario-specific
features, only experimental validation can confirm
its effectiveness. The RULE-MDS, by contrast, is
intrinsically more robust, and is expected to per-
form even better in an online setting where beacons
are generated at 10 Hz, typical frequency for CD
applications. For this analysis, we select highway
platooning as a representative and practically rele-
vant scenario.

7.1. Emergency Disassemble Protocol

Conceptually, disassembling a platoon is straight-
forward: when a member detects an anomaly, it



informs the other vehicles that it is safer to revert to
independent autonomous driving, as illustrated in
Fig. 9. In practice, however, the dynamics involved
are far more complex and can lead to unstable be-
haviors or even collisions, as already highlighted in
[42]. The key challenge is to ensure that all vehicles
reach a safe inter-vehicle distance before switching
from Cooperative Adaptive Cruise Control (CACC)
to Adaptive Cruise Control (ACC) or to any other
autonomous controller that does not rely on com-
munication. For this purpose, we adopt the Gap
Control Algorithm proposed in [42], whose imple-
mentation details are omitted here.

Misbehavior Detected

Raise Warning

CACC Use Radar GAP_CONTROL

Safety Gap Reached
CACC->ACC

A
AUTONOMOUS

Figure 9: Finite State Machine describing the transition
from a CACC driving regime to an AUTONOMOUS one
upon detection of any misbehavior.

Algorithm 1 outlines the vehicle logic underlying
an emergency disassembly procedure triggered in
response to a warning raised by the MDS within
the platoon. During the initialization routine, each
vehicle allocates the neighMap data structure to
collect received CAMs. A garbage collection routine,
not shown for brevity in Algorithm 1, is regularly
invoked and ensures that too aged CAMs (received
more than 10s ago) are not kept in memory.

The onCAM procedure is invoked whenever a
vehicle receives a CAM message m from a neighbor
v. If v is a new neighbor, a 5-sized message queue
is allocated for storing the beacons sent by v. New
CAMs are enqueued per sender, replacing the oldest
entry if needed. The algorithm collects and evaluates
messages from all surrounding vehicles, not just
those belonging to its own platoon. Clearly, the
driving reaction will be different depending on the
misbehaving vehicle.

Fig. 10 shows the effect of the platoon disassem-
bling protocol activated when a misbehavior is de-
tected in a platoon of 4 vehicles. The leader is the
vehicle vy (not shown in Fig. 10) while vy, vs, v3
are the platoon followers. To introduce stress into
the scenario, the leader follows a sinusoidal speed
profile, as shown in the caption. A constant-speed
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Algorithm 1 Driving algorithm informed by the mes-
sage classifier.
1: procedure INIT()
2: neighMap « {}
3: procedure oNCAM (msg=m, neigh=v)
if v ¢ neighMap then
neighMap < new msgQueue()

Ap < Hybrid-MDS.evaluate(neighMap[v])
if Ap AND v is a platoon member then

4:

5:

6: neighMap(v].push(m)

7

8:

9: EMERGENCYPROTOCOL()
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Figure 10: Evolution over time of the front-distance
of the vehicles before and after the detection of a mis-
behavior. Before t = 40s vehicles adopts the PLOEG
CACC with a time-headway of 0.5s; the leader follows
a sinusoidal speed pattern with period 10s and an av-
erage speed of 100 km/h & 27.77 m/s, implying a front-
distance of ~ 15m. At ¢t = 40s the leader v0 starts
sending Constant Position CAMs, the followers detect
it and enter the GAP_ CONTROL mode, slowing down
to enlarge the front-distance until they reach the target
one for an ACC with a 1.2m/s time headway (= 35m).
This happens at ¢t ~ 63s when they switch to the AU-
TONOMOUS mode.

profile would not sufficiently reveal the risks and
limitations of autonomous or cooperative driving
systems. The followers correctly keep a distance
corresponding to a 0.5s time-headway until a mis-
behavior is introduced in the simulation, triggering
the transition delimited by dashed vertical lines in
the plot. During this phase the front distance gen-
tly increases for all vehicles until they switch to
autonomous driving based on local sensors with a
front-distance of ~ 35m. This means that, under



emergency, the protocol is able to guarantee the
safety of all vehicles.

8. Run-Time Evaluation

We implemented the framework proposed in this
work in PLEXE [42, 43|, the Cooperative Driving
(CD) framework that extends VEINS [4], allowing
the realistic simulation of platoons.? In particular,
through the use of Python Bindings, we have con-
nected the C++ CD Application on board of each
PLEXE vehicle with the MDS implemented with
PyTorcH. We have also customized the Driving
Application that now fully supports the collection
of beacons and the computation of their progressive
differences so to feed the MDS at run-time. Fur-
thermore, we implemented the Emergency Protocol
as a PLEXE module, to be used when the MDS sig-
nals a misbehavior. All the misbehaviors reported in
Tab. 1 have been implemented by altering the CAMs
generated by the Beaconing service already available
in PLEXE. Finally, we configured the PLEXE Sinu-
soidal Scenario® to mimic the misbehaviors selected
by the experimenter at random start times, and an-
alyze the effect in a stressful situation. Simulations
are run for platoons in isolation and for platoons
surrounded by other vehicles that generate CAMs
and drive close to the platoon average speed, so
that during the simulation the relative position of
vehicles change continuously, as the platoon follows
a sinusoidal speed profile. Tab. 5 reports the main
parameters of the simulation campaign.

The main objectives of the experiments are two:

1. Evaluate the ability of the framework to reduce
accidents;

2. Evaluate the accuracy and responsiveness of
the MDS at run-time.

It is worth emphasizing that this scenario, involving
highway platoons, differs significantly from the LuST
scenario. As such, these experiments also serve
to evaluate the generalization capabilities of the
proposed framework, particularly of the AI-MDS,
which is trained exclusively on the VeReMi dataset
and has never been exposed to highway or platoon-
specific data.

2The code will be made publicly available on the PLEXE
website when appropriate.

3Documented online: https:
//plexe.car2x.org/tutorial/#sinusoidal-scenario

12

Parameter Value
Road Type 3-Lane Highway
Duration 120s
Misb. Start Time Uniform[15,30]s
Default CACC PLOEG
.g PLOEG Headway 0.5s
g Autonomous Controller ACC
¢ ACC Headway 1.2s
02 Beaconing Frequency 10 Hz
Platoon Size 4
Leader Speed 100 km/h
Speed Oscillation Amplitude & Freq  5km/h, 0.1 Hz
Background vehicles when present 9
Repetitions per Experiment 100
. L2-technology dual radio 802.11p
g Tx power 100 mW
g Broadcast MCS 3 Mbit/s
O  Unicast MCS 12 Mbit /s
Rx sensitivity —94 dBm

Table 5: Parameters characterizing vehicles and commu-
nications in the simulation experiments.
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Figure 11: Barchart comparing the collision rate in
simulations where the emergency protocol was either
enabled (blue) or disabled (red). The upper plot is for
platoons in isolation, the bottom one with background
traffic.

To evaluate the protection offered by the Hy-
BRID-MDS, we compute the collision rate, i.e., the
fraction of simulations resulting in a collision, across
scenarios with and without the HYBRID-MDS and
disassembly protocol. Fig. 11 shows the comparison
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in terms of collision rate. The red bars refer to
simulations without HyBRID-MDS, where platoon-
ing vehicles end up using wrong information in the
platoon control law, and the blue ones to those with
HYBRID-MDS. The upper plot refer to platoons in
isolation and the bottom one with the background
traffic. When background traffic is present, any
vehicle can be the misbehaving one, either in the
platoon or not, but the protocol is activated only
if the misbehaving vehicle is in the platoon. The
first observation is that there is no evident impact
of the background traffic, which is good news and
a novel result compared to [5], where instead more
results for different platoons sizes in isolation were
reported.

Some misbehaviors are naturally less dangerous
than others, for example, even turning off all defense
mechanisms the Opes, Rspq or Ogpq misbehaviors
never lead to any collision, but this may change
using different CACC algorithms or in heterogeneous
conditions [44]. The defense mechanism turns out to
be instead perfectly able to always detect and defuse
the Cpos, Rpos and EvSt misbehaviors, reducing the
collision rate from 100% to 0%. The impact of such
errors on platooning is critical, as the longitudinal
control in PLOEG relies heavily on the ego vehicle’s
distance from the preceding vehicle. This strong
dependency explains the observed 100% collision
rate.

The Dis and D,., misbehaviors exhibit a differ-
ent pattern. Even without any defense mechanism,
not all simulations result in collisions. However, in
some cases, the HYBRID-MDS fails to detect the
misbehavior leading to collisions, though at a signifi-
cantly lower rate. These findings are consistent with
the observations in [2]|, where D,..,, was shown to be
particularly effective in evading detection systems.
As previously noted, this is most likely due to the im-
possibility of implementing EMC checks against the
VeReMi dataset, and we did not implement them
in the online setup to enable a fair comparison with
the offline MDS.

We now shift the attention towards another key
performance metric for an MDS evaluated at run-
time, i.e., its reaction time. In fact, it is not enough
for an MDS to be accurate, as a slow reaction time
may in any case lead to dangerous situations, up to
fatal collisions.

Fig. 12 shows the distribution of reaction times
across all simulated platoons affected by some mis-
behavior, represented as discrete violin plots. In
the vast majority of cases, misbehavior is detected
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Figure 12: Discrete Violin Plots of the reaction-times
observed in the experiments. The upper plot is for
platoons in isolation, the bottom one with background
traffic.

upon reception of the first incorrect CAM, which
is a highly encouraging result. Although a few out-
liers require up to 4 or 5 CAMs to trigger detection,
the reaction time remains within safe bounds, as
CAMs are generated at 10 Hz in platooning sce-
narios, thus enabling timely countermeasures. A
noteworthy observation is that C,,s misbehaviors
often require two incorrect messages before being de-
tected. This is likely because the first message still
lies within the trapezoidal plausibility range defined
for the RULE-MDS (recall Fig. 3), while the second,
possibly in combination with AI-MDS, triggers the
detection. A similar delay is observed for Dis and
D¢, misbehaviors, which are primarily detected by
the AI-MDS, but only after a complete window of
w = 5 incorrect CAMs has been received. Lastly, it
may appear counterintuitive that the reaction time
is often shorter than a single CAM interval; how-
ever, this is consistent with the fact that the onset
of misbehavior occurs at a random time, uniformly
distributed between two consecutive CAMs.

Finally, Fig. 13 reports the detection time when
the misbehaving vehicle is not in the platoon, but
only for Dis and D,.p,, which are the cases when
messages could (they never do, but they could) inter-
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Figure 13: Discrete Violin Plots of the detection time
when misbehaved vehicles are not in the platoon for
the Dis and Dy, cases. The D, reported on top of
violin indicates the detection ratio, i.e., the fraction of
simulations where the misbehavior was detected, thus
providing a valid value of reaction time to populate the
distribution.

fere with the platooning application. The numbers
on the top (D,) refer to the detection ratio, and
the Violins to the detection delay. Also in this case
results are very good, and even if these misbehaviors
do not interfere with platoon cooperation, it is im-
portant that they are swiftly detected, for instance
for reporting to an Authority for further actions.

9. Discussion and Conclusions

This work presents a substantial extension of the
misbehavior detection framework for vehicular net-
works previously introduced in [5]. The advance-
ment goes beyond a refinement of the Al model,
introducing a novel hybrid approach that combines
machine learning with rule-based physical validation.
Alongside the neural detector, we have introduced a
Rule-based component capable of assessing the phys-
ical and kinematic consistency of received messages
using deterministic models. These two complemen-
tary perspectives —statistical inference on one side,
and semantic plausibility on the other— are inte-
grated through a confidence score fusion mechanism
that balances their respective contributions in a
principled way.

Beyond conceptual integration, the work also
brings significant architectural improvements. The
original neural network has been redesigned to sig-
nificantly reduce its complexity (from over 300k
to approximately 39k parameters), while preserv-
ing classification accuracy. This makes the sys-
tem more efficient and well-suited for real-time ex-
ecution on in-vehicle hardware. The message pre-
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processing pipeline has also been revised, shifting
from a jumping window strategy to a sliding win-
dow approach, enabling faster and more continuous
decision-making, essential for time-sensitive Coop-
erative Driving applications. In experimental eval-
uations, the system demonstrated not only strong
offline performance on the VeReMi dataset, but also
high effectiveness in real-time simulated scenarios,
reducing the average reaction time from 0.5s to
approximately 0.1s.

These results confirm that a hybrid approach can
overcome the limitations of individual techniques,
achieving a favorable balance between accuracy, re-
sponsiveness, and robustness. Nevertheless, several
challenges remain to be addressed in order to en-
able industrial-grade deployment. While synthetic
datasets such as VeReMi remain essential tools for
initial training and evaluation, they must be en-
riched to include additional metrics related to the
physical communication layer —such as received and
transmission power— which are currently missing
but crucial for accurately tuning rule-based modules
and enhancing the inputs of Al-based ones.

Looking forward, the most pressing challenge is
the realistic calibration of synthetic datasets, which
can only be achieved by incorporating real-world
data. In this regard, collaboration with vehicle
manufacturers will be key. It is desirable that, in
accordance with ETSI standards governing CAM
generation frequency, automotive OEMSs provide ac-
cess to real message traces. Such data would enable
more accurate tuning and validation of detection
models, bridging the gap between simulation and
real-world deployment. Only through this step can
experimental solutions evolve into reliable systems
ready for large-scale adoption in future autonomous
and cooperative driving scenarios.
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