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Abstract—The use of ultra high frequencies in 5G and future
networks to improve transmission speeds and capacity requires
that users’ equipment remain in Line of Sight with the access
antennas most of the service time. This requirement implies a
change in perspective to plan the coverage: Antennas cannot
be placed on roofs or remote antenna sites, and a robust
coverage is based on multi-antenna visibility from any point.
This paper tackles the problem of public street coverage in
urban areas with a data-driven methodology. Starting from 3D
digital maps, we formalize the problem of antenna placement
as a set coverage problem and leverage powerful heuristics to
implement a general algorithm that allows the exploration of
different policies, returning the detailed coverage, the antenna
placement, and the cost of the coverage. Results on 15 areas in 3
Italian cities show the properties of different policies and confirm
for the first time on large scale real data the feasibility of Line
of Sight communications with a sustainable number of antennas
per km2.

Index Terms—Wireless networks and cellular networks, Cover-
age planning, Economic aspects, Internet connectivity and Inter-
net access services, Access networks, Mathematical optimization

I. INTRODUCTION

The performance boost of next generation access networks,
5G and 6G included, is based mostly on the densification of
base stations and the use of ultra high frequencies (mmWave,
TeraHertz, up to optical frequencies) to provide increased
capacity to users’ equipment. The consequence is that commu-
nications require Line-of-Sight (LoS) (or near LoS) links, since
any obstacle (wall, vehicles, but also humans) at these fre-
quencies is an almost impassable barrier. In these conditions,
network reliability requires that each point in a public space is
covered by multiple antennas to compensate dynamically for
the shadowing of LoS links, which exacerbates the well-known
requirement of a higher density of base stations compared to
4G. Manufacturers estimate that 5G will require more than 100
base stations per km2, up from the 10 per km2 in LTE [1], and
even more in 6G. In the literature there are works suggesting
densities with more than a hundred next Generation NodeB
(gNB)/km2 [2].

The placement of antennas (gNB from now on) for LoS
communications in urban areas is a very complex task given
the complexity of the 3D topology defined by the building
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layout, yet computing the coverage, its redundancy for relia-
bility, and the cost to achieve it is of paramount importance
for the success of next generation mobile networks. gNBs
should be moved from antenna sites and roof-based positions
to building facades, light poles, or other suitable positions
that grant LoS on streets and public spaces, yet there is
a lack of scientific evidence on the feasibility and cost-
effectiveness of achieving redundant LoS coverage in urban
areas. Traditional coverage studies and analysis are based
on Non Line-of-Sight (NLoS) propagation models devised
for lower frequencies, where diffraction around corners and
reflections have very different characteristics from mmWave.
Modeling of 3D characteristics and cities is thus very different;
moreover antennas at lower frequencies allow over-the-roof
placement with good coverage on the ground, which is not
possible at mmWave frequencies, completely changing the
rules of network coverage and planning.

This paper uses a novel 3D approach to estimate the 𝑤-
coverage, i.e., the coverage with multiplicity 𝑤, and the cost
of its deployment. We study and adapt to the problem at
stake heuristics developed for set coverage and minimum
partial set multi-cover problems (both of them known to NP-
complete). The solution to these problems returns the optimal
placement of gNBs for LoS communications in urban areas,
and we propose different metrics (or score functions) that
allow adapting the heuristic solution to target different goals
of the coverage.

The knowledge base are LiDAR-derived open datasets that
describe the 3D shapes of buildings. This paper analyzes parts
of 3 Italian cities (Trento, Firenze, and Napoli) where we
selected 5 central areas with an average size of 0.7 km2, for a
total of 15 different locations. These three cities, even if all in
Italy, have different characteristics, and allow a good insight
and general conclusions stemming from the results obtained.
Extension to other cities and urban areas is straightforward
once the LiDAR-based data are available. In an Open Science
effort, we publish both the code1 and datasets [3] in public
repositories.

We consider placing antennas on the building facades, and
we use state-of-the-art ray-tracing techniques based on GPU
computation to estimate the LoS coverage with its multiplicity
on the ground area identified by public streets. gNBs are
supposed to be able to cover the entire area seen by their
placement site, possibly with more than a single antenna if
required. In other words, a gNB on the wall of a building

1https://github.com/UniVe-NeDS-Lab/TrueBS/
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has a 180° visibility, while if mounted on the corner it
has a 270° one. We devise a general algorithm that accepts
different score metrics of the candidate gNB positions, thus
enabling the exploration of different policies in pursuing a
given 𝑤-coverage, where 𝑤 = 1, 2, . . . expresses the level of
redundancy requested for the reliability. For instance, 𝑤 = 3
instructs the algorithm to pursue a coverage where each point
in the streets has visibility toward 3 gNBs.

Given the score function describing the coverage policy
selected, we evaluate the coverage (the actual outcome of
the algorithm), and the cost necessary to achieve it, offering
significant insight on the problem of robust coverage for LoS
communications, ranging from the effective number of gNBs
required to achieve a given coverage (e.g., 90 or 95%) to
building selection strategies to reduce the coverage cost.

This paper’s contribution addresses two different aspects
of coverage planning related to mmWave and in general
ultra-high frequency technologies that require LoS for good
performance.

The first one relates to the algorithms available to solve the
multi-coverage problem to increase robustness and resilience
of the network. We consider state-of-the-art algorithms derived
from visibility analysis problems and adapt them to tackle
communication networks’ planning, showing how to modify
them and how they affect the network design.

The second contribution is, to the best of our knowledge,
the first quantitative analysis on real urban data on the required
density of gNBs to achieve a robust and reliable coverage with
mmWave links. The results we present show that in general
between 60 and 120 gNBs per km2 are sufficient for LoS cov-
erage in public streets when the maximum distance between
the user equipment and the gNB for LoS communications is set
to 300 m [4]. This is consistent with the estimate of 100 gNBs
per km2 often mentioned by operators [1] and academics [5].

The remaining part of the paper is organized as follows.
First, Sect. II reviews the state of the art and the work related
to our contribution. Next, Sect. III formalizes the problem,
introduces the notation we use, and reduces it to a visibility
analysis problem, allowing the use of powerful tools and
heuristics to solve it. Sect. IV describes the optimization
objectives of coverage problems together with the constraints
that limit the solution space. The following Sect. V and VI
introduce heuristics at the state of the art that we adapt to
the specific problem at stake, also extending the heuristics to
reduce the cost of coverage. Sect. VII and VIII define the
metrics describing the fitness and robustness of the solutions
found and present numerical results for the three Italian cities
we have considered. Sect. IX closes the paper with a final
discussion.

II. STATE OF THE ART

The background of this contribution is rooted in different but
related research areas: cellular networks, land and population
coverage, foundational results on set coverage, and sensors
and camera placement problems. In fact, the LoS requirement
changes significantly the definition of the network coverage
problem itself, which essentially becomes a problem of cover-
ing extremely complex topologies (the 3D maps of cities) that

are represented digitally, with a resolution that can be as good
as one square meter or even better. With this representation
the task of covering urban areas can be naturally mapped
onto (very large) set covering problems, thus allowing the
exploitation of powerful heuristics developed for this class of
NP-complete problems. At the same time, the wealth of results
and methodologies coming from the cellular networks’ design
must not be disregarded, even if NLoS coverage and LoS
coverage are subject to different modeling solution techniques.
Similar problems have also been addressed in the study of
sensor and camera placement for monitoring purposes.

A. Cellular Networks Coverage

The placement of base transmitting stations has been widely
studied since the deployment of the first mobile networks
[6]. The densification of gNBs required by next generation
networks has brought the topic back in the limelight, but
the specific topic of LoS coverage of public areas has not
received vast attention yet; even very recent works as [5]
base their analysis on antenna directionality, but disregard the
3D geometry of the problem. Anjinappa et al. [7] investigate
the optimal placement for gNBs and passive reflectors in two
urban areas; however, they do not consider any cost model
or try to account for the Capital Expenditure (CapEx) to
deploy such a network. Two other works, [8] and [9] focus
on the placement of wall-mounted gNBs and approach the
problem using computational geometry in two dimensions,
thus disregarding the impact of buildings and the height
of the antennas. Zhang et al. [10] tackle the problem of
gNBs placement trying to minimize the outage probability
by studying a regular, Manhattan style urban topology, while
Haile et al. [2] use an approach similar to ours, for NLoS
communications. Another branch of research focuses on the
placement of Unmanned Aerial Vehicles (UAVs) base stations
[11] but has different requirements compared to our problem.

B. Set Covering Algorithms

The family of set covering problems are classical ones in
computer science. Given a set Λ and a collection Ω = {𝝈 𝑗 |
𝑗 ∈ [0, 𝑁]} where each 𝝈 𝑗 is a subset of elements of Λ,
the typical problem is to find a minimal subset Ω′ ⊂ Ω that
covers the entire Λ. This problem is known to be NP-complete,
but polynomial-time heuristics exist with bounded errors [12],
[13]. In our case, Λ is the set of points on a public street and
𝝈 𝑗 is the set of points covered by a gNB placed at a certain
position. There are two differences compared to the classical
problem. The first is that to achieve reliability we want to
cover each element of Λ at least 𝑤 times, and the second is
that we do not impose total coverage, but only the coverage
of a percentage of points. This is called a partial set multi-
cover problem and is less studied than the previous one. Ran
et al. address the difficulty of the problem [14], while recent
works [15], [16] provide heuristics with bounded error that
still require solving an integer linear problem at each step,
which is computationally impossible in our context.
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C. Sensors and Camera Placement

The research on sensor networks has addressed a similar
problem. Sensors are assumed to be able to perceive events
in a certain area around them, and one problem is to find
the minimal deployment of sensors that cover each point at
least 𝑤 times. This problem is not new [17] and received a
lot of attention [18], but the constraints and the solutions are
very different from network coverage: The visibility regions
of urban public spaces are not unit circles nor are they
stochastic regions; furthermore, there is no reason to keep
points connected because they are not communicating one
another, and our points are contiguous and not randomly
distributed on a 2D space. All the available solutions are based
on geometrical considerations that do not apply to our case.

A last area of research we mention as part of set covering is
the problem of placing the minimal set of cameras to monitor
a certain area, or a certain number of objects in space [19].
The problem is only partly similar because cameras can be
oriented, they can pan and zoom, and deployments are in the
order of tens of cameras, while we have tens of thousands of
potential locations. However, given the similarity to network
coverage, we adapt the heuristic proposed in [20] that tries
to achieve a fair coverage of selected targets from multiple
cameras.

III. PROBLEM STATEMENT

The optimal placement of gNBs for LoS communications
requires an efficient solution to determine the visibility be-
tween any two points. The solution to the problem is enabled
by two innovations. First, public administrations publish 3D
shapes of cities obtained using Laser Imaging Detection and
Ranging (LiDAR) technology as open data (generically called
Digital Elevation Models (DEMs)). These models can reach
a horizontal precision down to 30 cm and a vertical precision
in the order of 10 cm. Second, GPU computing allows the
efficient computation of LoS existence between two points in
a 3D space for thousands of potential gNBs on a high precision
DEM at reasonable costs.

In our research, we take advantage of visibility analysis, a
methodology that, given a point in space, provides the points
on the DEM that are in LoS. The outcome of the visibility
analysis is usually called viewshed, and the algorithms are
called viewshed algorithms. We have implemented a viewshed
algorithm [21] using Numba [22], a Python compiler that
allows producing object code for Nvidia GPUs. We have
introduced this technique in preparatory works to study the
connections between gNBs [23] while here we describe it
applied to ground coverage.

The DEM D we consider is a set of points in space
expressed by their 3D coordinates, with a sampling precision
of 1 point per squared meter (for the main notation used in
the paper see Tab. I). The coordinates are relative to the area,
so a point 𝑝 in the DEM is given by its coordinates (𝑥, 𝑦, 𝑧)
where 𝑥 and 𝑦 are integer values and 𝑧 is a real number. D is
represented by a matrix E of dimension 𝑚𝑥 ×𝑚𝑦 where 𝐸𝑥,𝑦

is the element of the matrix of indices 𝑥 and 𝑦, that is, the
elevation of the point with planar coordinates (𝑥, 𝑦). §E is a

Symbol Type Definition

D Set Digital Elevation Model (DEM)
E Matrix Matrix Representation of DEM
𝑝𝑖 , 𝑝 𝑗 Vector Generic points in a 3D space
Υ(𝑝𝑖 , 𝑝 𝑗 ) Function LoS function between 𝑝𝑖 and 𝑝 𝑗

𝑑 (𝑝𝑖 , 𝑝 𝑗 ) Function distance between 𝑝𝑖 and 𝑝 𝑗

V𝑖 Matrix Viewshed from 𝑝𝑖
𝑠𝑟 Set The points of the perimeter of building 𝑟

𝐴(𝑠𝑟 ) Function Function that returns the points inside 𝑠𝑟

𝑅 Scalar Number of buildings
S𝑟 Matrix Rasterized building shape
𝛿 () Function Dilation
P𝑟 Matrix Rasterized perimeter of the building 𝑟

C𝑟 Set Set of potential coordinates on the border of
building 𝑟

Λ Set (𝑥, 𝑦) coordinates of street points to cover
𝝈𝑖 Matrix Ground visibility from the point 𝑝𝑖
Ω Set Ground visibility matrices
Γ() Function Maximum coverage heuristic

TABLE I: Symbols and notation used in the paper. In general
scalars and vectors are standard math characters and matrices’
names are bold. Sets are calligraphic letters, elements of a
matrix use the same name of the matrix and appropriate
pedices, e.g., 𝜎𝑖

𝑥,𝑦 is an element of matrix 𝝈𝑖 .

bi-dimensional matrix, and every point 𝑝 in D corresponds to
a triplet (𝑥, 𝑦, 𝐸𝑥,𝑦). In some cases, we may refer to a point
𝑝 elevated from the 3D surface (𝑧 > 𝐸𝑥,𝑦), the context will
make it clear. Since the space of (𝑥, 𝑦) coordinates is sampled
we can enumerate the points, and we often refer to points 𝑝 𝑗

or 𝑝𝑖 .
Given D let Υ be a function that takes in input two points

𝑝𝑖 and 𝑝 𝑗 and returns 1 if there is LoS between 𝑝𝑖 and 𝑝 𝑗 or
0 otherwise. Computing Υ(𝑝𝑖 , 𝑝 𝑗 ) is not a trivial task, as it
requires calculating the segment between the two points and
checking if it intercepts the surface identified by D, zero times
(thus, there is LoS) or an even number of times as 𝑝𝑖 and 𝑝 𝑗

are on or above the surface identified by D (then there is no
LoS).

Given a point 𝑝𝑖 , we can define the viewshed from 𝑝𝑖 as
the binary matrix V𝑖 of size 𝑚𝑥 × 𝑚𝑦 so that for every point
𝑝 𝑗 ∈ D of coordinates (𝑥, 𝑦, 𝐸𝑥,𝑦) it holds:

𝑉 𝑖
𝑥,𝑦 = Υ(𝑝𝑖 , 𝑝 𝑗 ),∀ 𝑝 𝑗 ∈ D (1)

If 𝑝𝑖 is the position of a gNB then V𝑖 represents the points
in D that have direct line of sight with the gNB. We say that
point 𝑝 𝑗 is covered by gNB 𝑖 if 𝑉 𝑖

𝑥,𝑦 = 1 and we say that
𝑝 𝑗 has 𝑤-coverage if, given a certain placement of gNBs, it
is covered by at least 𝑤 gNBs. The goal of our contribution
is to study the deployment of gNBs that maximizes the 𝑤-
coverage of users’ equipment placed at 1.5 meters from the
ground given a specific density of gNBs per km2.

In this initial work we only consider buildings, disregarding
the effect of trees, lamps, vehicles and any other static or
moving object that is not found in the public datasets. This
choice leads to an optimistic evaluation of the LoS probability,
which is instead influenced also by these objects as studied
recently in [24]. Adding a probabilistic LoS model to our
study is not difficult, but, unless the model can be tuned with
realistic parameters for the area, it can also be misleading. The
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results we obtain and present in VIII are thus related to the
coverage and not to the (complement of) outage probability:
They represent the upper-bound of the probability that a
user in the area can receive the service through a mmWave
communication interface.

IV. PROBLEM CONSTRAINTS AND OPTIMIZATION GOALS

As LoS communications prevent placing gNBs on roofs,
we assume their deployment on the facades of buildings, a
location that is already used by telecommunication companies
to install fiber-to-the-home splitters and 4G small cells.

Let 𝐴(𝑠𝑟 ) be the area contained in a polygon 𝑠𝑟 that rep-
resents the 2D perimeter of a building, which we obtain from
open datasets, and let 𝑅 be the total number of buildings in the
area. Given a building 𝑟 whose 2D perimeter is represented
by 𝑠𝑟 , we implement a function that transforms the polygon
into a binary matrix S𝑟 of the same dimensions of E, so that:

𝑆𝑟𝑥,𝑦 = 1 ⇐⇒ (𝑥, 𝑦) ∈ 𝐴(𝑠𝑟 ) (2)

In order to isolate the border points of the building, we use a
morphological operation 𝛿() called dilation, which dilates the
binary matrix of the polygon by one unit in every direction
[25] and sets to 1 the corresponding coordinates. Then given
the matrix S𝑟 we define its perimeter using a matrix P𝑟 as:

P𝑟 = 𝛿(S𝑟 ) − S𝑟 (3)

Figure 1 shows the graphical representation of the matrixes S𝑟

and P𝑟 .
We assign to every point on the perimeter a height from

the ground 𝑧𝑟 that is the minimum between the height of the
building minus one meter and 10 m from the street level, and
finally we define the set of coordinates C𝑟 as:

C𝑟 = {(𝑥, 𝑦, 𝑧𝑟 ) | 𝑃𝑟
𝑥,𝑦 == 1} (4)

Eq. (4) identifies a set of potential positions for gNBs on
the facade of building 𝑟. Each point lies on the border of the
buildings and it is placed at the height of the building, or at
10 m from the ground if the building is taller than 10 m (as the
ITU recommendations for micro cells in urban areas suggest
[26]). In every area we have roughly 500 to 700 buildings,
the set of points 𝑝𝑖 ∈ {∪𝑟C𝑟 } is the set of potential locations
where to place our gNBs. As the average number of points per
building perimeter is roughly 100 we have a total of 50, 000
to 70, 000 potential gNB locations.

A. Defining the Ground Visibility Matrix

We use street maps provided by Openstreetmap, where each
road is identified by a mono-dimensional line that represents
the center of the street. We expand the line to make it a
2D surface and we call Λ the set of all (𝑥, 𝑦) coordinates
of the points on the street, obviously (𝑥, 𝑦) ∈ Λ → (𝑥, 𝑦) ∉
𝐴(𝑠𝑟 ) ∀𝑟 < 𝑅. Let us now consider all points 𝑝 𝑗 of coordinates
(𝑥, 𝑦, 𝐸𝑥,𝑦 + 1.5) where (𝑥, 𝑦) ∈ Λ. The point 𝑝 𝑗 is a point
in the street elevated by 1.5 m from the ground, a common
assumption of the position of a mobile terminal. Assume 𝑝𝑖

Fig. 1: Dilation of a building 𝑟 with its perimeter points P𝑟 in
blue (each pixel represents a point) and the rasterized building
shape S𝑟 in black.

is the position of a gNB, we call 𝝈𝑖 a 𝑚𝑥 ×𝑚𝑦 matrix whose
elements are defined as:

𝜎𝑖
𝑥,𝑦 =


0 (𝑥, 𝑦) ∉ Λ

0 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) ≥ 𝑑max

Υ(𝑝𝑖 , 𝑝 𝑗 ) otherwise
(5)

where 𝑑 (𝑝𝑖 , 𝑝 𝑗 ) is the euclidean distance between two points
and 𝑑max is a technology-dependent, arbitrary maximum com-
munication distance. 𝝈𝑖 is a binary matrix that represents all
the points in the street elevated of 1.5 m that are in line of
sight with the gNB placed at 𝑝𝑖 , and that are at a maximum
distance 𝑑max. We generally refer to 𝝈𝑖 as the ground visibility
matrix from point 𝑝𝑖 . Figure 2 shows the graphical rendering
of a matrix 𝝈𝑖 .

Given all the potential locations of gNBs, i.e., the union of
all the sets C𝑟 , let Ω be the collection of all potential visibility
matrices:

Ω = {𝝈𝑖 ∀ 𝑝𝑖 ∈ {∪𝑟C𝑟 }} (6)

and let 𝑘 be the number of gNB we want to install in that
specific area. The problem can be expressed as the search of
a subset Ω′ ⊆ Ω that maximizes 𝑤-coverage, with |Ω′ | ≤ 𝑘 .

The algorithm used to compute the viewshed from 𝑝𝑖 [27]
has a worst case complexity 𝑂 ( |𝐸 |2) as it has to check all the
points in the DEM. However, we limit the maximum distance
of each ray to 𝑑𝑚𝑎𝑥 . This leads to a complexity 𝑂 (𝑑4

𝑚𝑎𝑥) for
each viewshed. Since we compute a different viewshed for
each potential location in the set C𝑟 the overall complexity
for the computation of the set Ω is 𝑂 ( |C𝑟 | · 𝑑4

𝑚𝑎𝑥). We start
by defining 1-coverage, which is intuitive, and we then extend
the approach to arbitrary values of 𝑤.

B. Maximizing 1-coverage

Let | · |0 be the L0 norm of a matrix (the number of non
zero elements); the problem of maximizing 1-coverage can be
formalized as the search of a subset Ω′ ⊆ Ω, such that

|Ω′ | ≤ 𝑘 and
���∑︁𝝈𝑖 ∈ Ω′

���
0

is maximised. (7)

This is a classical maximum coverage problem, in which
we have a collection Ω of sets, each set has elements in Λ

and given 𝑘 , we need to find the 𝑘 sets that cover the largest
number of elements of Λ. Being a set covering problems, it is
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Fig. 2: Ground coverage 𝝈0 (light green) from a gNB in point
𝑝0 (black) in a portion of the city of Florence. Figure shows
also the buildings’ shapes 𝑠𝑟 (red), the set of points on the
street Λ (grey) and other gNB locations (purple).

NP-complete and can not be solved exactly when |Ω | and |Λ|
are in the order of tens of thousands. We leverage a polynomial
heuristic with bounded error [28] that allows finding a semi-
optimal solution in a reasonable time, extending it to fit our
problem. Since the maximum coverage problem can be seen as
a special case of maximization of submodular functions with
a cardinality constraint, we can state that the error of this
polynomial heuristic is bounded and it matches the theoretical
bound [12] [29].

C. Maximizing 𝑤-coverage

The interpretation of Eq. (7) is straightforward: given a
number 𝑘 of gNBs that can be deployed to cover a certain
area, we want to have visibility from at least 1 gNB to the
largest possible number of points in the public streets.

The 1-coverage is sufficient to claim to be covering an area,
but does not provide reliability because there can be obstacles
that obstruct the LoS with the gNB, the most obvious one
being the person that holds the terminal, but also other people,
cars, trucks, and so forth. The goal of a good coverage plan
must be to provide 1-coverage to the largest area, but also
a reliable service to mobile users, thus the problem is better
formulated as a 𝑤-coverage, with a suitable 𝑤.

Maximizing 𝑤-coverage can be formulated as finding Ω′

such that:

|Ω′ | ≤ 𝑘 and, given 𝚽 =
∑︁

𝝈𝑖 ∈ Ω′��{Φ𝑥,𝑦 ≥ 𝑤}
�� is maximised,

(8)

where 𝚽 is a matrix populated with the multiplicity of the
coverage for each point.

This is an extension of the set covering problem known as
minimum partial set multi-cover problem, it is NP-complete
[16], and no efficient heuristics are yet known. To solve this
problem, we start from a heuristic proposed for multi-camera
visibility [20] and, after analyzing the specific problem and
goal, we propose a simpler one with comparable performance.

V. A GENERIC HEURISTIC FOR 𝑤-COVERAGE

The goal of 𝑤-coverage is to guarantee a robust and efficient
coverage, but in communications it has many subtleties that
need to be considered, in particular, the problem that a

Algorithm 1 Computation of approximate solution to the max-
imum coverage and minimum partial set multi-cover problems

Require: Ω (Set of viewsheds), 𝑘 (number of gNB),
𝑤 (𝑤-coverage)

Ensure: Ω★ (Set of the viewsheds from optimal locations)
1: procedure 𝛤(Ω, 𝑘, 𝑤)
2: C = 0
3: Ω★ = {}
4: for 𝑖 ← 0 to 𝑘 do
5: ℎ★ = −∞
6: for 𝝈 𝑗 ∈ Ω do
7: C★ = C +𝑤 𝝈 𝑗

8: ℎ 𝑗 = 𝜌(C★, 𝑤) ⊲ Calculate score
9: if ℎ 𝑗 > ℎ★ and 𝝈 𝑗 ∉ Ω★ then

10: 𝝈★ = 𝝈 𝑗 ; ℎ★ = ℎ 𝑗

11: end if
12: end for
13: C = C +𝑤 𝝈★ ⊲ Update covered elements
14: Ω★ = Ω★ ∪ {𝝈★}
15: end for
16: return Ω★

17: end procedure

complete 𝑤-coverage in real cities is probably impossible or
simply too costly to pursue, so one has to take into account
also the points where the coverage is smaller than 𝑤, solving
dilemmas as, for instance, is it better to add an antenna that
improves the 1-coverage in 𝑛 points or one that improves the
𝑤 coverage in 𝑚 other points?

To achieve this goal we wish to have a single approximation
algorithm where different metrics (or score functions) can
be applied to explore different balances of the coverage.
Algorithm 1 describes the heuristic we propose to tackle the
𝑤-coverage problem, extending the heuristic algorithm for set
coverage proposed in [28].

Let us first introduce the notation used in the algorithm. Let
0 be the matrix of dimension 𝑚𝑥 × 𝑚𝑦 of all zeros. We also
introduce the sum-capped-to-𝑤 operator with symbol +𝑤 so
that given matrices B, D, then A = B +𝑤 D is a matrix whose
elements are: A𝑖, 𝑗 = min(𝑤, B𝑖, 𝑗 + D𝑖, 𝑗 ).

Algorithm 1 works as follows. It takes in input a set of
ground visibility matrices Ω, each one corresponding to a
point 𝑝 𝑗 where a gNB can be placed, a number 𝑘 of gNBs to
be placed, and the desired value for 𝑤. It returns a subset
Ω★ ⊂ Ω corresponding to the set of the viewsheds (1-t-1
mapped to gNB positions) that provide a close-to-optimal 𝑤-
coverage. Line 2 initializes the matrix C at 0. The points
on public streets are considered by the algorithm, the others
remain untouched at zero. Line 3 initializes the set Ω★ to
an empty set. Every iteration of the loop beginning at Line 4
chooses a new viewshed 𝝈 𝑗 (corresponding to a possible gNB
location) to be added to Ω★. To select the viewshed above,
every iteration of the loop beginning at Line 6 evaluates the
additional coverage offered by every possible viewshed, i.e.,
every possible candidate position for a gNB. C★ is defined at
Line 7 as the matrix of the points covered if the candidate
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viewshed 𝝈 𝑗 is added to the set. Every element of C★ is thus
the result of the element by element sum capped to 𝑤 of the
already existing coverage plus the viewshed 𝝈 𝑗 . The score
function 𝜌(C★, 𝑘) at Line 8 is the core of the algorithm that
actually defines the metric by which candidate gNB locations
are ranked. Sect. V-A discusses three different score functions
we propose and evaluate.

The score functions are defined so that a better coverage
obtained by adding 𝝈 𝑗 corresponds to an algebraically higher
value of ℎ 𝑗 . Line 9 checks the score and, if the score for
candidate 𝝈 𝑗 is greater than the largest found so far, the
candidate 𝝈★ and its corresponding score ℎ★ are updated.
Finally, Lines 13 and 14 update the coverage C and the list
of selected viewsheds Ω★; at the end of the algorithm, Ω★ is
returned, also yielding the selected gNB positions.

A. Score Functions

The final outcome of Algorithm 1 depends on the score
function 𝜌(), which specifies, step-by-step, the metric for the
best 𝝈 𝑗 selection. These functions express how the algorithm
will push towards 1-, 2-, . . . or 𝑤-coverage at each iteration.
We introduce here three functions that assign a different
importance to different levels of coverage; Sect. VIII analyzes
their impact on the final outcome.

1) 𝑤-coverage Maximization (𝑤-CM): The first score we
consider is a simple 1-norm (sum of all the elements) on the
candidate coverage C∗ computed at Line 7 in Algorithm 1:

𝜌(C∗, 𝑤) = |C∗ |1 (9)

For 𝑤 = 1 applying Eq. (9) in Algorithm 1 solves the canonical
maximum set coverage problem. For 𝑤 > 1 it returns the
global weight of C∗ elements, thus Algorithm 1 ends up in
maximizing the weighted coverage, without any attempt to
prioritize the points that have zero coverage over the ones that
have coverage between 1 and 𝑤−1. Notice that C∗ are capped
to 𝑤, so that points whose coverage is larger than 𝑤 do not
influence the score. Besides its simplicity, this naive function
completely disregards the difference between a point that is
not served at all and one that already has coverage, but whose
coverage is improved by adding the considered viewshed.

2) 𝑤-coverage Fairness (𝑤-CF): Reducing the difference
between different levels of coverage resembles a problem of
fairness, thus we recall the well-known fairness index proposed
by Ray Jain [30], that applied to our problem can be written
in terms of matrix norms as

FI(C∗) = ( |C∗ |1)2
|Λ| ( |C∗ |2)2

(10)

the 2-norm is the square root of the sum of the squared
elements of the matrix.

The fairness pushes all elements of C∗ to a similar value, but
alone does not provide a useful score, since we are interested
in a wide, fair coverage and not only in a fair one (all 0-
coverage is perfectly fair). This problem has been analyzed
in the context of visual coverage in sensor networks in [20],
and we adopt the same cost function proposed there, which,

adapted to the problem and with the notation of this paper can
be formalized as

𝜌(C∗, 𝑤) = FI(C∗) × |C
∗ |1
|Λ|𝑤 =

( |C∗ |1)2
|Λ| ( |C∗ |2)2

× |C
∗ |1
|Λ|𝑤 (11)

FI(C∗) is weighted by the ratio between the 1-norm of the
1-coverage and the target 𝑤-coverage (|Λ|𝑤), so that the first
factor of Eq. (11) tries to balance the coverage and the second
tries to extend it.

3) 𝑤-coverage Gap (𝑤-CG): The score defined by Eq. (11)
is composite (a multiplication of two factors aiming at different
goals), and its interpretation not always straightforward, thus
we propose a third, simple metric whose goal is to weight the
gap between the actual coverage and the target coverage with
a quadratic function. Let 1 be the 𝑚𝑥 × 𝑚𝑦 matrix with 1 in
all the positions that need to be covered and 0 otherwise. The
target coverage can be expressed simply as 1 ·𝑤, and the score
becomes

𝜌(C∗, 𝑤) = −(|1 · 𝑤 − C∗ |2)2 (12)

We use the squared value of | · |2 for computational efficiency.
Since this score measures a gap from the intended coverage,
we use its negative value so that Algorithm 1 remains consis-
tent in selecting the algebraic maximum.

When 𝑤 = 1 Eq. (9) and Eq. (12) yield exactly the same
result, while Eq. (11) returns a different numeric result (values
are divided by |Λ|2) but the obtained ranking is the same of
the other two. For this reason, Sect. VIII presents only 1-CM
results, while for other values of 𝑤 all metrics are reported.

B. Complexity

Algorithm 1 is composed of two nested loops, the first one
iterates over the number 𝑘 of gNBs that are to be deployed and
the second one iterates over the number of potential locations
|Ω|. At each inner loop the algorithm computes a score ℎ 𝑗 by
calling the function 𝜌. All score functions loop iteratively over
all the values of |C∗ |, so they have time complexity 𝑂 ( |C∗ |).
This leads to a worst case time complexity of 𝑂 (𝑘 |Ω| |C∗ |).

The memory required to execute the algorithm is bounded
by the number of ground points (Λ), as the algorithm allocates
a 2-dimensional matrix of size ( |Λ|, |Ω|) (Line 2). At Line 7
we allocate a new temporary matrix C∗ of the same size. Since
we only need to store a boolean value for each cell of the
matrix, we can use the smallest datatype available, which is
uint82. Thus the memory footprint is 2 |Λ| |Ω| bytes. The
memory footprint of 𝜌 is constant.

VI. THREE-STEP HEURISTIC

The heuristic presented in the previous section finds what
we call the semi-optimal placement for the gNBs. Given a cer-
tain number 𝑘 of gNBs that the operator can afford to place, it
provides the best locations where these gNBs should be placed.
Iterating on values of 𝑘 , we can answer the question: what is
the minimum number of gNBs and their positions to obtain 𝑤-
coverage of a certain fraction of points on the street, e.g. 95%?

2Theoretically a single bit could be used, but the Numba architecture does
not support it.
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However, Algorithm 1 treats every 𝝈 𝑗 in Ω the same way,
irrespectively of the building it corresponds to. This means that
if convenient, the algorithm can place one gNB per building,
or even all gNBs in the same building. Albeit theoretically
possible, these configurations would be practically impossible
or not cost-effective. To produce realistic results we need to
introduce two practical constraints based on the cost estimation
of a gNB deployment.

In a study done in 2020, Oughton et al. calculated the cost
of a 5G small cell to be 20100$, of which only 3380$ were
accountable to the radio3 while the rest includes several fixed
costs for constructions, hardware, backhaul fiber network, etc.
that are needed to realize the gNB [31]. We assume that
a multi-radio small cell can be realized keeping the fixed
cost constant, and increasing the number of radios up to a
maximum of 5 per gNB. This is a free parameter of our
algorithm and can be adjusted to any other value.

We designed a heuristic that applies Algorithm 1 in three
steps to limit the number of buildings on which to place gNBs
and the number of radios per gNB: First, for every building,
it finds the best 5 points that maximize the building visibility;
Second, it finds the top 𝑔 buildings ordered by their cumulative
visibility provided by the best 5 points; Third, among the best
5 points of the top 𝑔 buildings, it finds the overall best 𝑘

locations for the gNBs. The choice of 𝑔 is key for the final
result, in fact, if the target of the operator is to provide 𝑤-
coverage to a certain percentage of the points on the ground,
if 𝑔 is too small such objective may not be reachable. On
the other hand, the larger is 𝑔, the higher is the cost of the
deployment. The optimal 𝑔 is of course scenario-dependent
and can be found iterating on 𝑔 with our heuristic. Since
reducing the number of buildings (and thus the cardinality of
Ω) makes the 3-step heuristic faster than the original one, the
optimal 𝑔 for an area of roughly 0.7km2 with 135 gNB/km2

can be computed in around 1 minute.
Note that the formulation of the 𝛤 () function in Algorithm 1

is extremely generic as it takes a set Ω of viewsheds as an
input, and it returns another set of viewsheds. We can thus
change the input Ω and 𝑘 and apply the algorithm three times
obtaining semantically different results, without the need to
modify its internals.

A. First step: Point selection

At the first step we limit Ω to the set of all points from a
single building. Let Ω𝑟 be the set of all the visibility matrices
from points on the (dilated) perimeter of builing 𝑟 , then:

Ω𝑟 = {𝝈 𝑗 ∀ 𝑝 𝑗 ∈ C𝑟 } (13)

We apply 𝛤 () using Ω𝑟 as the first argument, and limiting the
choice to 5 points. We obtain a list of viewsheds from the best
5 points in the building.

Ω𝑟
5 = 𝛤 (Ω𝑟 , 5, 𝑤) (14)

We repeat this step for every building 𝑟 .

3These costs have been converted to Dollars ($) for the sake of readability,
in the original research they were expressed in British Pounds (£).

B. Second step: Building Selection

Let 𝚽𝑟 be the ground visibility matrix of building 𝑟 , i.e.,
the visibility matrix from the best 5 points on the facade of
building 𝑟. 𝚽𝑟 is defined as the logical OR (

∨
) of all the

binary visibility matrices:

𝚽𝑟 =
∨

𝝈 𝑗 ∈Ω𝑟
5

𝝈 𝑗 (15)

and let Ω𝑅 = {𝚽𝑟 ∀ 𝑟 < 𝑅} be the set of all the visibility
matrices from all buildings. Invoking the function 𝛤 () using
Ω𝑅 and 𝑔 as an input, we obtain the cumulative viewsheds
from the best 𝑔 buildings. Since the areas in which we run the
experiments are different and contain a different number 𝑅 of
buildings, in practical terms it is more convenient to refer to
the percentage 𝑋 of buildings to be used, where 𝑔 = d 𝑋

100 ∗𝑅e.
We then define:

Ω𝑅
𝑋 = 𝛤

(
Ω𝑅,

⌈
𝑋

100
∗ 𝑅

⌉
, 𝑤

)
(16)

that is the set of the best cumulative viewsheds from a
percentage 𝑋 of the buildings of the area.

C. Third step: gNB Selection

Step two returns a set of cumulative viewsheds obtained
considering the best 5 points on 𝑋% of the buildings, and we
use it to select the set 𝐵𝑋 of the indices of the best buildings:

𝐵𝑋 = {𝑟 ∀ 𝑟 |𝚽𝑟 ∈ Ω𝑅
𝑋 } (17)

and thus we can define the input to the third and last step of
the heuristic:

Ω𝑋 = {𝝈 𝑗 ∈ Ω𝑟
5 ∀ 𝑟 ∈ 𝐵𝑋 } (18)

Ω𝑋 contains all the possible viewsheds from each of the
best 5 points (selected in step 1), from 𝑋% of the buildings
that have the best cumulative viewshed (selected at step 2).
As an example consider an area with 600 buildings each of
which has an average of 100 points on its border. If 𝑋 = 10
then 𝑔 = 60, and the third step of our heuristic would explore
at most |Ω𝑋 | = 60 × 5 = 300 locations out of the 60.000
available.

Finally, we apply 𝛤 () again and obtain:

Ω★
𝑋,𝑘 = 𝛤 (Ω𝑋 , 𝑘, 𝑤) (19)

Ω★
𝑋

contains exactly 𝑘 viewsheds that correspond to 𝑘 points in
space where to place gNBs. These places represent the semi-
optimal choice among Ω𝑋 , with a maximum of 5 radios per
building and 𝑋% of buildings.

Similarly to what we did passing from 𝑔 to 𝑋 , it is more
practical to target a desired density _ of gNBs per squared
km, rather than a number 𝑘 . So, given a certain area and _ we
have:

Ω★
𝑋,_ = 𝛤 (Ω𝑋 , _ ∗ area, 𝑤) (20)

We are now able to compare the coverage obtained in
heterogeneous areas with a target density of gNBs per squared
km, using 𝑋 as a tuning parameter to obtain the most favorable
cost/performance trade-off.
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Fig. 3: Graphical rendering of the area choosen for the
experiment (in dark grey), its buffer of radius 𝑑max/2 (in light
grey), and the set of points on the street Λ in black.

Note that while the original heuristic has a bounded error,
our three steps heuristic loses this theoretical property. How-
ever, when used with 𝑋 = 100% the effect is to pick the
best 5 points for each building, and then apply the bounded
heuristic to this restricted set of points. This reduces the
dimension of the problem, but also corresponds to a practical
constraint in real deployments, since the number of gNBs per
building cannot grow arbitrarily. The application of the three-
step heuristic with 𝑋 = 100% thus maintains the bounded
error, and Sect. VIII shows that results with 𝑋 = 4% are very
close with a strong reduction of the cost of the infrastructure.
Finally, since Algorithm 1 has polynomial complexity, its
three-step application is again of polynomial complexity.

VII. EXPERIMENTS SET UP AND METRICS

As already mentioned we evaluate 5 areas for each of the
three densely populated Italian cities for a total of 15 scenarios.
Trento, Firenze, and Napoli, however, have quite different
urban textures, so they represent a valid sample of different
urban areas. The average size of the areas is roughly 0.7 km2

and is limited by the computational power we had access
to, as obtaining Ω★

𝑋,_
is a computationally intensive task that

requires handling tens of thousands of large integer matrices.
To speed-up the algebra on large matrices we implemented
the algorithms on an NVIDIA V100 GPU equipped with
5120 CUDA cores, which enables parallelization of matrix
operations. The limit is given by the 16 GB of RAM of the
GPU which limits computation to areas of up to 1 km2. Results
can be extended to larger areas straightforwardly with more
resources, and with some effort by improving the memory
space optimization.

Placing the gNBs in a constrained area causes a border
effect: Points on the border of the area can be covered only
by the gNBs placed inside the area, but not from the ones
outside the area, which would be present in the real world
coverage. For this reason, we enlarge the area where gNBs
can be placed with a guard band of width 𝑑max/2 m as shown
in Fig. 3 (light gray area), but we measure coverage only in
the inner area (dark gray area).

Fig. 4: Graphical rendering of the coverage 𝚽4,45 (shades of
green), and the set of optimal points (black dots) in a portion
of one of the considered areas, in Napoli.

A. Evaluation Metrics

To evaluate the performance of different algorithms and
their parameters we calculate the effective coverage, that is
the sum of all the viewsheds 𝝈𝑖 ∈ Ω★

𝑋,_
:

𝚽𝑋,_ =
∑︁

𝝈 𝑗 ∈Ω★
𝑋,_

𝝈 𝑗 (21)

This matrix, with the same dimensions of E, contains values
ranging from 0 (no LoS with any gNB) to 𝑘 = _ ∗ area
(LoS with all gNBs). Fig. 4 shows the effective coverage on
a sample area of Napoli.

Every experiment is repeated varying _, 𝑋 and 𝑤 as reported
in Tab. II; in graphs we report the confidence interval on the
15 areas with confidence level 𝛼 = 0.95 as error bars.

Parameter Value Descriptioon

_
{15, 45, 75, 105,
135, 165, 195 } gNB density

𝑋 {2, 4, 100}% Percentage of buildings
dmax 300 m Maximum distance for the links [4]
cgNB 16720 $ Cost of a gNB without any radio [31]
cradio 3380 $ Cost of each radio of a gNB [31]
𝑤 {1,3} Target coverage

TABLE II: Parameters used for the numerical results presented
in the paper.

1) Coverage: The coverage metric, analyzed as a function
of 𝑋 , counts the number of points with 𝑤-coverage normalized
by the total number of points on the public street;

𝑐𝑤 (_) =
𝛾𝑤 (𝚽𝑋,_)
|Λ| (22)

where 𝛾𝑤 (𝚽𝑋,_) is a function that counts the number of
elements of 𝚽𝑋,_ that are greater or equal than 𝑤. In the
numerical results we show 𝑐1 (_), which expresses the portion
of streets covered by at least one gNB, and 𝑐3 (_) the portion
of streets covered with higher reliability (at least 3 gNBs).
We also show the coverage distribution on the points of Λ,
i.e., the Empirical Probability Density Function (e-pdf) of the
coverage values.
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Fig. 5: Ground projection of two examples of 3-coverage.
Black dots are gNBs.

2) Resistance to Obstruction: Fig. 5 depicts the ground
projection of the rays that connect a point 𝑝 to three gNBs
in two different cases. In both scenarios, an obstacle that
obstructs an angle 𝛼2 + 𝛼3 may totally shadow 𝑝, but in the
right figure this is way more likely than in the left one, so
𝑤-coverage alone does not necessarily imply resistance to
obstruction. We define 𝛼𝑐 (𝑝) = 360◦ − max(𝛼1, 𝛼2, 𝛼3) to
be a measure of robustness against shadowing. It is easy to
show that one single object that obstructs an angle smaller
than 𝛼𝑐 (𝑝) cannot totally prevent LoS with some gNB, so the
larger is 𝛼𝑐 (𝑝) the better it is. Let Λ2 be the set of points with
coverage larger or equal than 2, then

𝑂𝑅 =
|{𝑝 ∈ Λ2 | 𝛼𝑐 (𝑝) > 45◦}|

|Λ2 |
(23)

provides the fraction of points for which one obstacle that
obstructs 45◦ does not prevent LoS. In the absence of finer
metrics, 𝑂𝑅 provides a heuristic measure of how well the
coverage can resist to shadowing.

3) Total Cost: The cost function we use to evaluate the
CapEx for the deployment of the network follows a cost model
conceived for 5G networks [31]. From the model we extract a
fixed part 𝑐gNB for the deployment of the gNB in a building,
and a variable part for each radio interface of the node (𝑐radio):

cost(_) = 𝑐gNB ∗ 𝑁gNB + 𝑐radio ∗ 𝑘 (24)

where 𝑁gNB counts the number of buildings on which at least
one gNB has been deployed and 𝑘 = _ ∗ area. The cost()
value depends on the desired density of gNBs per km2, so it
is expressed as a function of _, but it is also influenced by 𝑋 .
We also define upper and lower bounds of the cost function,
as:

UB = (𝑐radio + 𝑐gNB) · 𝑘
LB = 𝑐radio · 𝑘 + 𝑐gNB

(25)

The upper bound UB is given by the worst case where
every coverage point is a single antenna gNB on a different
building, while the lower bound LB is given by the (practically
impossible) network where all radios are placed on a single
building.

4) Marginal Cost: To estimate the Return of Investement
(RoI) of deploying a robust network, we also evaluate the
cost-effectiveness of adding new gNBs to further improve the
coverage. We evaluate the cost of a deployment with growing
densities _𝑖 . Since the heuristic is deterministic, if _𝑖−1 < _𝑖
then Ω★

𝑋,_𝑖−1
⊂ Ω★

𝑋,_𝑖
, and the difference cost(_𝑖) − cost(_𝑖+1)

is exactly the marginal cost of the added gNBs. Similarly,

𝑐𝑤 (_𝑖)−𝑐𝑤 (_𝑖−1) is the marginal increase of relative coverage.
Thus we can define the incremental cost metric 𝑚𝑐:

𝑚𝑐 (_𝑖) =
cost(_𝑖) − cost(_𝑖−1)
𝑐1 (_𝑖) − 𝑐1 (_𝑖−1)

(26)

that provides an efficiency metric ($/m2) to estimate how cost-
effective it is to increment the density of gNBs to improve
coverage.

VIII. RESULTS

We present the results following the same order we intro-
duced for the metrics: coverage, total cost, and marginal cost.

A. 1-Coverage

Fig. 6 reports 𝑐𝑤 (_) for 𝑋 = 2, 4, 100% and 𝑤 = 1, 3.
Each point is the average of all 15 areas we consider; vertical
bars are the 95% confidence intervals. Since areas are never
overlapping and thus they are independent, we can safely
consider their average coverage as the outcome of an i.i.d.
random variable, thus the confidence interval can be computed
as a Student-t distribution with 15 degrees of freedom. The
confidence intervals are reasonably compact, thus we deem
that the results are reliable.

If we focus on the first row (1-coverage) the plots show
one key point of our analysis, that it is possible to obtain
a very large 𝑐1 in urban areas with _ below, or very close
to 100. This confirms that in urban areas a very high LoS
coverage is achievable with a number of gNBs that is close to
what is expected (roughly ten times what is used for 4G, so
_ ' 100). We see in fact that with 𝑋 = 100 and with 𝑋 = 4
all the curves reach 𝑐1 = 80% (_ = 45), 𝑐1 = 90% (_ = 75),
and 1-CM and 3-CG reach 𝑐1 = 95% (_ = 105). We stress
that these results were obtained with realistic assumptions: a
limited, realistic number of devices per building and a precise
ray-tracing model based on real data. All curves follow a trend
expected in a set covering problem, with a steep initial rise
followed by a saturation phase.

1-CM provides the highest 1-coverage, which is consistent
with its design, while it is important to note that 3-CG, when
evaluated on 𝑐1, dominates the other 3-coverage strategies on
values of 𝑐1 > 80%. The difference is not very large, but it
is consistent in the saturation phase, in which it is extremely
expensive to gain even a single percentage point, thus this
very simple score function serves well both coverage and
robustness. We also see that with 𝑋 = 2% all strategies stay
below 𝑐1 = 90%, while as said, with 𝑋 = 4% we can achieve
results that are very close to 𝑋 = 100.

1) n-Coverage and Reliability: Let us now focus on the 3-
coverage row, which confirms that 𝑋 = 2% is outperformed by
the other two configurations (and thus, we do not comment on
results with 𝑋 = 2% anymore). It is evident that a remarkable
difference between 1-CM and the 3-coverage strategies exists.
Among the latter ones, 3-CM is the one that performs slightly
better than others, as it focuses only on 3-coverage and
disregards other possible goals. In this case, the difference
in the saturation point between 𝑋 = 4 and 𝑋 = 100 is more
evident, as with 𝑋 = 4 the highest 3-coverage is 84%.
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Fig. 6: Coverage metrics 𝑐1 and 𝑐3 for different values of 𝑋 and different score functions evaluated on all the 15 areas
considered.
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Fig. 7: Empirical pdf (e-pdf) PDF of the coverage for 𝑋 = 4 and different _.

The take-away from this set of results is that if an operator
wants just to provide 1-coverage, it should use 1-CM, and can
reach 95% coverage with _ = 75 and 𝑋 = 4%. This is the most
cost-effective solution, as shown later, but obviously is also the
most fragile. If the operator is interested only in 3-coverage,
because its target customers need extremely high reliability,
then the best choice is 3-CM, calibrating 𝑋 on the desired
coverage. Most likely the operator is interested primarily in
1-coverage (because it enables the service to people) and
with lower priority in 3-coverage (for users that need high
reliability). In this case, 3-CF and 3-CG are the best choices,
as they perform very close to 1-CM in terms of 1-coverage
while being very close to 3-CM, outperforming 1-CM, in terms
of 3-coverage.

To better understand the behavior of the coverage as a
function of the gNB density, and why it tends to saturate
before reaching 100% coverage, Fig. 7 shows the e-pdf of
the coverage multiplicity for 𝑋 = 4% and three values of _.
First, it is clear that to reach a good 1-coverage some areas are
covered many times, with the tail of the coverage distribution
growing significantly. Second, 3-CM penalizes the 1-coverage
to the point that the probability of 0-coverage is higher than the
probability of strictly 1-coverage. The mass of the distribution
is different between 1-CM and the 3- score functions, but the
tails remain very close to one another suggesting that there
are geometric properties that force a very high degree of
coverage in some areas when trying to cover the areas that
have remained uncovered.
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Fig. 9: ECDF of the length of the link to the nearest BS. The
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Fig. 8 shows the robustness to obstruction 𝑂𝑅 for all points
𝑝 ∈ Λ2 for different _ values. We report also the bar for 1-CM
for completeness, but previous results show that 2-coverage
for 1-CM is bad (for each reported _ slightly more than 50%
of 2-coverage compared to the worst of the other strategies),
thus 𝑂𝑅 should be weighted by its lower 2-coverage and it is
not really meaningful. The other strategies perform similarly,
with a fairly high fraction of points (between 63% and 77%)
that resists to shadowing from an obstacle that obstructs a 45
degree angle, and 3-CG better than the others in three cases.
On the other hand, increasing the density of gNBs by a factor
of 3 improves 𝑂𝑅 only about 10%, which indicates that to
improve this result a different heuristic that takes into account
this specific objective should be considered.

Finally, Fig. 9 presents the E-CDF of the length of the link
to the closest gNB for every covered point. We report this
metric to show that with any value of _ the largest majority
of the best links are below 100 meters of length, and the 95%
of them are below 214 meters (less than 200 meters for higher
density), so our choice of setting the maximum link length to
300 meters only marginally impacts the results.

B. Total Cost

Fig. 10 shows the cost of each deployment as a function
of _ for 𝑋 = 4%; and 𝑋 = 100%. Changing 𝑋 gives rise to
very different trends, with the cost for 𝑋 = 4% that grows
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Fig. 10: Deployment cost of the network with the four score
functions and for 𝑋 = 4 and 100%.

coverage 1-CM 3-CG

0.84 19% 24%
𝑐1 0.90 27% 24%

0.95 30% 36%

𝑐3 0.84 – 70%

TABLE III: Cost increase passing from 𝑋 = 4% to 𝑋 = 100%.

remarkably more slowly than the cost for 𝑋 = 100%. This
is the beneficial effect of limiting the number of buildings.
Fig. 11 reports the trends of the cost using as a free variable the
coverage, with vertical lines to highlight key coverage values
(90% and 95% in 𝑐1 and 84% in 𝑐3). The cost for 𝑋 = 100% is
always higher than the cost for 𝑋 = 4% at the same coverage:
our heuristic with 𝑋 = 4% may need a higher _ compared to
𝑋 = 100% (as Fig. 6 shows), however, the total cost of for 𝑋 =

100% is higher because it uses more buildings. This results
highlight two facts. First, the cost to ensure nearly complete 𝑤-
coverage increases very fast with a sort of asymptotic behavior
independently from 𝑤. Second, and rather obvious, including
all buildings in the selection allows a better coverage again
independently from 𝑤.

We quantify this increase in Tab. III reporting the relative
cost difference between 𝑋 = 4% and 𝑋 = 100% with the 1-
CM and the 3-CG strategies at the same coverage value (the
intercept of the vertical lines and the curves in Fig. 11). Not
limiting the number of buildings produces an increased cost
of 19% and 36% for 𝑐1 and a probably unacceptable 70% for
𝑐3.
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Fig. 12: Marginal cost per covered m2 for different 𝑤-coverage
and strategies.

C. Marginal Cost

Fig. 12 reports the marginal cost per m2 𝑚𝑐 (_). Each point
is the ratio between the increased cost and the increased
covered area (Eq. (26)). The figure shows that 𝑐1 (left plots)
monotonically increases for the 1-CM strategy, with very high

costs when the gNB density becomes very high (_ = 160, 180).
This is consistent with the design of the metric as it is trying to
cover every single uncovered point, at the cost of placing new
gNBs that cover just a few squared meters. The other metrics
instead grow up to a certain coverage and then oscillate with
a more noisy trend. This is an artifact of the metric, as the
incremental cost is monotonously growing as in Fig. 10, but
the incremental covered area is not monotonously growing for
strategies that use 𝑤 = 3 that do not simply try to maximize
𝑐1.

Looking at the right column, we see that the marginal cost
per m2 of 𝑐3 has a different trend. Initially, the cost for all
strategies decreases, as the 3-coverage is very low (see Fig. 6)
and it is easy to improve it. When the coverage curves start to
saturate, then 𝑚𝑐 increases. The 1-CM strategy has a lower 𝑚𝑐

simply because it has a lower 𝑐3 and thus, it is not saturating
even at high values of _.

Our approach makes it possible to obtain these data that
are vital for operators, because they help to identify a realistic
maximum value for coverage, beyond which it is not cost-
effective to add more gNBs.

IX. CONCLUSIONS

The increased demand for bit-rate and the growth of the
number of devices pushed the designers of 5G and 6G to
use high frequencies (mmWave or THz), a direction that is
surely nonreversible. At high frequencies, the communication
takes place primarily in LoS, and we know that this implies a
densification of base stations. Yet, we do not know how to plan
a robust access network that uses LoS communications, we do
not have evidence to state if this approach is actually feasible
at large scale, and we do not know if it is cost-effective.

This paper provides some initial answers to these open
issues using a data-based approach to plan a LoS network
in urban areas. We exploited the availability of open data
and fast GPU-based computation and we implemented several
algorithms to study the realization of robust coverage of
open areas, showing that the problem can be solved with
a reasonable density of gNB per km2. We have shown that
the problem of maximizing 1-coverage or 3-coverage are
competing ones, and there are no algorithms in the literature
that we can use to solve them at the needed scale.

The new heuristic proposed prove to be the best trade-off
between 1-coverage (that is the minimal requirement for an
operator) and 3-coverage, and finally, we have evaluated the
cost of our solution using state-of-the-art estimations.

We believe the approach we propose can open the way to
new research, improving our own, and introducing several
other challenges. As an example, we mention the use of
Integrated Access and Backhaul (IAB) to further reduce the
cost of each gNB, or the design of efficient solutions for rural
areas, where the cost per user is way larger than in urban areas.
Data-driven design can tackle those challenges and, to support
the research community in making these steps, we publish all
our code and data, together with the paper.
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