
On the Properties of Device-Free Multi-Point CSI Localization and Its Obfuscation

Marco Cominelli1 , Francesco Gringoli1,2 , Renato Lo Cigno1,2

1Department of Information Engineering (DII) — University of Brescia, Italy
2CNIT Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Italy

Abstract

The use of Channel State Information (CSI) as a means of sensing the environment through Wi-Fi communications, and in particular
to locate the position of unaware people, was proven feasible several years ago and now it is moving from feasibility studies to
high precision applications, thus posing a serious threat to people’s privacy in workplaces, at home, and maybe even outdoors. The
work we present in this paper explores how the use of multiple localization receivers can enhance the precision and robustness of
device-free CSI-based localization with a method based on a state-of-the-art Convolutional Neural Network. Furthermore, we explore
the effect of the inter-antenna distance on localization, both with multiple receivers and with a single MIMO receiver. Next we discuss
how a randomized pre-filtering at the transmitter can hide the information that the CSI carries on the location of one person indoor.
We formalize the pre-filtering as a per-frame, per-subcarrier amplitude multiplication based on a Markovian stochastic process,
and we discuss different signal clipping and smoothing methods highlighting the existence of a trade-off between communication
performance and obfuscation efficiency. The methodology can in any case guarantee almost unhampered communications with very
good localization obfuscation. Results are presented discussing two different ways of exploiting the multi-receiver or multi-antenna
redundancy and how, in any case, properly randomized pre-distortion at the transmitter can prevent localization even if the attack
is carried out with multiple localization devices (receivers controlled by the attacker) and not only with a multi-antenna (MIMO)
receiver.
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1. Introduction and Motivation

Sensing as a side-service of Wi-Fi is becoming an industrial
reality [1]. Channel State Information (CSI)-based localization
in particular is attracting attention for device-free indoor posi-
tioning. This research field was opened about ten years ago by
seminal works like [2, 3, 4, 5], then the academic community in-
dulged on many variations of the topic, hinting to the possibility
of identifying activities, poses or gestures [6, 7, 8, 9], seeking
health-care applications [10, 11] and many others. The most
recent trend is exploiting Machine Learning (ML) and Artificial
Intelligence (AI) to compensate the difficulty of finding analytic
models with the power of supervised learning techniques for
classification purposes, often involving Deep Learning or Rein-
forcement Learning [12, 13, 14, 15, 16]. The recent survey [17]
provides an excellent introduction to this topic for the interested
reader.

Two topics received instead little attention:

1. If and how multi-point reception can improve the reliability
of CSI-based localization; and

2. How much localization impacts on the privacy of people.

Although the scarce attention to the first one may look surpris-
ing, we could find only a couple of works on the topic. The
authors of [18] propose to use massive Multiple-Input Multiple-
Output (MIMO) technologies to improve the quality of CSI-
based localization with a neural network (NN). The work ex-
ploits up to 64 antennas, but with a single logical measurement

point; indeed, the work focuses on the learning technology, and
assumes that there is a service dedicated to localization, i.e.,
special frames are transmitted dedicated only to localization,
thus such work should be compared mainly with technologies
dedicated to localization (as those based on time-of-flight like
[19]) rather than sensing as a side-effect of Wi-Fi communica-
tions. The research in [9, 20] has some similarities with our
contribution, though those works focus on the localization of
a device, and not, as we do, on the localization of a person
who does not carry any device. The work in [20] builds on the
concept of channel charting [21], which lends to the possibility
of semi-autonomous training because it uses differential posi-
tions and differential CSI, hence assuming a slowly changing
channel with a CSI sampling that respect the Nyquist theorem,
a condition that, for instance, cannot be assumed if Wi-Fi traffic
is sporadic, or to detect the presence of a person in a room, a
condition that implies a sort of discontinuity in the CSI.

The contributions of this paper, which extends the paper we
presented at MedComNet 2021 [22], in the context of device-
free localization and its obfuscation are two:

• First, we present the first experimental study that shows
how, using multiple localization devices or multiple anten-
nas connected to a single MIMO-like device, the precision
of localization can be improved;

• Second, we show that also in these conditions, the privacy
of users can be preserved with a refinement of the CSI ran-
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domization technique we first introduced in [23, 24], not
only protecting users from localization attacks, but also pre-
serving the communication performance. We also analyze
the influence of different configurations of the randomiza-
tion function at the transmitter.

Compared to the conference version [22], this paper extends
the analysis to MIMO devices, explores the impact of different
post-randomization filtering techniques, discusses the impact of
antenna positioning, and investigates on the training space of the
Convolutional Neural Networks (CNNs) to improve localization
efficiency. Besides, the literature review is extended, and the
description of the entire system is improved and more detailed.

2. Related Work

In this section, we discuss the status of works and technolo-
gies dedicated to preventing Wi-Fi sensing and localization in
particular. Special attention is given to fuzzing and obfuscation
techniques as means to prevent attacks to users’ privacy—which
are directly related to our work—rather than as an attack to
legitimate localization and sensing. The two perspectives are
obviously related, but they differ in the attention posed in com-
munication performance. For instance, an attacker using a Wi-Fi
sensing system may not care about communication at all; on
the other hand, preserving the users’ privacy cannot hamper
their legitimate right to communicate. We also address works
tackling security as well as localization itself when they have
influenced our work or may have an impact on it. Localization
in general is instead not addressed here, as we are not proposing
novel localization techniques, but rather means to prevent their
illegitimate use.

Localization and sensing research seems to have completely
disregarded privacy implications, which has been addressed only
very recently by our group and others [22, 23, 24, 25, 26, 27, 28,
29, 30].

A first idea that comes to mind is using a reactive jamming
device that selectively kills frames that belong to the localization
attack, adapting for instance techniques like [25, 26]. To the
best of our knowledge, this idea has never been explored in the
literature, maybe because it kills traffic, thus if the frames used
for localization also carry user data the communications will be
heavily hampered. Additionally, such a technique requires to
know that an attack is under way and the ability to identify the
frames used for localization, otherwise it would become simply
a jamming denial-of-service. A system to counter Wi-Fi sensing
was originally proposed in [27] to prevent gesture recognition.
Similar to [29], this system is based on an independent device
that relays frames with the goal of superimposing an additional
“reflection” of the signal to obfuscate the information imprinted
by the environment on frames. This is different from the more
common jamming that superimposes a different signal, some-
times just noise, with the goal of killing the frame reception.

The works that lay the foundations of this paper are [23, 24,
29]. In the first two, we proposed for the first time a technique
to obfuscate, or hide, the information carried by the CSI that en-
ables localization, focusing on passive attacks, i.e., those where

the attacker controls only the localization devices. The core idea
is to randomly distort the transmitted frames so that the CSI at
the receiver looks like the one of a signal that has propagated
through a different environment, unrelated to the one in which
sensing is performed. In the third one, we tackled the problem of
countering active attacks, i.e., those where the attacker controls
both the transmitter and the localization device. In this case the
countermeasures cannot be based on the pre-distortion of the
transmitted frames, because transmitted frames are controlled by
the attacker. The solution we proposed is based on a fast relay
node, ideally an intelligent reflective surface like those discussed
in [31], which introduces a time-varying additional reflection
in the electromagnetic environment that prevents a localization
device to pinpoint the position of a person.

Strictly related to the work we present is the demo in [30],
which contributes to the community an open-source CSI fuzzer
implemented in openwifi.1 The fuzzer is based on a fixed-length,
three-taps Finite Input Response (FIR) filter with random coeffi-
cients, that are limited to pre-defined values for the sake of easy
implementation in the FPGA. The outcome is clearly similar
to have two additional multipath reflections that are controlled
by the FIR coefficients. The implementation is tested for good
communication performance, while its efficiency in preserving
privacy has not been tested.

Finally, exploiting techniques similar to those used in [24],
the work in [28] proposes to manipulate the CSI with the goal of
avoiding device radiometric fingerprinting and preventing imper-
sonation attacks. The topic of the paper is not localization, but
if a person holds a Wi-Fi device a double attack identifying the
device and the location of the person is more than a possibility.

Moving to recently proposed localization techniques, [32]
presents an ML technique where sophisticated pre-processing is
applied to the CSI data before it is fed to the CNN, in particular
the authors use wavelet transforms and principal component
analysis to extract the features that the Deep Learning network
analyzes and learns. The authors of [33] take instead a different
approach, whereby the localizing device uses two directional
antennas, one pointing directly to the transmitter and the other
observing the area of interest. The localization is based on the
differential analysis of the two signals, with declared similitude
with radar analysis. The extremely recent work presented in
[34] has many points of contact with ours. First of all the au-
thors explore, like we do, the impact of multi-point sensing on
localization; however, the goal of the paper is improving local-
ization precision. To achieve this goal the authors propose a data
fusion technique where the CNN localization pipelines at each
receiver do not output a position classification, but a probability
map of the target position. All the probability maps are then
fused together to obtain a more reliable position estimation. We
note that this data fusion technique is different from both the

1openwifi (https://github.com/open-sdr/openwifi) is an open-source
implementation of the 802.11 Medium Access Control (MAC) and PHY layers
based on software-defined radios (SDRs) and widely used for research and
innovation in Wi-Fi. In the GÈANT-funded project that partially supports this
work we are implementing in openwifi the techniques proposed here and in
previous papers.
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methods we propose in Sect. 5 to exploit the additional informa-
tion provided by multiple localization devices (or antennas). It
would be interesting to compare also this methodology; however,
the paper pre-print was published when our work was nearly
concluded, and at the time of writing there is no open-source
implementation of such technique available. Also, the CNN
used in each pipeline is not available as open-source project.

As a final remark of the work related to our contribution,
we highlight that testing the obfuscation technique we propose
against several localization techniques is of the utmost interest
and importance, and we fully support whoever wishes to chal-
lenge our open-source implementation of the CSI obfuscator
with other CSI-based localization techniques.

We think that localization techniques and countermeasures
should be tested with real experiments, even if they are costly
and time-consuming, because the complexity of the problem
prevents easy shortcuts based on “standard data” or simulations.
All the same, we plan to publish the dataset we are collecting
to provide a useful tool for early-stage research, as the one
proposed in [35]. We could unfortunately not use this database
for comparison, because it contains only clean CSI traces to
test gesture recognition, and it is impossible for us to generate
obfuscated data to compare with.

3. Attack Model and Scenario

This section presents the reference attack model that can be
used to monitor the activities and the position of unaware people
through the opportunistic reuse of the Wi-Fi signals pervading
modern environments. Next, the setup we realized in our labo-
ratory is described, while the details of single experiments are
described in Sect. 7.

3.1. Attack Model
The attack model is shown in Fig. 1. We assume that the at-

tacker (e.g., an employer whose goal is circumventing legislation
on employees monitoring) can control multiple devices with the
ability to extract CSI data from the received Wi-Fi frames. The
large availability of extremely cheap and small platforms that
can be converted into sensing nodes, like the Raspberry Pi [36],
makes this feasible and cheap even on a large scale. A detailed
analysis of the CSI structure at each single localization device,
as well as a comparison between the CSI collected at different
devices, enables the attacker to determine the precise position of
a person in the room. The attack considered in this paper extends
the techniques described in [24]. The attacker collects a set of
CSI traces with the help of a collaborator standing in specific
target positions; then, he trains a CNN with the collected data to
use it later to determine the position of an unaware victim, e.g.,
an employee or a guest.

3.2. Experimental Facility
We carry out the experiments in a laboratory of the ANS2

group at the University of Brescia, whose map is shown in Fig. 1.

2The Advanced Networking Systems (ANS) group is a research group in
telecommunications at the University of Brescia, Italy.
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Figure 1: In the considered scenario the attacker can collect CSI data
of the frames that Tx AP sends to the Rx smartphone simultaneously at
five localization devices L1–L5 to locate a victim standing in one of 8
possible target locations (P1–P8).

Five localization devices (from L1 to L5) are positioned on
desks aligned along three of the four sides of the lab, while
the transmitter (Tx) lies on a desk on the fourth side and the
legitimate receiver (Rx) is placed somewhere else in the room
to measure the communication performance (its actual position
is irrelevant for now). The attacker controls all the localization
devices and knows their positions, while the transmitter, that
can be one of the Access Points of a corporate network, is not
under control of the attacker, and its only requirement is to be
in a fixed position. The goal of the attacker is to determine the
correct location of the person in the room among 8 possible
target positions (P1,. . . , P8). The configuration in Fig. 1 ensures
that the person being tracked is always obstructing the line-of-
sight (LoS) between the transmitter Tx and at least one of the
localization devices (L1,. . . ,L5). In this way, the collected CSI
should always be significantly affected at one or more devices,
independently of the victim’s position.

4. CSI-based Localization and its Obfuscation

The principle behind the localization technique is the inter-
action between the Wi-Fi signals and the human body. In fact,
the presence in an environment of a human body that absorbs,
scatters, and reflects electromagnetic waves induces peculiar
variations in the spectrum of the received signal that depend on
the body position and movements. These variations can be stud-
ied by analyzing the CSI evaluated by every Wi-Fi device upon
receiving a frame. As we show in Fig. 2, the correct decoding
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Figure 2: 802.11 modified receiver to infer people location: each
receiver collects CSI and pushes everything to the localization system.
Multiple CSI data originating from the same frame are jointly analyzed
to improve the accuracy with respect to a single device configuration.
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Figure 3: Architecture of the CNN used by our localization system.

of frame’s data requires an equalization of the spectrum of the
received signal to reduce the distortion introduced by the com-
munication channel. Extracting the CSI data from the chipset
internals, one can directly observe the modifications that depend
on the position of the observed person, given that the rest of the
environment, including the position of the transmitter and the
localization device, remains relatively stable over time.

The localization frameworks that have received more attention
are based on NNs trained with CSI obtained when someone
is standing in a known position; then, during the attack, the
victim’s position is estimated by recognizing the same patterns
in the CSI [37]. It is important to capture a large amount of
data not only to speed up the training phase, but also to obtain
multiple CSI snapshots corresponding to the same position of
the victim, as this would allow to “average out” minor spectral
variations. This is in general not a problem in modern work
places, where Wi-Fi signals pervade the environment and an
attacker can opportunistically use the signals transmitted by the
Access Points (APs) of a corporate network, given that such
Wi-Fi nodes are usually in well-known positions and generate
the largest amount of traffic.

In this work, we build the multi-device localization system
on top of what we introduced in [24], where we have developed
an efficient implementation for a single device based on a CNN
with good localization accuracy3. A high-level representation of
the NN architecture is shown in Fig. 3. We consider 802.11ac

3Further details on this line of research in our group, the software produced an so

frames transmitted on 80-MHz channels with a single spatial
stream encoded using Orthogonal Frequency Division Multiplex-
ing (OFDM); each CSI data point is an array of 256 complex
values, one per OFDM subcarrier. After removing the unused
subcarriers (eleven at the edges of the spectrum and three at the
center) and splitting the real and imaginary parts of each value,
we get as input for the CNN a 242 × 2 matrix. The first two con-
volutional layers of the CNN shown in Fig. 3 are used to extract
complex features from the input data by exploiting the similarity
of adjacent frequencies. In cascade to the convolutional layers,
there are three fully-connected layers. The output of the last
layer corresponds to a choice among one of the possible classes,
i.e. positions that are decided during the training phase. All
the layers but the last one (which uses a softmax function) use
a common Rectified Linear Unit (ReLU) activation function.
Finally, we use the Adaptive Momentum Estimation (ADAM)
algorithm to adjust the weights of the CNN during the training
phase.

The considered CNN achieves a good accuracy and this is
clearly related to the unique and remarkably constant CSI data
that are obtained for each target position of the person under
tracking in the room. Simple reasoning suggests that a random
pre-distortion of the transmitted signals should suffice to disrupt
localization accuracy and obfuscating the person’s position. In
the feasibility study presented in [23, 24] we obtained excel-
lent obfuscation results by selectively amplifying some OFDM
subcarriers in the spectrum of transmitted frames, following
a simple time correlation structure. As a consequence of this
coarse manipulation, the presence of the obfuscator could have
been detected (and eventually countered) with a careful analysis
of the signal. Furthermore, the communication performance
when the obfuscator was active was severely degraded, leading
to highly-reduced throughput.

5. Improving Localization with Multiple or MIMO Devices

The literature on CSI-based localization is now starting to
consider how combining CSI data collected at multiple points
can improve the accuracy of wireless sensing systems. With
enough devices it is possible, in fact, to always have at least one
of them whose LoS to the transmitter intercepts the person under
tracking. For instance, if the target person stands in position P7
in Fig. 1, we expect minor interference effects on L1, but clear
effects on L4 due to the obstructed LoS. Indeed, in principle,
also the separate analysis of CSI data from different antennas
of a MIMO system should yield a more accurate estimate, and
hence a larger threat to users’ privacy, even if the antennas are
close one another. In this work, we explore this possibility too.
One of the goals of this work is to extend the localization system
by combining the CSI captured at multiple devices or antennas
as shown in Fig. 2; the second one is showing that also this
powerful attack can be countered.

We present two methods for “combining” the localization
data: we discuss here their pros and cons while we present the

forth can be found at https://ans.unibs.it/projects/csi-murder/
and https://ans.unibs.it/projects/di-p2sl/.
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Figure 4: The network is trained with different types of input depend-
ing on the considered scenario; when we apply the CSI Data Fusion
technique all the collected CSI are fed to a single NN.

experimental results in Sect. 8. Common to the two methods is
that localization devices are positioned in the same indoor envi-
ronment and they have the capability of matching the reception
of the same packets (we use timestamps, but other techniques
are just as fine).

5.1. Majority Vote

In the Majority Vote implementation, we combine the output
of multiple stand-alone localization systems, each one associated
to its own CNN. Given one CSI, each device, or voter, will
produce an estimate for the victim’s target position; the most-
voted position will be the one estimated by the whole localization
system. It is important to notice that a stand-alone localization
system can be implemented for every antenna of the attacker’s
receivers. Thus, voters can either be single-antenna devices (one
for each receiver in a different location L1,. . . ,L5, see Fig. 1) or
all the antennas belonging to a single MIMO receiver.

When the receivers in the room are located several wave-
lengths apart from each other, we can assume that the CSI vector
at the input of each localization system, which we report in
Fig. 4(a) as 242× 2 matrix, is independent from the others. Thus
the CNNs actually learn and classify independent models, so that
errors are independent, and we can assume that “summing” the
results compensates the random errors. Unfortunately, positions
cannot be “summed” in an algebraic way, but we can decide
based on the majority of decisions. Given that position errors are
independent by construction, a majority vote also corresponds
to a Maximum Likelihood Estimation (MLE) and should be op-
timal given the assumptions. The assumption of independence
falls short when considering antennas in MIMO receivers, where
antennas are spaced by roughly one wavelength only; however,
even MIMO technologies are based on the assumption of an
independence approximation. What is surely not satisfied is the
LoS obstruction property discussed above, and the analysis of
these differences is very interesting to understand the knowledge
base carried by CSI.

Let Nr be the number of localization devices. Independently
from Nr, it is always possible that the vote does not have a ma-
jority, e.g., 3 devices have classified 3 different locations, and no
decision can be taken. We separate wrong classifications (a deci-
sion is taken, but it is for a wrong position), from undecidable
situations when a majority is not reached.

5.2. CSI Data Fusion
A more sophisticated use of the information at different de-

vices is based on the fusion of the CSI vectors, assuming that an
extended CNN can do a better job than simple majority voting.
Note that majority vote is a MLE, but only under the assump-
tions of independent decisions. The data fusion changes the
knowledge base of the estimator, thus we can hope in a more
powerful technique.

In this second implementation we consider an extended CNN
that processes the CSI vectors collected at the Nr devices or
antennas as a “fused” and larger dataset, i.e., a 242× 2 Nr matrix
as we show in Fig. 4(b). The Nr CSI are always combined
column-wise and “stacked” on different rows, so that the rows of
the “fused” matrix always refer to the same subcarrier, and every
pair of columns represents the real and imaginary parts of the
CSI extracted by one device. Combining the data into a 242 Nr×

2 matrix would put the highest subcarrier of one antenna/device
near the lowest subcarrier of the next antenna/device, creating
artificial “features” that may confound the learning process.
The CNN can thus learn from a larger knowledge base, where
features of the CSI related to the person position can be derived
from the different antennas, possibly improving localization
accuracy. Differently than the Majority Vote implementation, this
method always outputs one single position estimation, as in the
case of a single device, and does not have undecidable situations.
We have not attempted to design a new architecture for the
neural network for this task, so, whatever the results we obtain,
we cannot exclude that a different learning method, based on
CNNs or other network types, can obtain better results. We recall
that the goal of this paper is not proposing a new localization
technique, but exploring as much as possible the impact of our
obfuscation techniques against multi-point localization attacks.

We highlight that the term ‘fusion’ here has a different mean-
ing compared to its use in [34]. The technique proposed there
merges probability maps derived from NNs, each one taking as
input the CSI of a single antenna and not all the CSI as we do.
In this sense, the methodology is a blend of merging the data
at the analysis level as we propose here, and the majority vote
we propose in Sect. 5.1, the method is very interesting and its
impact on obfuscation techniques can be the subject of future
research when it will be officially released by the authors.

6. Principles of CSI Randomization and Its Implementation

While any approach that can improve the localization accuracy
represents a positive result, at the same time it can be considered
an increasing hazard against the privacy of the tracked people.
In addition, an improved localization technique can also have
detrimental effects against simple obfuscation techniques like
the one that we introduced in [24]. The goal of this section is
hence to design an improved obfuscation technique that can be
effective independently of the number of involved devices. Here
we study how to defeat the localization mechanisms introduced
in Sect. 5 to restore the privacy of the tracked person. A good
obfuscation technique is as unobtrusive as possible, effective in
preventing localization, and also maintains good communication
performance.
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As discussed in [24], the frequency dependent amplitude of
the received signal is the feature that is mostly considered by
the CNN in classifying CSI and mapping the person location.
For this reason, we focus the randomization technique on the
amplitude of the subcarriers that compose the spectrum of the
transmitted signals. We consider a single transmission chain for
the sake of simplicity: the extension to multiple transmission
chains is left for future work. On the other hand we consider
not only multiple devices with a single receiver chain, but also
MIMO devices with 4 antennas and receiver chains.

Let Nsc be the number of carriers used by the Wi-Fi OFDM
modulation; fi, i = 1, 2, . . . ,Nsc is the carrier number; k =

1, 2, . . . is the discrete time index identifying the frame; and
∆t(k) is the absolute (continuous) time between frame k, and
frame k − 1; ∆t(1) is undefined, but it is irrelevant for our pur-
poses. We only consider carriers that are not suppressed by the
system, thus excluding the middle carrier and those in the guard
bands. The magnitude of the spectrum at the receiver, or CSI,
derived from the known initial symbols of the frame, represents
the frequency and time varying signal attenuation (or channel
response) introduced by the channel AC( fi, k). Notice that the en-
tire Wi-Fi PHY layer is based on the assumption that the channel
coherence is long enough to guarantee that the channel response
is constant during a single frame, thus our modeling does not
introduce significant approximations.

The goal of the obfuscator is to guarantee that the information
in AR( fi, k) does not allow an attacker to properly classify the
position of a person in the room. Ideally, the obfuscator should
guarantee that the mutual information between the CSI and the
location of a person in the room is zero, but this theoretical
analysis is out of the scope of this paper.

To achieve this goal we multiply the IQ samples of the digital
signal before performing the Inverse Fast Fourier Transform
(IFFT) conversion on the OFDM symbol, so that the actual CSI
information at the receiver is:

AR( fi, k) = AC( fi, k) × AO( fi, k) (1)

where × is the standard algebraic multiplication applied sepa-
rately carrier by carrier: AO( fi, k) is a pre-distortion mask whose
goal is adding random information to AC( fi, k) so that AR( fi, k)
maintains the properties that allow demodulation and correct
decoding of the frame given the CSI, but information on the real
channel response is degraded to a point where localization is not
better than a random guess.

The pre-distortion AO( fi, k) must have the following charac-
teristics:

1. It does not alter the frame power:

Nsc∑
i=1

AO( fi, k) = KA (2)

meaning that if some frequencies are amplified, then others
must be attenuated, with KA some appropriate constant;

2. It guarantees that the correlation in time is compatible with
the standard movement of a person in a room;

3. It guarantees that the attenuation in frequency is compatible
with the channel Doppler spread;

4. It cannot be inverted within a reasonable time, i.e., given the
sequence AR( fi, k); k = h, . . . h+ H it should not be possible
to reconstruct the sequence AO( fi, k), not even when using
multiple devices; H is a design parameter whose impact on
the system is left for future study;

5. It does not modify the communication performance of the
system.

The formalization and (if possible) the proof that the five condi-
tions above are feasible are beyond the scope of this work. In
the following we present a heuristic Markovian methodology
that we evaluate in Sect. 8.

Let R be a vector of independent, continuous random variables
ρi of dimension Nsc, one for every OFDM subcarrier. Each
random variable is drawn from the same distribution fR(ρ), and
they are all independent one another. For reasons that will be
clear shortly, we select fR(ρ) to be a uniform distribution with
support (ρmin, ρmax). Consider now the multidimensional random
process defined as:

R(k) = e−α∆t(k)R(k − 1) + R (3)

Eq. (3) defines a Uniform-Markov process, which, compared
with the more popular Gauss-Markov process4 exhibits uniform
increments taken from fR(ρ) instead of Gaussian increments.
The choice of uniform increments derives from the need of
maximizing the causality of the choice while maintaining finite
(and small) increments. As we discuss at the end of this section
the random multiplier must be in any case clipped to guarantee
that the amplitude is positive and does not saturate the transmitter
amplifier, thus the choice of an infinite support (e.g, Gaussian)
random variable as the process increment would be incongruous
(or irrelevant).

The dimension of the process is Nsc. The process is discrete
time, because the transmission of frames defines a discrete time
index; however, the process memory depends on the absolute
time ∆t(k) in order to guarantee that frames transmitted far apart
in time do not have excessive correlation. As it is well known
from probability theory, this process exhibits a dependence in
time that increases when α decreases, which allows tuning the
obfuscation to the expected movements of people in the room.

The random process defined by Eq. (3) has no correlation
in the frequency domain, which is in contrast with the desired
characteristic 3) defined above. To overcome this unwanted
feature, we use a simple convolutional filter (or weighted moving
average) as follows:

AO(k) = [1 + R(k)] ∗ ΘC (4)

where ∗ is the standard convolutional sum and ΘC is a symmetric
filter with length C; C must be odd for symmetry and 3 ≤ C ≤
Nsc. The dependency on fi is implicit in the convolution, and
appropriate leading and trailing zeros must be appended to R(k)

4For instance, the error of Global Navigation Satellite System positioning is
normally modeled with a three-dimensional Gauss-Markov process.
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to allow the convolution. The shape and characteristics of ΘC

can be studied to optimize the performance. In this work we do
a simple moving average (all coefficients are 1) with C = 3, 5, 7,
thus exploring the impact of the filter length.

Equations (3) and (4), together with the normalization (2) (to
be run at every step) define, in our opinion, an appropriate ran-
domized localization obfuscation that respects the characteristics
illustrated above. ρmin, ρmax, α, C, and the values of ΘC taps can
be used for tuning the system, and can also be changed over time
to make it harder for an attacker to invert the obfuscation. A
proper sensitivity analysis on all these parameters is not feasible
within a single paper, and we are more interested in fundamental
properties than in finding the optimal setting, which may also
depend on the considered scenario. A quick preliminary study
was sufficient to select ρmin = −0.3, ρmax = 0.3, and α = 0.2 for
achieving acceptable performance. Notice that α = 0.2 means
that if ∆t(k) ≥ 15 s, then AO (k) and AO (k-1) are almost com-
pletely uncorrelated (the correlation coefficient is below 5%,
which is coherent with requirement 2) above.

Eqs. (3) and (4) cannot guarantee that the pre-distortion does
not lead to amplitudes smaller than zero, which is obviously not
implementable. Also zero or very small values are not desirable,
as they imply that an entire subcarrier is suppressed, which
introduce systematic transmission errors that should be avoided.
To prevent this possibility we use a clipping function [·]max

min ,
that cuts the amplitude of each subcarrier between a min and
a max value. Theoretically, only the min clip is necessary to
avoid negative and too small values, but this asymmetry makes
it difficult to guarantee that the average power of frames is
not altered. Moreover, a very large amplification of a single
carrier (recall that the amplification process at each carrier is
independent from the others) makes all the others very small,
because the analog part of the transmitter will saturate the largest
subcarrier to the amplifier maximum power. This means that
very large differences in subcarrier pre-distortion may lead to
worst communication performance. We have shown in [22] that
not clipping the maximum amplification does not result in any
improvement in obfuscation, while instead penalizes more the
communication performance. Hence, we do not report here
results for max = ∞, concentrating instead on more interesting
aspects of the experiments.

As an additional alternative, the clipping can be applied be-
fore or after the convolutional filter of Eq. (4). Predicting the
consequences of clipping before or after the filter is very difficult,
because clipping is highly non linear, thus we decided to explore
the performance of both options implementing the equivalent of
the following two equations:

A′O(k) = [1 + R(k)]max
min ∗ ΘC (5)

A′′O(k) = [1 + R(k) ∗ ΘC]max
min (6)

As for the clipping values, we consider here only the symmetric
case with min = 0.1 and max = 1.9. These value are arbitrary,
but stem from the heuristic consideration that min significantly
smaller than 0.1 would lead to systematic errors on the specific
subcarrier, while larger values can only lead to less efficient
randomization; max = 1.9 is a consequence of symmetry.
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Figure 5: Experimental Cumulative Density Function (ECDF) of the
amplification factors assigned to the OFDM subcarriers in Eqs. (5)
and (6) with both symmetric and asymmetric clipping. Blue lines refer
to Eq. (6) and red ones to Eq. (5) with a 5-tap filter (C=5); black lines
are without filtering; ‘no max’ means that max = ∞.

6.1. Implementation

We describe here some implementation details, focusing on
the constraints that may approximate the formulas introduced
above. First of all, we note that Nsc = 256 as we work with
80 MHz 802.11ac frames. Second, we implemented the localiza-
tion devices using Commercial Off-The-Shelf (COTS) Access
Points from Asus: we chose the RT-AC86U model as it can
extract CSI data from the transmitted frames. Third, we imple-
mented the transmitter with an Ettus USRP N300 SDR whose
bandwidth exceeds the 80 MHz requirement. We chose an SDR
because we need precise control over the generation of each
Wi-Fi frame in order to craft and apply the pre-distortion that
modifies the CSI. We generate Wi-Fi frames with the MATLAB
WLAN Toolbox running on a workstation equipped with an
Intel Core i7 and 16 GB of RAM. We also prepare obfuscated
frames directly in MATLAB before sending the corresponding
sequence of IQ samples to the SDR. As the SDR does not run a
MAC algorithm, there could be some uncontrolled collisions on
the channel, even if we have selected a channel (157) that is not
used in our University.

The MATLAB code implements the obfuscation techniques
described by Eqs. (5) and (6) by applying the pre-distortion, if
present, before the IFFT—that is, in the frequency domain. We
avoid working in the time domain because it would require the
usage of a circular convolution. Before sending the stream of
IQ samples to the SDR, we normalize them to the highest value,
i.e., we divide them by the one with the largest absolute module,
so that we use the entire range of the SDR.

We highlight that the overall procedure cannot strictly guar-
antee that the frame power is not altered as required by Eq. (2):
this entails evaluating the power spectrum of the entire frame,
which we are unable to do; however, we deem that the pre-
distortion, especially with symmetric clipping, does not change
significantly the power spectrum on the channel.

Fig. 5 shows the ECDF of the marginal distribution of the
amplitude of the processes described by Eq. (5) (Clip & Filter,
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in red) and Eq. (6) (Filter & Clip, in blue) and without filter at
all (Clip Only, in black). The ECDF is computed over 10,000
frames, or equivalently, 256 × 10, 000 = 2, 560, 000 samples.
The solid lines refer to symmetric clipping: their median value
is one, as expected. As the OFDM modulation is not constant
envelope and its peak to average ratio depends on the payload,
and can be as large as 12 dB, a pre-distortion that preserves
the average amplitude should not alter significantly the power
spectrum after the modulation, but this aspect requires further
investigation. The dashed lines (no max) refer instead to the
case when clipping is applied only to the min amplitude, and
the median is obviously not one, but we do not know if this
alters significantly the frame power spectrum. Filter and Clip
(blue) and Clip Only (black) display a similar behavior with
the same qualitative behavior, albeit without filtering the no
max curve (black dashed) has much larger values; this is also
reflected in the larger discrete part of the distribution when
clipping. The behavior is expected as filtering concentrates the
distribution around the average. The counter-intuitive behavior
of the solid red curve (Clip & Filter) deserves a final comment.
Indeed, by first clipping and then filtering, we introduce multiple
discrete components (and not just two as in Filter & Clip) in
the distribution: they are given by the combinations of clipped
subcarriers in the 5-tap average filter, and are reflected in the
ECDF. Changing the filter length will also change the position
and weight of the multiple discrete components.

Fig. 6 reports qualitative results measured at one localiza-
tion device. It visually shows why Wi-Fi sensing can locate
people, and why the proposed obfuscation technique is a valid
countermeasure. Without obfuscation, the two top plots, the
channel response (amplitude of the CSI) is remarkably constant
over time (x-axis) given a position, and the amplitude change
with the position (left and right plots). The CNN can learn and
classify the position of the person. Obfuscation, instead, keeps
changing the CSI amplitude, thus preventing proper learning
and classification as shown by the other three pairs of plots in
the figure. It is clear that the filter position (and length, not
shown in the figure for the sake of brevity) and the clipping
strategy alters the channel response in different ways, but from
these qualitative plots it is not possible to state what combina-
tion is more effective in obfuscating location, or which one will
preserve or destroy communication performance. What can be
seen from these plots is that the energy of the frames seems
smaller when clipping is the last operation (blue dominates),
while filtering as final operation preserves better the requirement
to preserve frames power as there is a better distribution of blue
and yellow. We would like to recall that the software we have
used and the data we have collected are available on our website
https://ans.unibs.it.

7. Experimental Setup

The experiments are all run in the laboratory quickly described
in Sect. 3.2 and Fig. 1. Experiments have been run on several
different days between spring and autumn 2021 to verify that
the performance is not influenced by random effects, and it is
reasonably time invariant.

Figure 6: Magnitude of the CSI collected from 800 frames with a
person standing in positions P1 and P2 (brighter yellow-ish colors mean
larger magnitude). The two plots at the top (first row) refer to clean
transmissions: the horizontal bands show that CSI are constant over
time if the person does not move, enabling localization by ML. The
other six plots refer to the same positions when different obfuscation
techniques are in place: the second row corresponds to Clip Only, the
third row to Filter & Clip, and the last one to Clip & Filter, both with
C=5.

Each experiment consists of two different and separate phases.

Phase 1: Training. During this phase a person stands in one
of the 8 positions P1 . . . P8, reported in Fig. 1 and well
known to the localization system. The transmitter (the AP,
or the SDR in our case) keeps sending a continuous flow
of packets. For each position, each receiver controlled
by the attacker decodes and collects 1200 Wi-Fi frames,
extracting the corresponding CSI. Based on this dataset,
all the CNNs that are part of the localization system (one
per antenna/device) are trained ten times with ten different
initialization vectors. Training is performed on 8 · 1000
CSI samples, while the remaining 8 · 200 samples are used
to validate the model and to stop the training as soon as the
accuracy on the validation set converges.

Phase 2: Attack. In ML terminology this is the testing phase
of the CNN. After several minutes (sometimes hours) from
Phase 1, a person—not necessarily the same that did the
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Clean No obfuscation technique is implemented
NF No Filter, only the clipping is applied
CF3 Clip & Filter with 3 taps
CF5 Clip & Filter with 5 taps
CF7 Clip & Filter with 7 taps
FC3 Filter & Clip with 3 taps
FC5 Filter & Clip with 5 taps
FC7 Filter & Clip with 7 taps

Table 1: Acronyms of the obfuscation techniques experimented.

L1
L2

L3 L4

P5
P4

P6

Figure 7: Octopus configuration derived from a photo: antennas of the
MIMO localization system are placed far from the L2 device, approxi-
mately in the positions occupied by L1, L3, and L4.

training—stands in the same 8 positions, and another 1000
packets are collected by every device. The localization
techniques discussed in 5 are applied to all the 10 CNN
configurations that are the outcome of the 10 training with
different initialization. All results are kept allowing to
compute both the average performance and the standard
deviation. Performance results distribution are clustered
enough that the standard deviation is a good indication of
dispersion, since there are no outliers.

Figure 8: Picture of the Frankenstein configuration: 4 devices are
placed very close to one another in position L2, only 1 antenna per
device is used for localization.

Training is always performed separately for each of the 7
obfuscation designs discussed in Sect. 4 plus the one without
obfuscation summarized with the acronym used in commenting
results in Tab. 1; clipping is always symmetric with min =

0.1,max = 1.9. Obviously, independent training is done also for
each of the 4 experimental configurations discussed below: base,
mimo, Octopus, Frankenstein.

base: This is the basic configuration represented in Fig. 1. One
transmitter (Tx) with a single antenna and transmission
chain, sends frames to a generic receiver within the same
room (Rx), whose position is completely irrelevant for the
localization, and that can indeed be changing. The receiver
is not involved in localization and decodes the frames (used
to estimate the Packet Delivery Rate (PDR)) with its stan-
dard hardware characteristics. Each localization device
(Ln) extracts the CSI from a single, external antenna and
uses it to estimate the position of the person in the room
as described in Sect. 4 and 5. The cooperation between
localization devices is necessarily off-line moving the infor-
mation collected to a computer that operates the multi-point
analysis.

mimo: In this configuration the localization devices, in the same
positions as in the base configuration work exploiting all
the 4 antennas of the MIMO device. The multi-point local-
ization is indeed local to each localization device, and the 5
different devices and positions are used to gain confidence
in the results themselves.

Octopus: This setup is meant to understand together with
Frankenstein, what is the impact of antenna positions in
the multi-point analysis when a MIMO device is used. Its
name, well explained by Fig. 7, came to us observing the
long ‘tentacles’ going to the antennas: i.e., the cables that
allows placing the external antennas of the MIMO device in
the positions L1, L3, and L4, while the localization device
itself (and the last antenna) is in position L2.

Frankenstein: Opposite to Octopus, this configuration puts 1
antenna of 4 different devices in a single location (L2)
as shown in Fig. 8. The name refers to an (intelligent?)
body built with different and spare parts: A sort of MIMO
system built with different devices aimed at improving the
localisation performance. The goal is to understand if the
localization performance is affected primarily by antenna
location or, conversely, by the use of different devices once
the antennas are separated by at least a wavelength, making
the channel transfer functions from the transmitter roughly
orthogonal.

8. Results and Discussion

Both localization and its obfuscation depend in non-trivial
ways on many parameters. This section is split in four parts, each
one devoted to one or more configurations we have tested in our
experiments. For each configuration we give an interpretation
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L1 L2 L3 L4 L5
Clean 78 (6) 89 (4) 93 (3) 78 (6) 70 (5)
NF 13 (2) 23 (3) 15 (2) 34 (3) 25 (3)

CF3 10 (2) 20 (3) 11 (2) 17 (2) 21 (5)
CF5 16 (1) 30 (3) 17 (2) 28 (2) 24 (4)
CF7 17 (3) 33 (5) 14 (3) 29 (4) 26 (2)

FC3 12 (2) 25 (5) 16 (3) 20 (2) 18 (5)
FC5 14 (2) 27 (5) 14 (2) 19 (3) 22 (2)
FC7 15 (2) 29 (4) 14 (3) 26 (3) 22 (3)

Table 2: Accuracy and standard deviation for the localization at each
single location (L1–L5) with all the obfuscation techniques; both accu-
racy and (standard deviation) are in percentage [%].

of the results obtained, laying the foundations for better CSI-
localization theory as well as how to prevent its unauthorized
use.

First, Sect. 8.1 analyzes the performance of localization and
its obfuscation in the base configuration, to gain insight on the ad-
vantages of multi-point localization and the performance of the
CSI randomization at the transmitter as a means of obfuscation.
Second, Sect. 8.2 discusses the impact of CSI randomization on
communication performance, allowing us to analyze and select
the randomization scheme that offers the best trade off between
position obfuscation and data throughput. Next, Sect. 8.3 tackles
the problem of extending the techniques to a single, mimo device
rather than multiple single-antenna devices. Finally, Sect. 8.4
explores the role of antenna disposition and device diversifica-
tion, both from the attacker perspective, i.e., what is the most
efficient setup to infer people’s position, and from the privacy
protection point of view, i.e., how efficient obfuscation remains
in face of the different attack configurations.

8.1. base: Multi-Devices Experiments

During every experiment, we use 5 × 8 × 1000 = 40, 000
frames to train the system (8, 000 more are used for validation),
and other 40, 000 frames to test it. The data collected during
an experiment are stored as raw CSI, allowing post-processing
and reducing the number of experiments to be performed. This
allows applying the two different multi-point localization tech-
niques (see Sect. 5.1 and 5.2) exactly on the same measured data,
thus avoiding that the difference observed in the two techniques
is related to differences in the experimental environment and not
an intrinsic property. Since we consider 8 possible positions, a
random guess would lead to an average accuracy of 12.5%, and
this is our reference for evaluating the quality of the obfuscation.

Tab. 2 reports the accuracy of the localization attack per-
formed separately in each location L1–L5. For each experiment,
we train the model ten times with ten random initialization vec-
tors, and we report the average percentage of correctly classified
positions as well as the standard deviations. Fig. 9 reports in-
stead the average localization accuracy over all five locations
(multi-point attack) for all the obfuscation designs, together
with the standard deviations (vertical bars at the top of the bars)
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Figure 9: Localization precision for all the multi-point localization
analyzed, light gray areas in majority vote results refer to undecidable
situations; vertical bars represent the standard deviation of the measures.

measured again from the accuracy of each trained model at all
locations.

A careful analysis of the Clean data in Tab. 2 highlights, as
we already observed in [29], that the position of the localization
device has a strong influence on the sensing performance inde-
pendently from the position of the person: L5 performs much
worse than the others, while L3 significantly better. We also
notice that the localization accuracy decreases drastically with
every obfuscation technique, regardless of the position of the
localization device. The actual performance seems to depend
more on the location of the device than on the obfuscation tech-
nique, but it never exceeds 33% (L2, CF7), which is an accuracy
hardly usable for any meaningful attack. In general the accu-
racy remains above the 12.5% of a random guess, indicating
that there is still some information embedded in the CSI. We
believe that further research can lead both to better localization
techniques and to better obfuscation ones.

Coming to the results achieved with the multi-device attack,
the first thing that emerges is that a simple and traditional Major-
ity Voting outperforms the apparently more sophisticated Data
Fusion approach, which does not seem to improve the perfor-
mance even in absence of obfuscation as it clearly emerges from
the Clean bars in all the plots of Fig. 9. As we already com-
mented in Sect. 5, this does not exclude that some other data
fusion technique may outperform Majority Voting, but just that
improving CNN-based localization simply adding information
may be more difficult than expected. A possible explanation
lies in the fact that the Data Fusion approach does not make the
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localization errors of different devices independent one another,
thus the strong correlation in all the data induced by the CNN
makes some errors dominant.

The six plots of Fig. 9 convey a lot of information and summa-
rize the 8 experiments, for a total of more than 600,000 frames
collected and analyzed. Each of the bar reports the average of
all the experiments with the relative standard deviation. For in-
stance, the top left plot, which summarizes the results for single
devices, reports the overall average of the measures reported in
Tab. 2. Clearly, multi-point results are obtained from merging
the measurements from the five locations L1–L5.

The four plots referring to Majority Vote in Fig. 9 report the
localization accuracy in dark grey and the undecidable situation
(i.e., a majority decision has not been reached, see Sect. 5.1)
in light grey, with the relative standard deviations. The plots
for Nr = 2, 3, and 4 devices are obtained with all the possible
combinations out of the 5 locations, clearly for 5 devices only a
single combination is possible.

As expected, undecidable situations are particularly high
when we consider only two devices, while increasing the number
of receivers increases the performance and decreases the num-
ber of undecidable cases, until localization without obfuscation
becomes nearly perfect for Nr = 5 devices, but we can consider
the localization almost deterministic also with 4 devices, where
the accuracy is already above 90%. Notice that given the amount
of data we collected, these results are extremely reliable and
significant, making Wi-Fi-based localization a true threat for
location privacy. For Nr ≤ 5 the results reported indicate that
multi-point localization also makes the technique less sensitive
to the device position.

Considering the obfuscation results, it is immediately clear
that the technique we propose is robust also against a sophisti-
cated attacks brought with five devices strategically placed in the
surveyed room. Independently from the specific manipulation
all obfuscation techniques are efficient and make localization
useless for any practical purpose. It is clear that there exists
some residual information on the position embedded in the CSI
at the receivers, as the accuracy is always above the 12.5% of
a random guess (apart from the 2 devices Majority Vote, where
most of the situations are undecidable); however, this informa-
tion seems difficult to exploit as neither the Majority Vote nor
the Data Fusion technique seems able to extract this information
to make a guess that reliably goes above 20%, which is barely
more than the random guess.

It is interesting that when the obfuscation is active, for Major-
ity Vote, there is a high percentage of wrong decisions, which
were instead completely absent without obfuscation. This is
a strong indication that the randomized pre-distortion imple-
mented by the obfuscator successfully deceives the localizer, so
that it does not learn anything really meaningful during the train-
ing phase. Since the training phase is done with the obfuscator
active, the classifier (recall that the CNN learning is supervised,
so training should be effective in any case if there is information
to exploit) indeed learns random patterns and it is not able to
single-out the channel characteristics, resulting in classification
errors and not only undecidable situations.

0 1 2 3 4 5 6 7 8 9
MCS

0

20

40

60

80

100

P
D

R
 [%

]

Clean CSI - 25 ottobre

Clean
NF
CF3
CF5
CF7
FC3
FC5
FC7
Clean

Figure 10: PDR as a function of the MCS with different types of ran-
domization applied to the transmitted signal. Each point represent the
average result, while the vertical bars identify the 90% confidence inter-
val. Points are slightly offset from the integers they refer to for the sake
of readability.

8.2. Communication Performance

Sect. 8.1 has clarified that a multi-point localization attack can
be really effective, but also that proper position obfuscation is
feasible, and many possible obfuscation configurations are pos-
sible and roughly equivalent from the localization performance
point of view. What we have not yet discussed is the impact on
the communication performance, i.e., if the CSI manipulation
affects the throughput (or equivalently the PDR) at the legitimate
receiver (Rx in 1).

In Wi-Fi, the achievable throughput depends on the chosen
Modulation and Coding Scheme (MCS), while localization is
solely based on the CSI, which are independent from the MCS.
The 802.11ac standard defines ten MCS over 80 MHz and 800 ns
guard period with corresponding throughput increasing from
29.3 Mbit/s (MCS 0) to 390 Mbit/s (MCS 9). A higher MCS
enables higher throughput, but it is more sensitive to distortion,
noise and interference because of more advanced modulation
techniques and less robust correction codes.

Fig. 10 shows the impact of different randomization tech-
niques on the PDR, i.e., the percentage of Wi-Fi frames correctly
received. We transmit 1000 frames for every possible MCS and
for every randomization technique we are considering, and we
count how many frames we correctly decode at each receiver.
First of all we highlight that without obfuscation (‘clean’ re-
sults) the performance is in line with throughput documented
in the literature, with 100% PDR but for MCS= 8, 9, where
some frames are nearly always lost due to the high modulation
index (256-QAM), and reduced Forward Error Correction (FEC)
codes capabilities. On the other hand, pure randomization of the
frames subcarriers (‘nofilter’ results), penalizes performance as
soon as the modulation index of each subcarrier is not constant-
envelope (MCS= 3 and larger use QAM modulations), with the
exception of MCS= 3 where the robustness of the rate 1

2 FEC
compensates even for systematic errors.

The other results show the influence of different smoothing
filter lengths and relative positions of clipping and filtering on
the communication performance. There is a profound difference
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Figure 11: Percentage of correctly classified positions in the MIMO
case for different configurations: results for the Clean case are reported
with solid lines and circles; results for the CF5 case are identified by
dashed lines and squares.

in the performance achieved by Clip & Filter versus Filter &
Clip. It is evident that filtering the randomization mask before
applying clipping has a destructive effect on the communica-
tion performance, and this is particularly evident for MCS ≥ 3,
when QAM modulations are used, which are more sensitive to
amplitude distortion.

While it is difficult to provide a theoretical justification for
this evidence, we can try to explain this by noticing that, before
clipping, the values assumed by the random process may be
well-above or below the clipping threshold. The clipping oper-
ation forces the mask into the admissible range of values, but
also introduce some high frequency components in the signal
spectrum, which may interfere with other subcarriers, introduc-
ing systematic errors. In the transition phase between good and
bad performance (MCS 3, 4, and 5), the behavior is particularly
chaotic due to the interplay between the systematic errors and
the convolutional codes that change rate with different MCSs.
On the other hand, filtering the mask when the clipping has been
already applied has the effect of producing a “smoother” mask
with less high-frequency components, helping the receiver’s
equalizer to compensate the distortions. The filter length, on
the other hand, does not have a major impact on the PDR, al-
though longer filters improve the PDR slightly. It is clear that
we are still unable to perform perfect obfuscation without ham-
pering communications at all, but CF5 and CF7 provide a good
trade-off with similar performance both in obfuscation and in
communications.

For the reasons discussed above, in the next two subsections
we present results only for the Clip & Filter methodology with
5 taps C&F5. We highlight that experiments have been run
for all the configurations and this choice is done for the sake
of briefness and clarity, as the other results confirm what we
present and discuss without adding significant insight.

8.3. mimo: Localizing with MIMO Devices

The multi-point attack considered in Sect. 8.1 is powerful, but
costly and eventually difficult to mount. A legitimate question
concerns the possibility to use a single position with MIMO

Majority Vote

Clean1 CF51 Clean2 CF52
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 [%
]

Octopus Frankenstein

Data Fusion

Clean1 CF51 Clean2 CF52
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 [%
]

Octopus Frankenstein

Figure 12: Localization accuracy of the Octopus and Frankenstein
systems in different conditions and with different techniques.

technology and whether obfuscation is effective also in this
case. To this end, we collected the CSI from all 4 antennas of
the localization devices in positions L1–L5, and we trained the
localization algorithm with this data, with the same approach of
the base scenario.

Fig. 11 reports the localization accuracy and standard devia-
tion for the 5 location for the Clean and CF5 cases with single
antennas (the average of the 4 separate decisions), data fusion,
and Majority Vote (4 antennas, there are a few cases of unde-
cidable situations, but they are marginal and not reported for
the sake of clarity). Considering the Clean case, once again the
Majority Vote yields very good results, with a slight degradation
for L1 and L5, confirming that the position of the attacking
device does have an impact on results. The data fusion method
has results worse than the single antenna ones, indicating that
the CNN we have adopted is not suited to analize multiple CSI
at the same time, and a re-design of the localization attack is
needed also for MIMO technologies if a data fusion method is
desired.

Interestingly, when obfuscation is active, the performance of
the methodologies is inverted: Majority Vote performs as single
antenna does, while data fusion roughly doubles the localization
accuracy, even exceeding 50% for L2. This results is qualita-
tively confirmed by all the other obfuscation configurations: NF,
CF3/7 and FC3/5/7. Even if localization accuracy with obfusca-
tion remains well below any usability threshold, this behavior
suggests that an accurate study of the electromagnetic environ-
ment may lead to better localization performance with MIMO
technologies. This study is not only beyond the scope if this
paper, but it requires an extensive collection of specific data
from many different locations and scenarios.

8.4. Octopus and Frankenstein: Impact of Devices and An-
tenna Position

The results for mimo suggest to explore the role of the specific
antenna position and MIMO technology on the localization per-
formance, which is the goal of the Octopus and Frankenstein
configurations (Figs. 7 and 8). Fig. 12 summarizes the insight
we get from these configurations for the Clean and CF5 cases.
Again all other obfuscation cases confirm these results.

The key findings are two. First, looking at the Clean results
for Majority Vote (4 antennas) it is clear that diversifying the
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position of the CSI collection improves the localization perfor-
mance. This is an indication that the typical MIMO antenna
separation, not being designed for this task, might be too small
for robust sensing. Second, collecting the CSI from the same de-
vice improves the performance of data fusion when obfuscation
is active compared to its collection on different devices. Once
again we do not have a theoretical explanation for this behavior,
but it is possible that hardware imperfections introduce some
fake fingerprints in the CSI collected from different devices that
deceits the CNN. An indication that this may be the case comes
from studies on device fingerprinting and its obfuscation (see
[28]).

The final remark regards the main goal of this work: privacy
protection. All the experiments we did and the results we present
here indicate that CSI distortion is a viable solution to prevent
unauthorized localization of unaware victims.

9. Conclusions

Recent works have shown that:

1. It is feasible to exploit communication signals opportunis-
tically to sense indoor environments and localize unaware
victims, paving the road for diffuse and illicit surveillance;

2. CSI randomization represents an effective countermeasure
against such types of passive (CSI-based) localization at-
tacks and, if properly implemented, it does not hamper
communication performance and may find its way in future
standards.

The work we presented in this paper contributes a significant
step in the state of the art. For the first time, CSI obfuscation
against a full-scale multi-point localization attack is considered,
both with multiple devices and with the combination of MIMO
technologies. Our results show that such an attack can improve
the localization accuracy to a level where peoples privacy and
security as well are at risk. On the other hand, the experimen-
tal results show that proper CSI randomization techniques can
still disrupt localization attacks carried out with more than one
device: Even when five devices are used, a case that make
localization without obfuscation practically perfect, proper ran-
domization completely destroys the possibility of localizing a
victim. This is achieved while preserving most communications,
although without further improvements it is still impossible to
reduce the frame loss rate to zero for the highest MCSs.

This work also lays the foundation for more theoretically-
sound randomization techniques that are virtually identical to
real channel responses instead of altering the signal with promi-
nent features that may eventually be detected (and overcome)
by a powerful attacker. We emphasize that the requirements
for the localization prevention system that we discussed in this
paper are general and sound, meaning that they apply to any
such technique. At the same time they suggest that finding a
tractable formalization of the randomization process is a tough
task, because of the frequency-time correlation structure of the
process itself, and the complex interaction with the propagation
environment.

We think that the topic discussed in this paper from a purely
experimental point of view contributes a significant insight in
the area of Wi-Fi sensing and people’s localization (or even
activity and gesture recognition). Its formalization, the design
of protocols to ensure legitimate and useful sensing applications
while preventing illicit ones, the optimization of techniques once
a formal model is available are all very interesting topics we
hope the research community will tackle and help to solve.
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