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Abstract

Passive device-free localization of a person exploiting the Channel State Information (CSI) from Wi-Fi signals is quickly becoming
a reality. While this capability would enable new applications and services, it also raises concerns about citizens’ privacy. In this
work, we propose a carefully-crafted obfuscating technique against one of such CSI-based localization methods. In particular, we
modify the transmitted I/Q samples by leveraging an irreversible randomized sequence. I/Q symbol manipulation at the transmit-
ter distorts the location-specific information in the CSI while preserving communication, so that an attacker can no longer derive
information on user’s location. We test this technique against a Neural Network (NN)-based localization system and show that the
randomization of the CSI makes undesired localization practically unfeasible. Both the localization system and the CSI random-
ization are implemented on real devices. The experimental results obtained in our laboratory show that the considered localization
method works smoothly regardless of the environment, and that adding random information to the CSI prevents the localization,
thus providing the community with a system that preserve location privacy and communication performance at the same time.

Keywords: localization, privacy, channel state information, neural networks, Wi-Fi, randomization, experiments and measures

1. Introduction

The theme of precise localization of devices or people has
long been of great interest from both a research and an indus-
trial perspective, particularly indoor positioning, as GPS-based
systems cannot work. One specific field of indoor positioning
is the localization of “bodies”—human beings, but also other
physical objects in the ambient—without these bodies being
fitted with an active or passive communication device. Clearly,
camera-based localization or anti-intrusion systems (e.g., radar-
or lidar-based) are part of this latter field, but they are outside
the scope of this work. We focus instead on systems based on
Wi-Fi, as wireless communications signals are less detectable
by users. In addition, such systems can take advantage of the
widely deployed Wi-Fi infrastructure, thus paving the road to
widespread surveillance systems, including illegal ones, as the
presence of a standard Wi-Fi system is today almost ubiquitous.

In this respect, localization based on Channel State Informa-
tion (CSI), whose variations can be correlated to changes in the
physical environment, is extremely interesting [1, 2]. The au-
thors in [3] pioneered this field by proposing to use advanced
MIMO technologies combined with signal processing typical

?The initial results of this paper was partially presented at the 14th ACM
Workshop on Wireless Network Testbeds, Experimental evaluation & Charac-
terization [5].
∗Corresponding author: Renato Lo Cigno, Dept. of Information Engineer-

ing, University of Brescia, Via Branze 38, 25123, Brescia, Italy. email: re-
nato.locigno@unibs.it

of radar systems with just three antennas and a Software De-
fined Radio (SDR) module to reveal the position, and even ges-
tures, of a person behind a wall. Clearly such a system poses
huge privacy concerns, as the localization can be obtained with
proper devices even outside the room or building the person is
in: A person moving within the room changes the signal propa-
gation in the environment, which is in turn reflected in the CSI.
This exposes the person to the risk of being tracked without
having the possibility to avoid it, or even be aware of it. A
possible countermeasure against Wi-Fi sensing attacks has been
implemented in [4] to prevent gesture recognition; however, the
proposed system relies on an additional component acting as a
relay that must be placed in the environment. Moreover, ob-
fuscation performance strongly depends on the position of such
device. If no countermeasures are available, the only solution
to stop such attacks consists in jamming or disabling all Wi-Fi
communication in the vicinity, which is not desirable.

Thus, we asked ourselves a clear question: is it possible to
explicitly alter the CSI to preserve privacy without hampering
communications? This paper gives an initial and positive an-
swer to this question. The key contribution of this work are the
following: i) a multi-site measurement-based study that con-
firms the feasibility of passive localization of people based on
CSI analysis beyond any reasonable doubt; and ii) introducing
a CSI randomization technique that prevent unauthorized local-
ization while maintaining good communication performance.
A closely related work [6] was also published recently, which
manipulates the CSI with the goal of avoiding radiometric fin-
gerprinting of Wi-Fi chipsets and helping in the prevention of
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impersonation attacks. This latter work starts from the obser-
vation that hardware imperfections in devices lead to unique
non-linear phase errors that can be used as a device fingerprint,
and operate on the phase of signals to prevent fingerprinting.

In this article, we analyze the entire CSI characteristics find-
ing the peak amplitude to be the characteristic carrying most in-
formation on location, and thus works on these amplitude peaks
to obfuscate localization.

2. CSI-based Localization

Localization using Wi-Fi signals has a long literature story,
starting from Received Signal Strength Indicator (RSSI) finger-
printing techniques, to mixed and fusion methods, and we re-
fer the interested reader to a recent survey [7] for an overview.
We are interested in techniques based on the analysis of CSI
that, starting a decade ago, have emerged as the most powerful
technique for Wi-Fi-based indoor localization [8, 9]. In par-
ticular we concentrate on methodologies based on Neural Net-
work (NN) and Machine Learning (ML)/Deep Learning (DL)
in general [1, 2, 10, 11, 12].

We exploit the CSI collector and extraction technique pre-
sented in [13, 14], which work on many different devices, like
the Asus 4x4 Access Points. Once extracted, the CSI is fed to
a NN-based system as described in detail [15] and summarized
briefly in Section 2.2. Section 2.1 discusses the essentials of
OFDM that are needed to understand both the NN design and
the randomization technique discussed in Section 3.

2.1. OFDM Transmissions

Without any limitation of the proposed methodology, we fo-
cus the description on a 80 MHz OFDM transmission with a
single spatial stream, i.e., transmitted by a single antenna. This
type of modulation is described in the Very-High-Throughput
(VHT) part of the standard; the corresponding physical level
is called VHT-PHY: while being an extension of the legacy
20 MHz physical level, called OFDM-PHY, it adds many fea-
tures including both Single-User (SU) and Multi-User (MU)
MIMO capabilities, enhanced modulation rates and up to 8 spa-
tial streams. We report here only the details useful to under-
stand the randomization procedure presented in Section 3 and
the rationale of the NN design, and we refer the interested read-
ers to the standard [16] and classic literature as [17].
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Figure 1: Format of an OFDM frame: initial symbols are known and some are
used to infer the CSI at the receiver; the orange block is where randomization
is introduced in Section 3.

OFDM divides the transmitted data over 256 equally spaced
subchannels and keeps carriers orthogonal by construction: it
builds the signal in the frequency domain mapping data to each
carrier with the appropriate modulation, and then generates an
OFDM symbol with the corresponding time-domain I/Q sam-
ples S n with an Inverse Discrete Fourier Transform (IDFT),
as shown in Fig. 1. This operation is repeated until the en-
tire frame is transmitted: in the figure this corresponds to the
IDFT block that takes as input each symbol (the light blue rect-
angle) as it move left to right, producing a train of OFDM
symbols s(t) after multiplication by the carrier that defines the
Wi-Fi channel. To help the receiver to decode the signal, the
first symbols carry constant (known) content and information
about the encoding process. Figure 1 reports these symbols,
showing also the first three legacy symbols (L-) that can be
decoded by OFDM-PHY receivers located in the correspond-
ing 20 MHz channels that build up the 80 MHz VHT channel.
They are used for setting Automatic Gain Control (AGC) and
estimating time and frequency offsets (Legacy Short Training
Field, L-STF); for fine frequency tuning and for collecting CSI
measures of the corresponding 20 MHz channel (Legacy Long
Training Field, L-LTF); and for understanding the duration of
the remaining part of the frame (Legacy Signal, L-SIG), so that
legacy receivers can set the channel as busy until then. After
the L- symbols there are the VHT headers: the VHT Signal
A (VHT-SIG-A) carries information required to interpret VHT
data (it is still transmitted as 20 MHz symbols); the VHT-STF
is used to improve AGC estimation; the VHT-LTF is used to
collect the 80 MHz CSI data; and the VHT-SIG-B is only used
for MU-MIMO transmission, but it is always present. After the
preambles DATA symbols are transmitted. The orange block
is where we apply the randomization to protect users’ privacy,
and clearly in standard devices this block is not present.

At the receiver, operations are executed in the opposite order:
I/Q samples are collected from the incoming signal and trans-
posed in the frequency domain with a Discrete Fourier Trans-
form (DFT). Information extracted from header symbols are
used to recover the clock, reduce the carrier frequency offset
(L-STF, L-LTF), and equalize the DATA symbols before decod-
ing their content (L-LTF and VHT-LTF with the help of the ex-
tracted CSI). CSI estimation is fundamental to enable the high
throughput of modern Wi-Fi allowing fast and precise equaliza-
tion, but it can also be used to infer what happened to the signal
during the propagation: i.e., it is possible to identify a precise
condition of the environment, and based on this, for instance,
to derive the position of a person in a room with a classification
technique.

2.2. A NN-based Solution
Among the different classes of neural networks, Convolu-

tional Neural Networks (CNNs) have been widely used in many
applications thanks to their superior performance when dealing
with pattern recognition tasks. Authors of [18] suggested that
also a passive (device-free) localization system can benefit from
the use of a CNN to learn the nonlinear relationship between
the target’s locations and the CSI fingerprints; to this end, they
proposed a CNN-based localization system named PILC which
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outperforms other fingerprinting techniques. In this subsection
we briefly present the main features of a localization system
that was inspired by the work in [18]; further details about the
design and the implementation of such system are found in [15].

Our localization system extracts features (I/Q or Amplitude
and Phase) of the CSI and feeds them to a CNN that has been
previously trained with labeled data. In general, this approach
is characterized by two distinct phases: i) an offline stage (train-
ing) in which so-called fingerprints (data associated with spe-
cific locations) are collected and stored in a database, and ii)
an online stage (operation) when the CSI samples (amplitude
and phase or I/Q) are fed to the NN that returns the estimated
location.

Before feeding the CSI measurements into the neural net-
work, different pre-processing steps are necessary in order to
extract meaningful features from the raw data. PILC develop-
ers used CSI Tool to extract raw CSI data from devices equipped
with the Intel 5300 NIC. This tool allows for the extraction of
only 30 OFDM subcarrier groups on 20 MHz Wi-Fi channels
(about one value for every couple of subcarriers). In our work
instead, we retrieve the CSI data from the device chipset using
the Nexmon CSI tool [14], which gives access to all 256 OFDM
subcarriers of 80 MHz Wi-Fi channels. The most important
operations performed by our system are the following.

Selection of Subcarriers: Not all subcarriers are used for
localization. As we are focusing on VHT-PHY transmissions,
we discard all pilot subcarriers as they are used by the chipset
for producing the CSI itself: should we receive a multi-stream
transmission, the amplitude of the pilots would be random (as
reported in [14]) so we decided to discard them. We also re-
move subcarriers that are not used for transmission according
to the 802.11ac standard.

Normalization: Using both the amplitude and the phase in-
formation, there are several issues pointed out in [10]. The
lack of synchronization regarding the central frequency leads
to a Carrier-Frequency Offset (CFO), while the mismatch in the
time-domain introduces a Sampling-Frequency Offset (SFO)
generated by the Analog-to-Digital Converter (ADC). All these
errors are caused by imperfections of the hardware. After ap-
plying further processing steps as detailed in [15], the network
can be trained with the CSI measurements.
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Figure 2: Architecture of the chosen NN

The network design, visualized in Fig. 2, is the following.
First, we use two convolutional layers to extract meaningful
features from the CSI data; the two layers build more com-
plex descriptors that are essential for the localization process.

Moreover, we exploit the spatial closeness of adjacent frequen-
cies, as a convolutional layer considers multiple values at the
same time. In cascade to the convolutional layers there are
three fully-connected layers that combine the extracted features
to obtain an estimate for the position of the target. In this work
the output layer can take two different forms, depending on the
localization task of interest: in one case, we consider the tradi-
tional approach in which the number of output neurons matches
the number of target positions (each neuron outputs a likelihood
for the corresponding position); on the other hand, we verify
that with a sufficiently dense and regular grid, the output layer
can consist on only two neurons whose output can be directly
associated to Cartesian coordinates x-y. The output layer type
must be selected a priori, which means that we are actually con-
sidering two different network architectures; therefore, the of-
fline (or training) phase has to be performed separately for the
two cases. When presenting our results, we will state clearly
which of the two output layers we use in each experiment.

The number of layers, as well as the hidden neurons for each
layer, were originally obtained heuristically with experiments
starting with only one layer and increasing the number of lay-
ers as well as the number of hidden neurons until the network
was able to describe the relationship between the CSI and the
corresponding position of the user. The loss function uses the
Euclidean distance to rate the performance of the network, as it
provides an intuitive understanding of the error. We choose the
common Rectified Linear Unit (ReLU) as activation function
and the Adaptive Momentum Estimation (ADAM) [19] algo-
rithm to adjust the weights based on the corresponding labels.
When dealing with the classification task, the output layer is
using the softmax activation function.

2.3. Location Learning Insight
The hardware used, the number of antennas at the transmitter

and receiver and many other details may influence the precision
of the localization; however, in this paper we want to focus on
the elementary reasons that allow the localization and the min-
imal countermeasures that prevent localization. For this reason
we limit the discussion to the use of one single TX-RX chain.

Figure 3 reports the amplitude and phase of the OFDM signal
collected on 70 packets at the receiver with a person in two
different locations. The details of the experiments are described
in Section 5; what is important for our discussion is that the NN
is fed exactly with these quantities, so that whatever the NN
learns it must be present here. It is clear that the characteristics
are remarkably constant across different packets for the same
position, so that learning is feasible. Interesting features that are
visible are the peaks and notches in the amplitude, and the phase
jumps; however, the notch around carrier 0 and the phase jumps
seem to be independent from the position of the person (result
confirmed at nearly all positions), making them ineffective for
location estimation. The other peaks and notches, instead, have
positions in the spectrum that clearly depend on the person’s
location, which is probably what the NN learns.

The NN ability to learn the position of a person from CSI
information can be disrupted “manipulating” the CSI, so that
it does not reflect exactly the electromagnetic fingerprint of the
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Figure 3: Plots of the amplitude (upper row, Broadcom 4365 802.11ac chipset
units) and phase (lower row, radians) versus the carrier number with the person
in two different training spots ξ (see Section 5).

environment (thus revealing the position of the person in a de-
terministic way), but it also contains “deceit features” that con-
fuse the learning and decision process of the NN and we con-
jecture also any other CSI-based positioning system. The next
section is dedicated to discuss how we achieve this goal; we
point out straight away, that when the randomization is active,
the NN is trained anew, thus ensuring that the obfuscation is
really due to CSI manipulation, and not to a bad experiment
where the NN is trained without randomization, while testing is
done with the randomization active.

3. CSI Randomization

To achieve location privacy, i.e., prevent a localization sys-
tem to identify the position of a person, we can apply a time
varying random distortion to the transmitted preambles in such
a way that a receiver can still equalize the channel—i.e., not
interrupting the communication—while any localization effort
based on CSI characteristics (as discussed in Section 2) is in-
validated.

With reference to Fig. 1, we decided to apply the appro-
priate distortion at the output of the IDFT block, right before
the DAC and the front end, in the orange block that injects a
“randomizer” modifier in the figure. This position may be sub-
optimal w.r.t. other positions earlier in the transmission chain,
but it makes the technique easily understandable and it can also
be implemented outside chipsets, allowing the realization of
specialized, privacy-preserving devices without the need to de-
velop a new chipset from scratch. The introduction of loca-
tion privacy protection in commercial devices can be done at
different levels, from a pure software implementation as hinted
above, to full integration at the physical layer, definitely a faster
and more performing implementation. It can also be envis-
aged to develop a sublayer of the standard protocols empow-
ering many functions, including a negotiation between trans-

mitter and receiver, that would thus be facilitated in the frame
decoding.

With “randomization” in our context we refer to a manipula-
tion of the transmitted signal so that additional peaks, notches
or phase jumps appear randomly in the CSI. The disturbance
must obviously change over time, but preliminary evaluations
show that the manipulation should neither change too quickly,
e.g., appearing “white”, as generated by a memoryless random
process nor too slowly, e.g., like a constant distortion superim-
posed to the CSI. In fact, in both cases the NN would be able to
easily filter out artifacts and identify again location-dependent
features. While some theoretical work is required to devise
randomization techniques whose effect cannot be learned at all
by the NN, our goal for now is to propose a proof-of-concept
for which also simple techniques introducing changes in the
CSI periodically (with a fixed, empirically-defined period) can
effectively work against the proposed localization framework.
Furthermore, the disturbance must not be too distorting to avoid
hampering the communication performance. The actual manip-
ulation is different depending on the disturbance that we intro-
duce as shown in Fig. 4, where SIN(·) is the signal at the output
of the Inverse Fast Fourier Transform (IFFT), and mask(·) iden-
tify the type of distortion.
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Figure 4: The tree different manipulations we experiment to randomize the po-
sition: a) adding random peaks in the channel response; b) introducing random
notches; c) introducing random phase jumps.

We apply the disturbance by filtering the sequence of I/Q
samples in the frequency domain. Since in this case the modu-
lation format is fixed to VHT-PHY at 80 MHz with Long Guard
Interval we can easily extract the samples forming each OFDM
symbol and, knowing the structure of each symbol, we can:
i) invert the encoding process, going back to the coefficients
assigned to each of the 256 subcarriers; ii) multiply them by
values of the filter corresponding to their frequency; and iii)
recreate the “tampered” OFDM symbols.

We tested several different types of filters to explore the effect
on localization given by basic filtering functions: introducing
peaks, notches of phase jumps, where the number and positions
of the peaks, notches and phase jumps are random functions.
With reference to Fig. 4, we tested the randomization technique
applying a random number of: a) peaks (between 5 and 10),
each of uniform random width between 2 and 6 frequency sam-
ples; b) notches: similar to the previous case, but nulling instead
of amplifying the selected points; c) phase jumps: all points
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after randomly selected positions accumulate a phase delay of
π/2, with the number of positions selected randomly from 2 to
6. The number of phase jumps and peaks/notches is selected
empirically to maintain the packet delivery ratio at acceptable
levels; the theoretical analysis of the optimal randomized filter-
ing is left for future investigation.

From a preliminary performance analysis it turned out that
the effect of notches and phase jumps on the randomization
of the estimated position is negligible, while interesting results
were obtained for the filter with random peaks. Localization
results for one sample point under different types of random-
ization are shown in Fig. 5. It is clear from this example that
even if the localization precision is affected by applying ran-
dom phase shifts to the CSI (Fig. 5b), an attacker can still make
a sensible guess about the user’s location. Only the introduc-
tion of randomly-placed peaks in the CSI (Fig. 5d) effectively
degraded localization performance; therefore, we will use only
this filter in the remaining of the paper.

Figure 5: Localization results for one target point (black circle) under different
conditions: a) without CSI modification; b) with selective phase shifting; c)
with randomly-placed notch filters; d) with randomly-placed spikes.

4. Location Privacy Violation

Tracking a person without her/his consent is illegal in many
countries, and the location and whereabouts of a person may
reveal a lot on her/his behavior and also on her/his activities.
Even if localization is not extremely precise, as we discuss in
the following, the position estimation may be used to control
people at work, home, school. We first present the model of
the attacker we consider in this paper and then three possible
metrics that give different insights on the information disclosed
by the position estimation.

4.1. Attacker Model

As depicted in Fig. 6 (a), an attacker wants to infer the lo-
cation of a person in a room, e.g., an employee being kept un-
der surveillance in a laboratory. We assume the presence of

a common Wi-Fi AP providing Internet access in the labora-
tory. The attacker (e.g., the employer) has positioned a hidden
Wi-Fi receiver—in our case a second AP, but in general any de-
vice capable of extracting CSI—in the laboratory and uses the
NN-based localization system described before. In our specific
setup, visualized in Fig. 6 (b), the receiver RX and the transmit-
ter TX are on the opposite side of the room.

(a) Scenario (b) Schematic setup

Figure 6: The location attack scenario (a) mapped to our laboratory setup (b).

We make only the following assumptions regarding the at-
tacker model: first, the attacker is able to train the localization
system, which only requires collecting some measurements of
reference positions; second, the attacker can only access the re-
ceiver and retrieve CSI from it. For instance, this attack can be
easily replicated in hotels and multi-room environments as well
as in private homes.

4.2. Obfuscation Metrics
Measuring the performance of an obfuscation method, spe-

cially when its goal is protecting human privacy, can be com-
plex. Indeed, a method may confuse the localization tech-
nique, diluting the precision, yet the attacker might still retrieve
enough information to reveal important details on the person
location, for instance if she/he is on one side or the other of
the room. To gain the best possible insight in the performance
of both the localization technique described in Section 2 and
the obfuscation method introduced in Section 3, we use three
different metrics, which are suited in different context and situ-
ations.

The first metric we consider is the classification accuracy:

Ac =
Nc

Nl
(1)

where Nc is the number of samples correctly classified, and Nl

the total number of samples taken. The overall accuracy is usu-
ally accompanied by other metrics, which help interpreting the
results, such as the per-class accuracy, precision, and recall.
When convenient, confusion matrices, i.e., how samples are as-
signed to classes, are very useful to present the results because
they summarize all the accuracy metrics in a natural way. How-
ever, in the specific case of localization, this approach has some
limitations. First, when the number of classes (target locations
in our case) is large, confusion matrices become very large and
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difficult to read and understand. Moreover, they blur the sense
of spatial proximity between different target points: not all lo-
calization errors are equally bad, since guessing a position ad-
jacent to the correct one is not as wrong as guessing a position
at the opposite side of the room. In Section 5.3 we introduce
a concept of spatial proximity that holds for the particular case
considered and helps the interpretation of the results.

The second metric is a Euclidean distance measure to ver-
ify and validate the methodologies under analysis. The classi-
cal mean square error of the distance is not appropriate for our
goals. Recall that the NN can be trained as a classifier, but it can
also be configured to output a position in a Cartesian space if
it is trained on a regular grid with dense enough training spots
ξ. However, the NN outputs a (x, y) position in a plane (2D),
while a human body occupies a fairly vast space in 3D, so that
it is indeed not possible to define the distance between the body
and the (x, y) estimate. Call ρ a radius around the point esti-
mate (x, y) of the NN, so that the circle of radius ρ and center
(x, y) can be considered the estimated projection of the human
body on the 2D plane. ρ is a parameter that indicate how accu-
rate the location estimation is desired; if not otherwise stated,
in this paper we can consider ρ = 0.25 m, which correspond to
a high accuracy, since the projection of a human body is hardly
smaller than a circle with such a radius. ρ = 1.0 m corresponds
instead to a fairly loose requirement in localization precision.

Given the coordinates (x, y) of the estimate e as computed by
the NN, and the coordinates (xc, yc) of the actual position pc

where the person stands, we construct a localization reliability
LR index as follows

LR =
1
Nl

Nl∑
i=1

Id(i) ; Id(i) =


1 if di < ρ
0.5 if ρ ≤ di < 2ρ
0.25 if 2ρ ≤ di < 3ρ
0 otherwise

(2)

where di =
√

(x − xc)2 + (y − yc)2 is the Euclidean distance be-
tween the position estimate ei and the coordinates of the po-
sition where the person is when the i-th sample is taken. Esti-
mates must be taken when the person is standing still or moving
slowly, so that enough estimates can be collected assuming the
person rest in the same position pc.

Clearly LR ∈ [0, 1] and converges to one when all position
estimates (one every received packet) are within ρ from the
true position and converges to zero when all estimates are three
times ρ from the true position. Averaging position estimates
would not help an attacker for two reasons. First, the target can
move, thus averaging estimated positions would simply result
in estimating a sort of baricenter of the movements, and this
also without the obfuscation. Second, while the obfuscator is
on, ideally each position estimate is a random point in the room
(tough with some memory to avoid filtering out the randomiza-
tion), so that the result of averaging over many frames would
always return as most likely position the center of the room,
which is useless for the attacker.

Fig. 7 describes the metric, the reasoning is that an attacker
is interested to understand where a person is with some level
of accuracy described by ρ. Once the position is known almost

Figure 7: Examples of the LR metric: for estimate e1 → LR = 1, for e2 →

LR = 0.5 and for e3 → LR = 0, thus if the position is estimated from these tree
samples LR = 1.5

3 = 0.5.

surely (all samples lie within this accuracy), then the attacker
is satisfied and LR = 1; while if the estimated position is not
only always outside the circle with radius ρ, but it lies so far
away that the two circles of radius ρ centered in the estimate
e = (x, y) and in the true position pc = (xc, yc) are separated by
ρ, then the estimate is useless, hence LR = 0. The other two
cases lie in between.

Indeed, also the true position of a person cannot be measured
with absolute precision, but this issue is outside the scope of this
paper, and we assume that when a person stand on (covers with
his feet) a specific location (xc, yc), that is his exact position.

As a useful comparison to understand the reliability of local-
ization we can use the metric in Eq. (2) assuming the location
is simply a random point in the portion of the room where a
person can reasonably stay, i.e., the room area minus the area
where tables and furniture are. If we call this useful area in the
room Au, then the LR for a random guess is

Lrand
R = min

(
1,

15πρ2

4Au

)
(3)

as a function of ρ, neglecting the border effect1.
Finally, the third metric is focused on a privacy breaching

scenario in which the attacker is not interested in determining
the exact position of the victim, but rather in which area of the
room it is located. This metric measures the capability of the
system to localize a person with high reliability, but with re-
laxed precision. The subject of interest does not stand in a spe-
cific location, but stays, possibly moving slowly, in one of the
four quarters (NW, North-East (NE), SE, South-West (SW)) of
the lab. Equation (4) defines the accuracy as a-posteriori prob-
ability, where Pl is the empirical probability that the attacker
successfully infer the position of the person in the lab quarter
where he actually is, Nl is the number of position estimations
collected, including those that infer the position in the shaded

1The border effect, i.e., areas with a positive weight in Eq. (2) that are out-
side Au, is marginal for small ρ and underestimate the location reliability as
ρ increases, because it counts as a valid position also portions of the lab that
are outside Au, thus Lrand

R is an actual lower bound for the location reliability,
giving a good reference for the location reliability reduction provided by the
randomization techniques we propose.
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area in Fig. 8 that are considered “wrong” (Il(i) = 0), and Il(i)
is an indication function that tells if the i-th location estimation
is correct (Il(i) = 1) or not (Il(i) = 0).

Pl =
1
Nl

Nl∑
i=1

Il(i) (4)

It is immediate to notice that if the location samples i are taken
at fixed intervals, i.e., sending packets at constant intervals, and
Pl is close to one, then the time spent by the person in the dif-
ferent lab corners is revealed to the attacker.

5. Setup and Results in Brescia

The initial experimentation is carried out in a Laboratory
of the ANS2 group at the University of Brescia. We describe
the main characteristic of the testbed and some implementation
details respectively in Section 5.1 and Section 5.2. Next, we
present the results obtained using the CSI randomization tech-
nique against the NN localization described in Section 2.2: in
Section 5.3 the NN has been trained to choose among a fixed
set of target locations (classification task); the corresponding
results obtained when the NN is trained to produce x-y esti-
mates of the target position are presented in Section 5.4. Fi-
nally, a brief discussion about the impact of our system on the
performance of Wi-Fi connections is carried out in Section 5.5.

5.1. Testbed Setup
Figure 8 reports a plan of the Laboratory with the position of

the Tx and Rx devices and the places where a person stood to
train the NN. The goal of the experiment is twofold: i) to val-
idate the results presented in [15] to guarantee that they can be
reproduced with an independent implementation; ii) to measure
the actual capacity of the randomization technique presented in
Section 3 to obfuscate the actual position of a person.

The Euclidean coordinate system origin is set on the SW cor-
ner of the grid as shown by the thin green axes; to make expla-
nations easy we assume the lab is oriented with the north to the
top. The training spots ξx,y are numbered starting from the axis
origin, so that ξ0,0 is in the origin and ξ8,6 is the one in the NE
corner.

Besides classification and Euclidean distance, we also con-
sider the scenario where the goal of the attacker is to identify
which working areas (e.g., desk, workbench) are used by the
staff at the laboratory, for instance to determine the fraction of
the work time dedicated to different tasks, an act contrary to la-
bor legislation in many countries. To this end, the map in Fig. 8
is divided into four sectors: NW, NE, SE, SW, as shown with
the red thick lines, while Fig. 9 presents the actual setup of the
laboratory. The shaded square of 2 m edge at the center of the
room is not considered for the localization purposes, as it is an
area where a person would not normally stay, but simply transit
moving between the quadrants of the lab. As a side note, con-
sider how simple it is to setup such an attack: the presence of

2The Advanced Networking Systems group https://ans.unibs.it/ is
one of the research groups in telecommunications at the University of Brescia
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x0,0 x8,0
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Figure 8: Layout of the experimental setup at the University of Brescia, the
square dots on the floor are the training spots (ξ) for the neural network; the
space is divided into four quadrants SW–NE for the sake of clarity.

an AP in a laboratory is very likely, a small sniffing device can
be hidden easily, the training can be done when nobody else is
present; given all this, then the attacker can very easily tell how
much time the person spends in which part of the lab.

5.2. Implementation Details
The localization system is implemented on Commercial Off-

The-Shelf (COTS) devices: in particular, we use the ASUS RT-
AC86U router. For the transmitter side, instead, we use an Et-
tus N300 SDR radio and we use the MATLAB Wi-Fi toolbox
to generate the frame and apply the randomization procedure.
Note that no modification is required at the receiver.

At the transmitter, an infinite MATLAB loop generates a Wi-
Fi frame at each iteration with random payload, and randomizes
the corresponding raw signal as explained in Section 3. To this
end, the software converts the packet into a vector containing
I/Q samples according to the VHT-PHY modulation with one
spatial stream and 80 MHz bandwidth. Then, it parses the vec-
tor and separates the VHT-PHY symbols. For each of them the
software applies a specific procedure to isolate 256 I/Q samples
from the symbol and apply the DFT to get the OFDM coeffi-
cients assigned to each carrier. Once in the frequency domain,
the software multiplies each coefficient of the OFDM spectrum
by the value of the randomization filter at the same frequency.
Finally, it generates a new sequence of 256 I/Q samples by in-
verting the OFDM spectrum applying a IDFT: it also recovers
the structure of the symbol by either adding the GI or by com-
pleting the missing part taking into account the periodicity.

At receivers we replace the firmware that controls the Wi-
Fi card with the nexmon-csi [20]. With this software we have
access to all the 256 subcarriers of each TX-RX stream when
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Figure 9: Photo of the laboratory described in Fig. 8, the pole in the middle
with electrical outlets clearly creates a complex electromagnetic environment;
the transmitter is labeled with ‘Tx’ on the west side while the receiver used in
the one in the middle on the east side of the lab. Some of the ξ spots are visible
on the floor (white dots) with the coordinate origin one marked ‘SW’.

using channels with 80 MHz bandwidth. The received packets
are saved to a capture file together with the corresponding CSI
data that are conveyed to user-space as UDP datagrams. In post-
processing we extract CSI data from such packets and we feed
the NN.

5.3. Localization Results with Position Fingerprints

As we described in Section 4.2, measuring the overall ac-
curacy of a classification algorithms in localization tasks has
many shortcomings. In Fig. 10 we define a concept of spatial
proximity in terms of “near” locations that can be used to fur-
ther distinguish the severity of classification errors when trying
to localize the victim. Border points can have less than four
neighboring locations. For example, according to the definition
in Fig. 10, a point on the border of the grid has only two neigh-
bors, and the four vertices of the measurement grid (ξ0,0, ξ0,6,
ξ8,6 and ξ8,0) have only one neighbor.

Localization results with and without the application of our
CSI randomization technique are summarized in Table 1. The
average accuracy over the 32 target positions of the chosen lo-
calization system is 78%. When our randomization technique
is applied, the accuracy drops below 5%, effectively disrupting
CSI-based localization. Results are not uniform across target
positions, but we deem this due to random effects rather than
intrinsic properties of the positions. It is remarkable that ran-
domization makes the localization procedure to classify posi-
tion mostly far from the true one, thus not allowing even ap-
proximated estimates.

5.4. Localization Results with x-y Estimates

The first insight in this case is focused on evaluating the lo-
calization capabilities of an attack using the metric described by
Eq. (2) when the output layer produces an estimate in terms of
a x-y coordinates. Once again we compare the performance ob-
tained with and without the randomization procedure. In both

𝜉x,y

𝜉x+1,y+1

𝜉x+1,y-1

𝜉x-1,y+1

𝜉x-1,y-1

Near locations

x

y

Figure 10: Visualization of the “near” locations for a generic point ξx,y on the
localization grid defined in Fig. 8. All the other points on the grid are considered
“far” from the point ξx,y

Figure 11: Localization performance according to metricLR for ρ ranging from
0 to 1. Solid lines report the average result, while the shaded areas are the
envelope of all measures including using different antennas and positions of
the receiver. The dashed line represents the theoretical result for uniformly
distributed random guesses.

cases, we train the NN with 700 packets for each one of the
32 positions highlighted in Fig. 8 and we test the localization
on a different set of measures consisting of 150 packets per po-
sition collected at a different time. We capture CSI data from
each of the four antennas available at the three receivers in the
lab (visible in the picture of Fig. 9) for a total of 12 CSI feeds.
Interestingly, results for the three receivers are similar and it
also turns out that training the NN with data from one single
antenna or any combination of the four antennas for each of the
three receivers does not have any significant impact on the re-
sults. Figure 11 reports the average results obtained considering
the metric LR. The solid line is the average for the 32 positions
computed by considering all the CSI (average over 12 anten-
nas). We also show the shaded regions between the worst and
best performing antenna, obtained again by averaging over the
32 positions. The localization reliability increases with ρ, but
the most interesting cases for in-room localization are the ones
with small ρ, i.e., values between 0.3 and 0.6. In particular, for
ρ = 0.3, the average LR score is above 0.5 for the localization
system, but drops below 0.05 when CSI randomization is ac-
tive. The benefit of using our randomization system is evident
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Table 1: Classification accuracy over the 32 target positions, with and without applying our CSI randomization technique. Classification errors for each position are
divided between “near” locations (as defined in Fig. 10) and “far” locations (all the remaining points).

Without CSI randomization

ξ0,0 ξ2,0 ξ4,0 ξ6,0 ξ8,0 ξ1,1 ξ3,1 ξ5,1 ξ7,1 ξ0,2 ξ2,2 ξ4,2 ξ6,2 ξ8,2 ξ1,3 ξ3,3

Correct 100 92.9 5.7 90.0 0.0 100 97.1 100 98.6 58.6 100 60.0 57.1 95.7 100 75.7
Near 0.0 0.0 1.4 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 42.9 4.3 0.0 0.0
Far 0.0 7.1 92.9 10.0 100 0.0 0.0 0.0 1.4 41.4 0.0 40.0 0.0 0.0 0.0 24.3

ξ5,3 ξ7,3 ξ0,4 ξ2,4 ξ4,4 ξ6,4 ξ8,4 ξ1,5 ξ3,5 ξ5,5 ξ7,5 ξ0,6 ξ2,6 ξ4,6 ξ6,6 ξ8,6

Correct 92.9 100 22.8 94.3 100 100 25.7 100 100 51.4 55.7 70.0 88.6 100 98.6 78.6
Near 1.4 0.0 52.9 1.4 0.0 0.0 2.9 0.0 0.0 7.1 0.0 0.0 11.4 0.0 0.0 0.0
Far 5.7 0.0 24.3 4.2 0.0 0.0 71.4 0.0 0.0 4.3 44.3 0.0 0.0 0.0 1.4 21.4

With CSI randomization

ξ0,0 ξ2,0 ξ4,0 ξ6,0 ξ8,0 ξ1,1 ξ3,1 ξ5,1 ξ7,1 ξ0,2 ξ2,2 ξ4,2 ξ6,2 ξ8,2 ξ1,3 ξ3,3

Correct 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 40.0 0.0
Near 0.0 0.0 0.0 0.0 0.0 0.0 47.1 77.1 0.0 0.0 0.0 0.0 0.0 85.7 0.0 0.0
Far 100 100 0.0 100 100 100 52.9 22.9 100 87.1 100 8.6 100 14.3 60.0 100

ξ5,3 ξ7,3 ξ0,4 ξ2,4 ξ4,4 ξ6,4 ξ8,4 ξ1,5 ξ3,5 ξ5,5 ξ7,5 ξ0,6 ξ2,6 ξ4,6 ξ6,6 ξ8,6

Correct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Near 22.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.6 0.0 0.0
Far 77.1 100 100 100 100 100 100 100 100 100 100 100 100 51.4 100 100

from the fact that the curves obtained using randomized CSI
are much closer to the black dashed line corresponding to the
calculus for uniformly distributed random guesses.

With respect to the last metric defined in Section 4.2, which
represents the probability of an attacker locating the victim at
least in the correct area of the lab, we subdivided the lab into
four quadrants and we measured the performance of our system
by comparing the value of Pl when the randomization is active
or not and when the user is moving outside the shaded area in
Fig. 8. Without CSI randomization, the NN predicts positions
that fall in the correct quadrant with probability 0.66. Despite
the result appearing quite low, from Fig. 12 we can clearly iden-
tify clusters of points in the correct quadrant that would help
the attacker making a more sensible guess. However, we can
see from the same figure that this analysis is not useful when
randomization is active: in this case, in fact, the probability that
the estimated position falls in the right quarter of the lab drops
to 0.30, just slightly above the random guess of 0.25.

To better assess the performance of the system with and with-
out randomization, we ran a second experiment where we col-
lected CSI data when the user was sitting at four different desks
located at each corner of the lab as indicated in Fig. 13. In this
experiment the user can slightly move, i.e., by rotating over the
chair vertical axis, or by moving arms and hands on the desk.
The only constraint is to stay within the circles reported in the
figure. It is clear that while without randomization the NN pre-
dicts the positions with very high accuracy (they almost always
fall within their circle), when randomization is applied the pre-
dicted position is almost always wrong.

5.5. Impact on Performance

So far we have discussed only CSI-based localization and
the possibility of obfuscating the location information with a

Figure 12: Positioning results considering different quarters of the lab. Each
dot represents the position estimated by the attacker for each packet received.
We report the estimates performed with and without CSI randomization using
orange and purple dots respectively.

random manipulation of the OFDM symbols prior to transmis-
sion. In the experiments, we transmitted with the lowest-order
modulation and coding scheme (MCS) (i.e., MCS0), which uses
BPSK. However, it is important to investigate the communi-
cation performance for higher-order MCSs because they are
more susceptible to channel errors. We hence computed the
Packet Delivery Ratio for all VHT-PHY MCS transmitted with
80 MHz bandwidth and a single spatial stream: we report in
Fig. 14 the PDR for the three receivers when randomization is
off (Clean) and on (Phase, Notches, Peaks). For completeness,
we measure the impact of phase- and notch- based manipulation
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Figure 13: Localization results when the user is working at four different desks
placed in the corners of the lab and not moving.

Figure 14: Impact of different CSI randomization techniques on the PDR at the
three receivers (they are visible in Fig. 9, the one used for localization at the
center indicated with the red arrow and the other two on the left and right). The
PDR is plotted as a function of the MCS, which directly relates to the throughput.

even if they have not been used for obfuscation.
It appears from the figure that the three receivers display very

good performance for all MCS without randomization. As eas-
ily predictable, only robust MCSs retain acceptable Packet De-
livery Rate (PDR) when the randomizing filter is applied. In
particular, when the modulation used is sensitive to distortion
(i.e., 64- and 256-QAM modulations) the systematic errors in-
troduced by the filter prevent correct decoding of the frame at
one receiver (Rx3) and stops reception at another one (Rx1).
This further deteriorates when increasing the MCS: MCS8 and
MCS9 cannot be received at almost any position when the dis-
tortion is based on peaks. Instead, when the manipulation is
based on phase of notches, it seems that the performance is
more easily retained. These are however only preliminary re-
sults to show feasibility and not a full analysis of achievable
performance.

Let us analyze the reasons and discuss how this problem
can be addressed, as it is clear that a localization obfuscation

method should not disrupt communication capabilities. Eq. (5)
describes the mathematical model of the signal at the receiver,
where S (F) is the signal spectrum at the output of the IDFT of
the 802.11ac transmitter, M( f ) is the filtering function used for
obfuscation (the ‘mask’ in Fig. 4), and H( f ) is the channel re-
sponse, including attenuation, distortion and multipath fading.

R( f ) = S ( f ) × M( f ) × H( f ) (5)

Equation (5) is an equivalent model of the system we propose,
but it is not how we actually perform the obfuscation, as it is
done in the digital domain rather than in the analog one as de-
scribed by Eq. (5). R( f ) is converted back in the digital domain
and passed through the dynamic equalizer driven by the CSI
information before it is fed to the digital receiver implement-
ing demodulation and error correction. From Eq. (5) it is clear
that to preserve the communication performance M( f ) × H( f )
should maintain the properties of an equivalent, physically re-
alizable and admissible (for 802.11ac) channel response H′( f ).
The theoretical analysis of the properties of a randomizing filter
that preserve this property and also obfuscate location is part of
the future work of our research teams. The manipulation should
be energy-agnostic to avoid changing the transmission power of
the frame, while it should increase the uncertainty of the CSI,
as localization is based on the stability and determinism of the
channel distortion.

6. Setup and Results in Ghent

This part of the measurement campaign was enabled by the
w-iLab.2 testbed hosted by IMEC3 near Ghent, Belgium. In this
testbed, due to the particular configuration of the environment
described in Section 6.1, we have run experiments with the NN
that performs only classification-based localization. Further-
more, it is impossible in this lab to select localization points
with full freedom, thus the selected points must be considered
as a typical real world situation, where a person in a lab can
stand only in positions that are determined by the lab layout
itself. Whether such restrictions can help the attacker to cir-
cumvent our obfuscation method requires further investigation.
The implementation details are briefly presented in Section 6.2.
Despite the great difference with respect to the laboratory in
Brescia, we obtain results confirming the effectiveness of the
obfuscation system also in this case, as described in Section 6.3.

6.1. Testbed Setup
The entire facility measures approximately 55 x 18 m; how-

ever, we use only a portion of the available area to run experi-
ments, as shown in Fig. 15. The testbed has almost no external
radio interference, but represents a very complex environment
from an electromagnetic standpoint: the ventilation pipes and
many metal obstacles offer very little line-of-sight between dif-
ferent locations of the room, while generating at the same time
a lot of multipath components.

3IMEC is a joint research center and our patron in the ORCA project, see
https://doc.ilabt.imec.be/ilabt/wilab/index.html for further de-
tails on the lab.
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Figure 15: Map of the w-iLab.2 testbed. Blue and red squares identify target
and receiver locations respectively; gray squares are obstacles preventing line-
of-sight.

In the testbed we have access to an FPGA running Open-
WiFi [21], a full-stack implementation of the IEEE 802.11 stan-
dard based on SDR. Moreover, the w-iLab.2 testbed is provided
with a dozen mobile nodes (“robots”) that can be driven around
the testbed and programmed to automate complex operations.

In this testbed, we have run localization experiments using
both robot and human targets. Due to travel limitation at the
time of the experiments, the results with a human target are
unfortunately limited.

6.2. Implementation Details

The localization system is implemented on Nexus 6P smart-
phones attached to the robots available in the testbed. The
transmitter is a Xilinx ZC706 board, configured to boot a
GNU/Linux operating system and to run a modified version of
OpenWiFi implementing the IEEE 802.11 protocol stack and
providing support for our CSI randomization operations. This
specific version of OpenWiFi allows the manipulation of the
CSI field of transmitted packets on a per-packet basis, similar to
what was shown in Section 3. The details of the implementation
are a little different in this case, but the result is the same: we
can change the relative amplitude of each transmitted subcar-
rier. To reproduce the same randomization effect given by peak
insertion on a single frame, we can scale to 1/7 of the original
amplitude all the subcarriers except the ones corresponding to
the peaks (the value 1/7 is actually fixed by the specific imple-
mentation and is not our choice). Phase information cannot be

Figure 16: Plots of the amplitude (upper row, Broadcom 4358 chipset units)
and phase (lower row, radians) versus the carrier number with the robot target
in two different spots (see also Fig. 15).

arbitrarily edited in this setup, but we have already motivated in
Section 3 the choice to proceed with CSI amplitude randomiza-
tion only. We create an iperf session between the OpenWiFi
node and another wireless node in the testbed, using a set of
scripts that also take care of changing the CSI profile periodi-
cally. However, OpenWiFi currently supports 20 MHz channels
only, so that we have limited bandwidth in this scenario with re-
spect to the setup we have used in Section 5 and only 64 OFDM
subcarriers.

Figure 16 shows the CSI collected when the target robot is
in two different positions. We notice that despite the two po-
sitions being very far apart (see map in Fig. 15) the small size
of the robot is not enough to cause variations in the CSI that
can be appreciated by the human eye. The presence of two
“groups” of CSI amplitudes profiles is an artifact due to the
specific Automatic Gain Control (AGC) algorithm used at the
receiver, which is designed to scale the amplitude of the re-
ceived signal to match the available range of values and only
has a few quantized amplification factors.

Figure 17 presents the comparison between the CSI collected
when a human target is standing in the same two positions.
While it is possible to better discriminate the two CSI in this
case, the profile of the CSI amplitude is overall very similar.
This suggests that there exist some environments in which this
type of localization technique can encounter problems. In fact,
we have verified that the accuracy of the localization system is
lower than in the other testbed in Brescia, most probably due to
the presence of many reflectors that affects the CSI much more
than a robot or a human body.

6.3. Localization Results with Position Fingerprints

Given the complexity of the environment and the foreseen
impairment of the NN based localization technique, it is inter-
esting to investigate if randomization of the CSI still has the
same impact. The answer is positive and it is summarized in
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Figure 17: Plots of the amplitude (upper row, Broadcom 4358 chipset units) and
phase (lower row, radians) versus the carrier number with the human target in
two different spots (see also Fig. 15).

Table 2: Classification accuracy in the w-iLab.2 for the considered scenarios.

Target, Scenario Rx1 Rx2 Rx3
% % %

Human, clean CSI 69.0 57.7 45.6
Human, randomized CSI 18.9 5.9 9.6

Robot, clean CSI 26.9 34.4 29.3
Robot, randomized CSI 12.3 10.7 8.1

Table 2 that reports the overall classification accuracy as de-
fined in Eq. (1). Independently from the accuracy of the NN
with clean CSI, which is particularly low for robots as they
have a small electromagnetic footprint, when randomization is
applied the localization accuracy falls around the value of a ran-
dom guess (there are 10 possible positions, so 10% is a random
guess), with the exception of Rx1 with the human target where
the accuracy is close to 19%.

Figure 18 reports the confusion matrices obtained at receiver
Rx1 with the human target, with and without applying CSI ran-
domization, and helps getting some insight in how the environ-
ment influences the entire problem. First of all, it is clear that
P1 is so close to a reflecting surface that a target there is irrele-
vant for a CSI point of view for Rx1, to the point that none of
the samples are classified correctly even without the random-
izer. Next, the apparent better performance of the classifier in
this case is indeed biased by positions P4 and P10, that have
a much higher accuracy than average, however, this is hardly
a claim of victory for an attacker, since the improved accuracy
requires that the victim stands in the positions that yield good
results.

Indeed, the analysis of these, and others, confusion matrices,
indicates that the obfuscation technique tends to force the NN to
make wrong decisions, but these are not uniformly spread on all
possible position, rather, they are grouped in specific locations.
We believe that this is due to the time-correlation structure of
the random sequences generated by the obfuscator. Overall the

gain, i.e., the reduction of estimate precision lies between a fac-
tor 2 and a factor 10, with this latter indicating indeed perfect
obfuscation, but specific positions may have different perfor-
mance. The ideal obfuscator should spread all estimates uni-
formly on every possible position, while it is clear that even if
wrong, the estimates cluster in other specific positions (see the
result in Section 5 too), thus suggesting that there may be some
information left that a better localization system may exploit.

7. Discussion and Future Work

New technologies cannot come at the price of reducing peo-
ple’s rights. High performance Wi-Fi communications, which
use advanced signal processing techniques to compensate the
distortions of the electromagnetic environment, enable tracking
the location of people, even if they do not carry any Wi-Fi de-
vice with them.

In this paper we have proposed a novel technique that, intro-
ducing carefully crafted random distortion of the Wi-Fi signal
spectrum at the transmitter, prevents inferring the position of a
person in a room exploiting the CSI at the receiver. We have
shown with a real implementation that the technique is feasible
and works as intended. At the same time it does not destroy
communications as, for instance, jamming would do, and this
is fundamental to have location-obfuscation techniques widely
adopted.

We think that this methodology can be widely adopted, even
finding its way into future standards, so that citizens can use
Wi-Fi without even bothering that their precise location can be
tracked by an adversary. The path to achieve this goal, how-
ever, is still quite long, and it includes having a full, formal
understanding of the signal manipulations that allow achiev-
ing location obfuscation without hampering communications at
all; extensive experimental campaigns to verify that the tech-
nique works with different localization methodologies and dif-
ferent channel bandwidths; analysis of more sophisticated at-
tacks based on the joint analysis of many MIMO channels, and
so forth. We would also like to investigate if this same method-
ology can be applied to obfuscate the position of a device, rather
than the position of a person who does not hold or wear a com-
munication device. Finally, we remark that this paper addressed
passive attacks, where the attacker controls only a receiver, but
exploits the normal Wi-Fi traffic. In this case, the only useful
traffic for the attacker comes from transmitters that are perfectly
fixed and whose position is well known and stable, so that the
NN can be trained in advance, thus the obfuscator needs to be
installed only in APs or similar ‘infrastructure’ devices. Active
attacks, where the attacker controls both the transmitter and the
receiver are another very interesting research area, where, how-
ever, privacy protection cannot be based on randomization at
the transmitter.

Acknowledgements

We would like to thank our patron in IMEC and in particu-
lar Vincent Sercu for the time he dedicated to the experiments,

12



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 0 0 0 0 0 0 0 0 0

P2 11 70 0 0 0 0 0 0 21 1

P3 20 0 70 0 0 0 9 0 0 0

P4 3 0 0 70 0 0 17 0 0 0

P5 0 0 0 0 58 0 0 0 0 0

P6 5 0 0 0 12 45 3 0 0 11

P7 1 0 0 0 0 0 10 0 0 0

P8 5 0 0 0 0 0 0 54 1 0
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(a) Without CSI randomization.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 0 0 0 0 0 0 0 0 0

P2 0 2 0 2 0 1 0 0 0 0

P3 0 0 0 0 0 0 0 0 27 0

P4 0 0 0 68 0 0 0 0 0 0

P5 20 0 17 0 0 0 2 0 0 0

P6 0 18 1 0 0 3 0 13 0 0

P7 0 0 0 0 0 0 10 57 0 0

P8 0 37 0 0 0 21 3 0 0 22

P9 0 2 52 0 70 45 34 0 1 0

P10 50 11 0 0 0 0 21 0 42 48
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(b) With CSI randomization.

Figure 18: Confusion matrices for receiver Rx1 and a human target. The datasets used for computing these results contain 70 CSI for each target position (700 CSI
in total). Each cell of the matrix contain the number of CSI. The bottom row indicates per-class accuracy; the number in bold face in the corner indicates the overall
accuracy.
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