
Wi-Fi Localization Obfuscation: An implementation in openwifi

Lorenzo Ghiro, Marco Cominelli, Francesco Gringoli, Renato Lo Cigno

Department of Information Engineering (DII) — University of Brescia, Italy and CNIT (Consorzio Nazionale Interuniversitario per le Telecomunicazioni)

Abstract

Wi-Fi sensing as a side-effect of communications is opening new opportunities for smart services integrating communications
with environmental properties, first and foremost the position of devices and people. At the same time, this technology represents
an unprecedented threat to people’s privacy, as personal information can be collected directly at the physical layer without any
possibility to hide or protect it. Several works already discussed the possibility of safeguarding users’ privacy without hampering
communication performance, using signal pre-processing at the transmitter side to introduce pseudo-random (artificial) patterns in
the channel response estimated at the receiver, preventing the extraction of meaningful information from the channel state, a process
called obfuscation. One step beyond the proof-of-concept for obfuscation feasibility, is its implementation in working systems. In this
work, we present the implementation of a location obfuscation technique within the openwifi project that enables fine manipulation
of the radio signal at transmitter side and yields acceptable, if not good, performance, the system has been implemented for both
802.11a/g/h and 802.11n systems, including MPDU aggregation, while implementation for 802.11ac or ax is still not feasible because
openwifi does not support 40 MHz channelization and beyond. This contribution discusses the implementation of the obfuscation
subsystem, its performance, possible improvements, and further steps to allow authorized devices to “de-obfuscate” the signal and
retrieve the sensed information.

Keywords: CSI-based Wi-Fi Localization, Smart Spaces, Privacy Protection, Location Obfuscation, FPGA Implementation, Physical
Layer Security

1. Introduction and background

Wi-Fi sensing is attracting interest for many reasons: It is
cheap; Wi-Fi is ubiquitous, thus it is easy to deploy; and it can
be adapted to sense many different parameters. Furthermore,
joint communication and sensing is one of the founding pillars
of the vision for communications beyond 5G [1, 2, 3, 4] and the
principles and technologies involved are not different from Wi-Fi
sensing, thus studies and experiments on this subject turn out to
be enablers also for future systems.

Sounding the channel to sense the environment can reveal a lot
of information, useful both for communications and for ambient
characterization, which can be used to enhance services. The
benefit of the former are out of question, while the use and goals
of the latter are still under discussion. Indeed, the survey [5]
highlights how the targets of Wi-Fi sensing are most often human
beings, their position, activity, state, even speech or mood [6],
and Artificial Intelligence (AI) based sensing methods can be so
sophisticated, that they can be trained to locate and recognize
activities of people who do not carry Wi-Fi devices, and are thus
potentially completely unaware victims of attacks.

In conclusion, joint communication and sensing fundamen-
tally means tracking people, understanding their behavior, and
collecting personal and sensitive information, threatening peo-
ple’s privacy and even their security. For instance, Wi-Fi sensing
might be used to detect when an apartment is empty and can
be robbed, or to control the whereabouts of people in public or
private spaces.

This observation pushed other research groups and us to study
whether there is a way to counter Wi-Fi sensing while protecting
communication performance. Countering Wi-Fi sensing means
concealing the information on the environment carried by the
electromagnetic signals and retrieved via Channel State Infor-
mation (CSI) analysis. Protecting communication performance
means guaranteeing that the concealment process does not de-
stroy the information carried by the signal. More specifically,
the equalizer of a receiver should remain able to compensate for
the additional channel distortion introduced by the concealment
process.

With reference to Fig. 1, which presents a schematic block
of integrated Wi-Fi sensing and reception, our research aims at
understanding if and how it is possible to “break” the sensing
chain without damaging the receiving chain. We call obfusca-
tion the act of hiding non-communication-related information,
distinguishing it from the more common jamming, whose goal
is simply destroying the entire communication capability of the
system.

The works presented in [7, 8, 9] are feasibility studies describ-
ing proof-of-concept architectures that can achieve obfuscation
against non-authorized sensing. These studies discuss method-
ologies and experiments based on offline signal processing; as
such, they lack an actual implementation that analyzes if and
how it is possible to implement a privacy-preserving Wi-Fi sys-
tem and if this system can ultimately enable legitimate sensing
(e.g., gesture recognition for remote e-health systems) while
preventing illegitimate one.

Preprint submitted to Computer Communications March 9, 2023

fro
nt

-e
nd

 fi
lte

r

sa
m

pl
in

g

eq
ua

liz
er

de
m

od
ul

at
io

n
an

d
de

co
di

ng

C
SI

 e
xt

ra
ct

io
n

fe
at

ur
es

an
al

ys
is

received
bits

estimated
parameters

se
ns

in
g

an
d

cl
as

si
fic

at
io

n

receiver chain

sensing chain

Figure 1: High-level view of the Wi-Fi sensing process.

The contribution of this paper, which extends the prototype
presented in [10], is precisely in the direction of filling the gap
just described. We have realized an implementation of the tech-
nique presented in [7, 11] for both 802.11g/a/h and 802.11n
extending openwifi, we experiment to test the obfuscation prop-
erties and the communication performance, and we discuss the
limitations imposed by the implementation framework. In the
last part of the paper, we introduce directions to integrate our pro-
posal in future standards, also discussing a possible protocol that
can make the obfuscation invertible, thus allowing authorized
devices to perform the desired sensing, including localization of
people who do not carry any 802.11 device, e.g., for advanced
e-health applications.

Focusing on the implementation, compared to [10], we have
added the support for 802.11n, which implies several additional
implementation details in the FPGA to address the new format of
High Throughput (HT) PPDUs with respect to Legacy (802.11ag)
ones. The obfuscation coefficients multiplication and filtering
is now implemented in parallel for the L/HT-LTFs, SIG and
DATA in the frequency domain and in the time-domain for the
L/HT-STFs. Further details on how the implementation has been
improved and extended are presented in Sec. 5.

2. Involved Technologies

The openwifi project1 is an open-source implementation of a
fully functional 802.11 stack for Software-Defined Radio (SDR)
platforms whose simplified architecture is represented in Fig. 2.
At the moment, it can be bootstrapped on a few System-on-Chip

1The openwifi project is open-source and available at:
https://github.com/open-sdr/openwifi. The links to the codebase
maintained by our research group (https://ans.unibs.it) are available in
Appendix A at the end of this paper together with a short description of the
content.

user space

kernel

SDR

data path management

user data WPA2, hostapd, etc
sdrctl

TCP/UDP, IP

device agnostic
frame

nl80211
cfg80211

80211 MAC

SDR driver

ADAC / RF standard components
openwifi

a/g – n PHYFPGA

a/g – n
low level MAC

ARM

Figure 2: Simplified structure of an openwifi station, in red the compo-
nents that are developed within the openwifi project.

(SoC) boards manufactured by Xilinx connected to radio front-
ends designed by Analog Devices (AD). Common to all the
compatible SoC boards is the presence of an ARM CPU and
a Zynq Field Programmable Gate Array (FPGA), connected to
the AD radio via a high-speed interface. Hence, openwifi is a
SoftMAC stack whose functions are split between the main ARM
CPU and the FPGA. The ARM CPU runs a Linux Kernel and
user-space tools: Here the openwifi 802.11 driver implements
the high part of the Medium Access Control (MAC), which
includes functions for preparing outgoing frames and pushing
them to the FPGA via Direct Memory Access (DMA), processing
incoming frames received from the FPGA, and many other tasks
like management and rate control. The Zynq FPGA implements
the low part of the MAC and the PHY. The part of the MAC
on the FPGA executes all time critical operations like carrier
sensing, frame scheduling, and ACK replying; MAC Protocol
Data Unit (MPDU) aggregation and dis-aggregation of 802.11n
that we discuss later is implemented in the FPGA. The PHY,
instead, transforms outgoing frames into I/Q samples and delivers
them to the Digital-to-Analog Converter (DAC) circuit on the
radio front-end or, vice versa, it reconstructs incoming frames
decoding the I/Q samples received from the Analog-to-Digital
Converter (ADC).

The bitstream flashed on the FPGA is synthesized using a
modified version of the Verilog project that AD releases for
controlling the AD radio board from the Xilinx Zynq SoC. The
original project is designed to transform the whole device into an
SDR: The radio can both transmit batches of I/Q samples stored
in the memory of the Linux host (running on the SoC), and
store received samples in the host memory for later analysis. Our
openwifi modifications add to the real-time MAC the obfuscation
capabilities discussed in Sec. 4. In this paper we detail the
implementation relative to 802.11n, while the implementation

2

https://github.com/open-sdr/openwifi
https://ans.unibs.it

relative to 802.11a/g was presented in [10]. Modifying the PHY
part of the Verilog design makes it possible to implement the
obfuscation of transmitted signals as described in [7, 11], and
summarized in Sec. 5. The behavior of the obfuscator can be
customized from the kernel space, i.e., adding proper code to the
openwifi Linux driver.

3. Related Work

Preserving the leakage of (private) information from the analy-
sis of physical layer signal characteristics is definitely not a new
topic, and we can find works like [12] discussing how traffic pat-
terns at the frame level can reveal information on the encrypted
bits carried by the frames, jeopardizing all encryption efforts.
CSI analysis, however, moves the physical layer attacks on pri-
vacy in a different plane, as it can actually operate as an advanced
radar system, exploiting ubiquitous signals, thus the protection of
communications, or obfuscation, against CSI analysis becomes
of paramount importance to preserve trust in wireless commu-
nications access networks. We restrict the discussion of related
work to efforts dedicated to obfuscate CSI-based sensing, and
refer the reader interested in sensing and localization to the spe-
cific literature, which is now very wide and covers all aspects,
from theoretical analysis called channel sounding, to localization,
gesture recognition, device tracking and many other interesting
applications. Seminal works can be found in [13, 14, 15, 16],
while recent reviews like [5, 17, 18], already summarize the
wealth of efforts dedicated to the topic.

Recently, the interest in CSI obfuscation increased because
of the privacy concerns raised by the ever-growing accuracy of
novel Wi-Fi sensing algorithms. Nonetheless, the topic has been
tackled only by a few works from our and other research groups
[7, 8, 9, 10, 11, 19, 20, 21, 22, 23, 24, 25, 26], [10] being a
preliminary version of this paper.

Different authors use different names and taxonomies to define
their own work and classify other works; names and terms often
depend also on the authors background, so that there is not
yet a widely accepted taxonomy. Without pretending to build
a taxonomy we collect and comment the works cited above
grouping them based on the following three broad descriptors:
i) those that use fast reaction jamming; ii) those that exploit
transmission side signal manipulation, and iii) those that rely
on an external device, most often conceptually an Intelligent
Reflective Surface (IRS), to actively modify the ambient response
to Radio Frequency (RF) signals.

The works presented in [19] and [20] belong to the first cat-
egory, they are based on the generation of ad-hoc signals that
kill sensing frames. These works have the disadvantage of de-
stroying communications and of being effective only against
active attacks, where sensing frames can somehow be identified
as malicious. Albeit interesting, we think these works go in a
direction that is quite different from privacy protection, and have
a different goal compared to the contribution of this paper.

The second group of papers includes [7, 8, 11, 22, 23, 25],
which focus on the privacy protection (location, tracking or other
information) of people against passive attacks that can be some-
times carried out even if the attacked person does not wear any

802.11 device. Passive attacks are defined as those where the
attacker controls only a sensing device that works on the frames
transmitted by a standard device, e.g., an Access Point (AP). The
defense in most of these works is based on the manipulation of
signals at the transmitter side, which must be a fixed device to
guarantee stable fingerprinting, and are the foundations of the
implementation presented here, while [25] is instead based on the
implementation of an adversarial neural network that counters
the privacy attack.

Finally [9, 21, 24, 26] belong to the third category and pro-
pose the use of an external device that changes the propagation
environment mimicking additional, time-varying reflections of
the system that confuse the learning and fingerprinting process
of the attacker. These methods are effective also against active
attacks, i.e., those where the attacker controls also one or more
transmitters that inject ad-hoc traffic for the sensing process. In-
deed, the implementation of these countermeasures seems, to the
state of the art, much more difficult, and all works present only a
proof-of-concept and not a working implementation. Only [26]
actually presents results based on a binary-phase configurable
IRS where the binary coefficients are changed randomly in time,
mimicking the change of the environment. The system is exper-
imented to verify the obfuscation against human motion, in an
experiment conceptually similar to the Empty / Full Room we
present in 6.1.

Furthermore, as of today, obfuscation techniques do not exist
in real systems able to set up a Basic Service Set (BSS) because
almost every implementation of the Wi-Fi standard in commer-
cial chipsets is proprietary and cannot be modified to test and
develop new functionalities. For this reason, to the best of our
knowledge, works on the field of CSI obfuscation used either
SDR platforms emulating the behavior of Wi-Fi chipsets, as
we did in the feasibility studies mentioned in Sec. 1, or open
platforms as openwifi described in Sec. 2.

The first implementation of a CSI obfuscator has been pre-
sented by the developers of openwifi [27]. The idea behind
this implementation is to manipulate the transmitted signal in
the time domain with a pre-filtering operation, creating a “fake”
channel response that can change over time. The filter emulating
the channel response is a Finite Impulse Response (FIR) filter
limited to three taps and with the first tap equal to 1, which means
that the most recent symbol in transmission is never altered. The
limitation of this approach is that it does not enable arbitrary ma-
nipulation of the spectrum of the transmitted signal, as it mimics
the behavior of a channel that introduces additional reflections
(the number of taps minus 1) with delays that are exact multiples
of the sample time. The approach is indeed very interesting, and
exploration can be extended to delays which are not multiples
of the symbol time is intriguing. The work presented in [27], a
short paper, discusses its implementation and shows the effect on
the CSI, but does not attempt to measure its impact on sensing
or communications.

A mildly related work is also [28], where the authors goal is
to identify attacks against the Wi-Fi sensing infrastructure using
CSI-based analysis. The goal of the paper is clearly different
from sensing obfuscation; however, they introduce and discuss
techniques to monitor and protect Wi-Fi infrastructures, which is

3

an important topic also to move further on to systems that allow
legitimate Wi-Fi sensing and prevent illegitimate use.

We add to this discussion also [29], a paper that discusses
and analyzes antifragile communications, meaning systems that
can somehow anticipate or react to adversarial conditions (e.g.,
jamming) and exploit them at the physical layer to preserve
communication quality and even improve it. The concept is
very interesting, thus it would be very interesting to explore if
it can be implemented in real systems. In turn, it would also
be interesting to see if antifragile communications can help
obfuscation in countering privacy attacks or, vice versa, whether
they can hamper it.

Finally, we also mention [30], whose goal is finding coun-
termeasures that can make a device fingerprinting system more
robust against all possible channel impairments. This goes some-
how against the scope of our work, but we think it is still relevant
as it calls for further research on the robustness of techniques
such as the one presented in [22] against sophisticated CSI anal-
ysis.

4. Transmitter Side CSI Distortion

The concealment of the CSI to prevent sensing can be obtained
by proper pre-processing of the transmitted signals, as already
introduced in Sec. 1 and 3. The initial theoretical modeling plus
a proof-of-concept for testing the feasibility of this concealment
process have been tackled in [7, 11, 22]: We refer the interested
reader to those works for the details, reporting here only the
fundamentals to make the paper self-contained.

The sensing/localization information retrieved by the CSI an-
alyzer is embedded in the signal by the physical environment
itself, generally in the form of frequency-dependent attenuation
and phase rotation. However, modeling in an efficient way the
actual channel response measured by the receiver remains be-
yond the current state-of-the-art capabilities. Nevertheless, the
information is there and can be extracted thanks to Machine
Learning (ML) and AI techniques to fingerprint some details of
the environment, e.g., the position of a person in a room. At a
later time, the extracted fingerprint can be used to classify and
hence recognize the environment through a packet CSI. This
means localizing the person –indeed any person– in the room, or
simply to tell if a room is empty or not. The only requirement
to enable this attack is that the transmitter and localization de-
vice positions are fixed; it is not important that the positions are
known, but only that they are fixed, which is normally the case
for any AP.

In this scenario, one possibility to prevent Wi-Fi sensing is to
pre-distort the transmitted signal adding a random pattern. The
pattern should conceal the information used to fingerprint the
environment but, at the same time, it should not jeopardize the
communication performance. Summarizing the content of [7]
Sec. 3 and [11] Sec. 5, a proper pre-distortion can be obtained
with the random process described by Eqs. (1) and (2), where
R is a vector of Nsc uniform and independent random variables
with support (ρmin, ρmax), Nsc is the number of subcarriers in the
Orthogonal Frequency Division Multiplexing (OFDM) modula-
tion, α is the memory of the Uniform-Markov process driving

the pre-distortion, ∆t(k) is the inter-frame time between frames k
and k − 1, and ΘC is a 5-tap FIR filter to introduce correlation
between adjacent frequencies as the propagation channel nor-
mally does. We use a simple moving average where min = 0.1
and max = 1.9 are bounds to guarantee that the pre-distortion
multiplication never leads to unrealistic high values but, most
of all, it never completely suppresses a carrier, as this would
obviously hamper communications.

R(k) = e−α∆t(k)R(k − 1) + R (1)

AO(k) = [1 + R(k)]max
min ∗ ΘC (2)

The rationale of this pre-processing is simple: the transmitted
signal is distorted in such a way that the receiver’s equalizer
(see Fig. 1) can still compensate for the distortion, but at the
same time the localization system is “fooled” by the fake channel
features intentionally crafted by the transmitter. The remaining
parameters are ρmin = −0.3, ρmax = 0.3, suitable values empiri-
cally found in previous works, and α = 0.2, which means that
if ∆t(k) ≥ 15 s, then AO (k) and AO (k-1) are almost completely
uncorrelated, i.e., the correlation coefficient is below 5%, coher-
ent with the fact that a person moving in a room can completely
change its position within 15 seconds, thus there is no reason to
maintain memory or coherence if the inter-frame time is larger.
All parameters are configurable in the implementation, but we
maintain the same configuration of previous works for the sake
of comparison.

5. Implementation

With reference to Fig. 2, the implementation of an obfusca-
tion layer in openwifi at the transmitter —a layer that we call
P2SL (Privacy-Preserving Sub-Layer) following the project that
supported this work— requires the enhancement of both: (i)
The Network Interface Card (NIC) driver in the Linux kernel, as
detailed in Sec. 5.2, and (ii) The FPGA, described in Sec. 5.3.

Before delving into the details, we start with a high-level de-
scription of the modifications to openwifi. In this paper, we focus
on the obfuscation of 802.11n, which requires some additional
features compared to 802.11a/g that was presented in [10] and
it is a completely new contribution. However, we also report
some performance figures of the 802.11a/g implementation for
the sake of completeness and comparison.

5.1. High-Level Design

Fig. 3 illustrates the FPGA and Linux kernel components mod-
ified to develop P2SL, highlighting how our modifications focus
on the NIC driver and on the PHY layer only, while the MAC
remains essentially untouched. The implemented obfuscator fol-
lows the design described in Sec. 4, with an Obfuscator block,
written in C, responsible for updating R(k), R, and AO(k), every
time a new frame k is pushed from the operating system to the
driver for transmission.

The size Nsc of the R vector is fixed to 64 for efficiency,
reflecting the fact that openwifi currently supports only 20 MHz
channel bandwidth with 64 OFDM subcarriers. The number of

4

Linux Kernel

FPGA

MAC

Obfuscator

SDR Driver

frames

IFFT

Preambles
& Pilots

to DAC and RF

random
coefficients

//

• Generate Random Vector R
• Add Markov Memory
• Clip
• Filter
• Quantize over N bits

Figure 3: Overview of P2SL design with kernel and FPGA modifica-
tions.

L-STF L-LTF L-SIG HT-SIG HT-
STF

HT-
LTF Data

8㎲ 8㎲ 8㎲4㎲ 4㎲

L-STF L-LTF L-SIG

8㎲ 8㎲ 4㎲

Data

Legacy PPDU

High Throughput (HT) PPDU

OBFUSCATOR

4㎲

Figure 4: The obfuscation must be applied to all the fields of a PLCP
Protocol Data Unit (PPDU), including all headers. This requires a
different manipulation of the fields composing the preamble of Legacy
and HT PLCP Protocol Data Units (PPDUs).

these subcarriers devoted to the guard bands changes between
802.11a/g and 802.11n, with other differences related to the
modulation & coding and to the symbol guard time.

As depicted in Fig. 4, the structure of the PLCP Protocol Data
Unit (PPDU) differs significantly between 802.11a/g (Legacy
PPDU) and 802.11n (HT PPDU for the single stream case).
Moreover, when MPDU aggregation is enabled, the obfuscation
must be applied to the entire PPDU, which implies different ma-
nipulation in the FPGA. When MPDU aggregation is enabled,
then the ‘Data’ field of the PPDU contains a sequence of MPDU,
each composed of the MAC header and the IP packet as payload.
The aggregation is performed inside the FPGA, which reads the
data through a DMA independently from the driver. Indeed, the
driver writes the MPDUs in a First In First Out (FIFO) buffer, and
the FPGA reads them at its own rate and disposition. Obfuscation
coefficients are instead written by the driver in a single-position
register, so they get overwritten every time a new MPDU is en-
queued. Obfuscation coefficients are thus coherent only with the
time of the transmission, not with the time of MPDU formation.
In earnest, we cannot guarantee this implementation ensures the
Markovian properties of the output process; however, the clip and

filter operation of Eq. (2) already distort the Markov-Uniform
process of Eq. (1), and these are necessary approximations for a
real implementation.

For the driver implementation, we use the Fixed Point Math
library for C [31] to implement the clipping and filtering op-
eration within the kernel, which notoriously does not support
floating point algebra. The coefficients of AO(k) are thus 4-Bytes
(32-bits) Fixed Point variables, where the first 14 bits and the
remaining 32 − 14 = 18 bits represent the signed integer part
and the decimal part of each number, respectively. This means
we can manipulate numbers with up to 4 integer decimal digits
and retain good accuracy when doing operations with 5 decimal
digits. Further approximations of the theoretical obfuscation
mask are introduced in the FPGA at the PHY layer and need
to be carefully controlled to avoid disrupting communications
capabilities, as discussed in Sec. 5.3.

We can devise different architectures for this scope, and we can
even imagine to implement these operations directly in hardware.
Unfortunately, such implementation would require a lot of space
in the FPGA, and also the implementation of a whole Arithmetic
and Logic Unit (ALU) for the generation of the obfuscation
process. In practice this would probably mean re-implementing
the entire openwifi project, most probably also requiring more
powerful and expensive FPGAs, which goes beyond the scope
of this paper.

In summary, we have customized the openwifi driver to:

1. Update the AO(k) mask for every frame to be transmitted;
2. Quantize the Nsc multipliers ∈ AO(k);
3. Write the Nsc quantized multipliers in dedicated FPGA reg-

isters for each frame transferred from the non real-time
MAC to the real-time MAC and Physical Layer Conver-
gence Procedure (PLCP).

Again with reference to Fig. 2, the modifications to the open-
wifi on the FPGA side can be summarized in three main key
points:

1. Introduction of new FPGA registers writable from the driver
to receive the vector of Nsc quantized multipliers;

2. Generation of Preambles and Pilots in the frequency do-
main to apply the obfuscation also on them with a different
implementation for Legacy and HT PPDU;

3. Multiplication of all the symbols in every frame with the
pre-distortion Nsc multipliers.

With the support of Figs. 5 to 7, we discuss the impact of
the major implementation impairments before describing the
implementation details.

Fig. 5 compares three realizations of the Eqs. (1) and (2)
generated with Matlab (red) with those generated by the im-
plementation in the kernel driver. These are the processes that
multiply the carriers, we selected the carriers 10, 30 and 60. The
quantization of the kernel implementation is evident and it leads
to piecewise constant values for a few frames, while the Mat-
lab implementation has a behavior which is more in-line with
the intuition of a Uniform-Markov process, albeit clipping and
filtering (Eq. (2)) significantly modify the behavior.

5

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00

Frames

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

M
as

k
V

al
ue

MAT-10
KERN-10

MAT-30
KERN-30

MAT-60
KERN-60

Figure 5: Three realizations of Eqs. (1) and (2) for 2000 frames equally
spaced by 1 ms with Matlab (MAT- in red) and implemented in the
kernel driver (KERN- in blue). The realizations refer to subcarriers 10,
30, and 60 respectively (out of the 64 total subcarriers).

-32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 31

Subcarrier

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 M
ag

ni
tu

d
e

CLEAN OBFUSCATED

Figure 6: Normalized Magnitude of subcarriers measured at a receiver
for short burst of frames with obfuscation off (red) and on (dashed blue)

Sec. 6 analyzes if and how these approximations impact perfor-
mance, but we think that quantization and the short-time piece-
wise constant behavior do not affect the pre-distortion process
significantly, as the key feature of pre-distortion is the continuous
change of the overall signal amplitude. This is shown in Fig. 6,
which compares the CSI at a receiver for a short burst of frames
with (in blue) and without (in red) the obfuscator. Without the
obfuscator, the amplitude is remarkably constant, thus allow-
ing fingerprinting; with the obfuscator, the behavior is clearly
random.

Also Fig. 7 qualitatively shows the effect of obfuscation with a
heatmap of the CSI amplitude for 1000 frames. Without obfusca-
tion, the channel response remains fairly constant, shown by the
blue and yellow bands remaining constant over time; when the
obfuscation is activated, the pattern is blurred as intended. Two
effects emerge from this picture. First, the obfuscated frames
are (on average) less energetic, and this is because the FPGA im-
plementation forced us to apply only attenuations, which should
be compensated by the Automatic Gain Control (AGC) in the

100 200 300 400 500 600 700 800 900 1000
-32

0

31

Su
bc

ar
rie

r

No Obfuscation

100 200 300 400 500 600 700 800 900 1000
Frames received

-32

0

31

Su
bc

ar
rie

r

With Obfuscation

Figure 7: Magnitude of the CSI collected from 1000 frames, with
brighter tending to yellow indicating a larger magnitude.

DAC board, but they are evidently not, or at least not completely.
Second, in both the obfuscated and the clean realizations it seems
there are much less energetic frames (the blue-greenish vertical
lines). We do not have a certain explanation for this, but it is most
probably due to the AGC behavior at the receiver (a standard,
off-the-shelf ASUS AP), and it seems to have little influence on
functionality and performance.

5.2. Kernel Driver
As already anticipated, the code we have introduced in the

openwifi driver is mainly responsible for the generation of the
Nsc-long vectors of obfuscation coefficients and their transfer to
the FPGA. These two main features have been implemented as
the following sequence of steps:

Step 1 Compute the interframe time (∆t(k) of Eq. (1)) despite
the lack of a kernel clock, relying instead on jiffies [32];

Step 2 The computation of the AO(k) coefficients including the
evaluation of the exp function without support for floating
point algebra;

Step 3 Quantization of AO(k) coefficients;

Step 4 Ovveride of the FPGA dedicated registers with updated
AO(k) values.

The memory of the Markov process was originally designed
to fall below a meaningful value in about 15 s. However, in the
kernel implementation it loses precision after 10 s because of
the simple 6-th order Taylor-McLaurin expansion we used to
approximate exp (see Fig. 8). Thus we decided to truncate the
exponential at ∆t = 7.5 s and simply de-correlate frames with a
larger inter-arrival time rather than using higher order or more
complex approximations that would have slow down too much
the obfuscation process.

Fig. 9 compares the sample Autocorrelation Function (ACF)
exhibited by some realizations of the AO(k) random process gen-
erated by our driver with similar ones computed with Matlab. The

6

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

k = "Arrival time of Frame k" [ms]

0

0.2

0.4

0.6

0.8

1

Matlab
Exp in Kernel
Implemented Truncation

Figure 8: Approximation of exp−α∆t(k) for ∆t ∈ [0, 10000] ms computed
in kernel with a 6-th Taylor-McLaurin approximation versus the Matlab
computation; the precision decays after 10 s.

0 100 200 300 400 500 600 700 800

Time-lag [ms]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sa
m

p
le

 A
C

F

KERN4
SIM4

KERN30
SIM30

KERN60
SIM60

Figure 9: Comparison of the ACF computed on the realizations of the
Markovian processes described by Eq. (2) for subcarriers 4, 30 and
60. The red curves (with circles) represent the ACF obtained with
Matlab simulations (SIM4/30/60), while the blue (with x) ones have
been generated by the kernel code (KERN4/30/60).

kernel curves (in blue) are obtained querying the development
board every millisecond, synchronized with frame generation
to obtain proper values of the ACF. The difference between the
Matlab and the kernel curves suggests that the ACF achieved
with the implementation decays slightly faster than the theoretic
one, indicating a modestly weaker memory. This can be justi-
fied by the truncation of the exponential explained with Fig. 8.
The long negative tail of KERN60 may look surprising, but it is
perfectly coherent with a Uniform-Markov process and does in-
dicated the existence of memory with that time lag. Furthermore,
the initial behavior of KERN curves replicates the behavior of
SIM60, indicating that they can well belong to the same pro-
cesses population.

5.3. FPGA Design
The FPGA side of openwifi, written in Verilog [33], has been

modified to implement the obfuscation of the IQ samples of each

L-STF L-LTF L-SIG HT-SIG HT-
STF

HT-
LTF Data

160
I/Q

160
I/Q

160
I/Q

80
I/Q

80
I/Q

80
I/Q

CONCATENATE AND SEND TO DAC

tx_start

Time based
Obfuscator

L-LTF genL-STF gen HT-LTF gen SIG + DataHT-STF gen

Frequency based Obfuscator

FPGA
IFFT for
L-LTF

FPGA
IFFT for
HT-LTF

FPGA IFFT for
SIG + Data

O
B

FU
S

C
ATIO

N

C
O

E
FFIC

IE
N

TS

DAC

Figure 10: Workflow of the HT PPDU obfuscation within the FPGA.

frame. The implementation presented in [10] could be applied
only to Legacy PPDU and furthermore did not obfuscate the
initial pilots (L-STF) generated directly in the time domain. The
implementation reported here extends also to HT PPDU and
obfuscate all preambles (L-STF and L-LTF), thus making the
802.11n frames generated in openwifi fully obfuscated, including
the aggregated ones. The main FPGA modifications can be
summarized as follows:

1. Addition & wiring of FPGA registers. A set of FPGA reg-
isters, configurable at runtime by the driver, are allocated
and pinned, in cascade, to all modules involved in a frame
transmission, starting from the Xilinx Axis DMA down to
the internal blocks of the openofdm_tx module, which is
where IQ samples are actually manipulated. From an hard-
ware point of view this operation coincide with the wiring
of different input/output pins. The matrix drawn in Fig. 10
represents the obfuscation coefficients made available to the
FPGA through these registers.
In particular, these registers can store up to 128 bits, which
implies that each of the Nsc = 64 obfuscation coefficients
must be quantized by the driver over 2 bits only, we call
these coefficients ocs, and they are properly assigned by the
kernel driver based on AO(k) thresholds. Extending the reg-
isters capacity is easy, and its implementation would require
only a new FPGA synthesis; however, the manipulation of
IQ samples with more accurately quantized coefficients
would remarkably increase the complexity of algebraic op-
erations.
As already mentioned, the structure of the FPGA manipu-
lation allows only attenuation of IQ samples to avoid sub-
sequent overflows. This means that we actually reduce
the transmission power of frames, which is already very
low due to the limited capacity of the AD Analog-Digital-
Analog Converter (ADAC) front end. In a real system we
expect that an AGC amplifier would compensate this, lead-
ing to transmit frames with the same average power of
non-manipulated frames, though this aspect may require ad-

7

ditional research and fine-tuned manipulation that accounts
also for OFDM Peak-to-Average power properties.

2. Obfuscation of Preambles. In the original openwifi de-
sign, the preamble samples—constant for each frame—
were stored as time domain samples in a dedicated ROM
memory and then pre-pended to the frame after the Inverse
Fast Fourier Transform (IFFT) block on the FPGA. This
pre-tabling and on-the-fly operations reduced the require-
ments of the FPGA in terms of both memory and computing
resources, but it is partially not compatible with our obfus-
cation scheme, which requires to store the preambles in
the frequency domain, so that they can be multiplied by
the same AO(k) coefficients as all the other symbols of the
frame k. In light of this consideration, the abstract obfusca-
tor block visible in Fig. 4 has been concretely implemented
in the FPGA by defining the workflow depicted in Fig. 10.
There we report a top-down time flow, with actions that
appear at the same height that are performed in parallel:

• Whenever a new tx_start event is fired, the FPGA
reacts by activating 5 parallel State Machines. These
machines are responsible, respectively, for the gener-
ation of the obfuscated L-STF, L-LTF, HT-STF, HT-
LTF and SIG+DATA fields that compose an 802.11n
frame.

• We categorize the 5 machines in 2 groups: i) the Time-
based and ii) the Frequency-based ones. The defi-
nition of the LTF, SIG and DATA fields require the
obfuscation to be applied in the frequency domain
and are depicted in blue used to indicate frequency-
based obfuscation. Each of them embeds a dedicated
FPGA IFFT block to provide the I/Q samples to the
subsequent concatenator block.

• The STF fields (both the Legacy and HT ones), are
obfuscated more efficiently in the time domain, with-
out requiring time-consuming operations involving
the computation of an IFFT. We sum the twelve 16-
samples tones that define the STF and that we precom-
puted in a dedicated memory, each one pre-distorted
using the coefficient from the mask corresponding to
its own frequency; this can be done for these fields
thanks to the small number of possible combinations.
This is why we have chosen to represent the L-STF
and HT-STF FPGA obfuscating machines differently,
highlighting their different architecture.

• All obfuscated I/Q samples are at the end concatenated
and sent to the DAC for transmission.

3. Signal pre-distortion. The I/Q samples should be multiplied
by the AO(k) coefficients before the IFFT. Unfortunately,
the space availability and speed of operation of the FPGA
forced us to approximate the multiplication as a simple
right-shifts operation, resulting in attenuation only. The
right-shift operation is chosen for each subcarrier according

to the quantization thresholds described by Eq. (3):
if (ocs = 00) ⇒ IQob f = IQin � 3
else if (ocs = 01) ⇒ IQob f = IQin � 2
else if (ocs = 10) ⇒ IQob f = IQin � 1
else (ocs = 11) ⇒ IQob f = IQin

(3)

where:

• ocs is the quantized obfuscation coefficient belonging
to AO(k) associated to subcarrier s;

• IQin is the I/Q sample before obfuscation;

• IQob f is the same I/Q sample after the desired right-
shift operation has been applied, thus, the obfuscated
version of the I/Q sample.

6. Performance

The goals of the experimental performance evaluation are two:

1. Quantify the effectiveness of the implemented obfuscation
in preventing localization (Sec. 6.1);

2. Determine if and how much the obfuscation deteriorates
communication performance (Sec. 6.2).

As already mentioned, we have focused the implementation
description on 802.11n / HT PPDU, as this is entirely novel and
was never presented. Nonetheless, we report some performance
figures that are also related to 802.11a/g and Legacy PPDU for
the sake of completeness and comparison.

6.1. Localization Obfuscation

To address our first goal we use iperf sessions transmitting
packets with the obfuscation on or off. During each session a
person stands in one of the eight positions indicated by Pi in
Fig. 11.

In general, to interpret our experimental results the reader
should always make reference to Fig. 11, which shows the
schematic layout of the Wi-Fi devices used to run experiments.
Four localizing devices labeled as LN capture traffic, and the CSI
extracted from the captured traffic feeds the Convolutional Neu-
ral Network (CNN) described in [7, 11] that learns the sensed
environment and classifies the person position in the room.

In all the experiments the transmitter is a Xilinx ZC706-G
development board running the modified version of openwifi
and operating as AP, the Rx device acts as a STAtion (STA)
associated to the AP. The receiver can be any 802.11 capable
device, as a normal PC or a smartphone, but in the present case
it is an Asus RT-AC86U device like the localizing devices L1–
L4. The CSIs are extracted using the methodology and software
described in [34].

An attacker must train the system before attempting a local-
ization attack, thus we run each iperf session twice to build both
a training and a testing dataset. We capture both datasets during
the same day, leaving between each data collection session a
reasonable time gap of at least 10 minutes to make localization

8

Figure 11: Placement of Transmitter (TX), Receiver (RX) and Localiz-
ing devices in our Lab at the University of Brescia.

L1 L2 L3 L4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
oc

al
iz

at
io

n
A

cc
ur

ac
y

802.11a clean
802.11n clean
802.11a obfuscated
802.11n obfuscated

Figure 12: Bar chart comparing, for each localizing device L1-L4,
the mean localization accuracy when captured traffic is CLEAN (i.e.,
not obfuscated, blue bars) and when it is instead OBFUSCATED (or-
ange bars). Whiskers indicates the maximum and minimum accuracy
achieved while attempting localization attacks.

results credible. The classification task can output 8 values (cor-
responding to the 8 positions of Fig. 11), so the accuracy of the
localization compares with a random guess that yields a baseline
value of 1/8 = 12, 5%.

Fig. 12 shows the localization accuracy for all 4 localizing
devices when the obfuscation is turned on or off. Compared to
the theoretical results in [7, 11] the CLEAN (i.e., not obfuscated)
localization is less accurate. We think that this is due to the use
of a 20 MHz system as allowed by openwifi instead of a 80 MHz
802.11ac system, which stresses how it is important to study and
design anti-sensing systems as sensing will become extremely
accurate with the evolution of technology. We observe instead

L1 L2 L3 L4
0

0.2

0.4

0.6

0.8

1

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
[%

]

CLEAN OBFUSCATED

Figure 13: Bar chart comparing, for each localizing device L1-L4, the
mean accuracy in identifying an empty of full (with people) room.

that moving from 802.11a/g (results also in [10]) to 802.11n does
not change localization capabilities. This is expected as the CSI
extraction is fundamentally based only on the initial preambles
and nothing else. Indeed, also the HT-LTF preamble contributes
to the CSI and it does include the coefficients of 4 additional
subcarriers, but apparently this small additional information is
not enough to improve the classification capabilities of the CNN.
Rather, more subcarriers as allowed by 40 MHz, 80 MHz, or
160 MHz, would mean a greater amount of ambient information
embedded in OFDM signals. With larger bandwidth we expect
sensing and localization to become more effective and accurate.

The OBFUSCATED results are instead just above the random
choice, indicating that the obfuscation process is very effective
and makes a localization attack fundamentally useless. Further-
more, as already noted in previous works, the position of the
localization device has a significant influence on the localization
performance, but this cannot be predicted, and this dependence
is stronger for the CLEAN results than for the OBFUSCATED
ones.

In another, novel experiment, we have modified the CNN
that performs the localization to return only two values: Room
Empty; Room Full. Training of this CNN is done with a long
term analysis (tens of minutes) of frames transmitted with the
room empty at a low frame rate of a few frames per minute,
and similarly with a person doing normal activities (standing,
moving, sitting, . . .) inside the room. Testing of the localization
is performed with a similar procedure. We did not attempt to
design a novel CNN from scratch, as this activity goes beyond
the scope of this paper, but we are aware that different meth-
ods, e.g., accounting for time variability, can be better suited to
discriminate the two conditions in this specific case. Our goal
remains testing the obfuscation implementation and check if it is
somehow effective or not.

Fig. 13 reports the bar chart of the average accuracy obtained
from the same four localizing devices L1–L4, with whiskers in-
dicating minimum and maximum. The experiment has been run
only for 802.11n and clearly in this case a random guess returns
0.5. Somehow surprisingly even with CLEAN transmissions the
accuracy is not as high as one may expect thinking that this task

9

is easier than spotting the precise position of a person. Indeed,
the original CNN was designed to classify specific patterns that
arise with a person standing still in a place, and it was only mod-
ified, not re-designed, for this experiment, so from the learning
algorithm point of view, the task may not be simpler at all. For
instance a person moving, standing, sitting does not give rise to
a single specific pattern, but to multiple, varying patterns, which
may in the end confuse the classifier. For what the goal of this
paper is concerned, however, the fact that with the obfuscator
on the accuracy reduces consistently for all localizing device
is enough to state that obfuscation works efficiently even if, at
least for positions L2 and L3 the result may still be good enough
for some form of attack, and one can think that, using fusion
techniques similar to those studied in [8, 11] the attack can be
effective. Thus, also in this case additional research in obfus-
cation techniques may be needed before the methodology and
technology is mature for a standardization process.

6.2. Communication Performance

To address our second experimental goal we use again iperf
over UDP turning on/off the obfuscation and varying the chan-
nel PHY bitrate cr and the UDP payload length pl to measure
if and how much the obfuscation hampers the communication
performance. Finally, we analyze if the aggregation mechanism
is affected by the obfuscation, since in this case the architecture
of our implementation does not allow matching accurately the
attenuation pattern with the frame transmission scheme. In par-
ticular, we fix PHY rate on the radio interface and measure the
Packet Delivery Rate (PDR) at the receiver, and we do this for
four different payload lengths: pl ∈ PL = [200, 500, 1000, 1470]
bytes.

For this experiment L1–L4 devices are not used, with the focus
only on the communication performance between Tx and Rx.
The communication performance metric is the PDR computed
by the receiver as:

PDR(cr, pl) =
received packets

max(seqno) −min(seqno)
(4)

where the denominator of Eq. (4) is not the number of trans-
mitted packets per iperf session, but the difference between the
maximum and minimum sequence number intercepted by the
receiver device to avoid confusing losses on the channel with
frames that are not transmitted for whatever reason or with iperf
synchronization problems. For each element of the experiment
space (cr, pl) ∈ CR× PL we performed at least 10 iperf sessions,
with more repetitions for high values of cr to gain more statistical
confidence.

Fig. 14 compares the mean PDR achieved when turning the
obfuscation on (blue curves) and off (red curves). The top plot
refers to HT PPDUs (802.11n) and the bottom plot to Legacy
PPDUs (802.11a/g). The PDR without obfuscation is in line with
similar measures, very close to 100% with a small degradation
for high PHY transmission rates. For 80211n we use a single
spatial stream and 800 ns inter-symbol spacing. Turning on the
obfuscation results in a slight degradation of the performance,
which is clearly increasing with the PHY data rate and it is larger

6.5 13.0 19.5 26.0 39.0 52.0 58.5 65.0

HT Bitrates [Mbit/s]

90

92

94

96

98

100

CLEAN-PL200

CLEAN-PL500

CLEAN-PL1000

CLEAN-PL1470

OBF-PL200

OBF-PL500

OBF-PL1000

OBF-PL1470

6 9 12 18 24 36 48 54

Legacy Bitrate [Mbit/s]

90

92

94

96

98

100

CLEAN-PL200

CLEAN-PL500

CLEAN-PL1000

CLEAN-PL1470

OBF-PL200

OBF-PL500

OBF-PL1000

OBF-PL1470

P
ac

ke
t

D
el

iv
er

y
R

at
e

[%
]

Figure 14: PDR as a function of the channel bitrate with obfuscation
off (CLEAN- in blue), and on (OBF- in red) as a function of the PHY
Bitrate. Different curves refer to different frame lengths (iperf UDP
payload indicated in the legend as PLnn in bytes). For each experiment
the curves indicate the mean PDR, while the bars report the confidence
interval with 95% confidence level. The top plot refers to 802.11n and
the bottom plot to 802.11a/g.

and more evident for 802.11n, which has more fragile modula-
tion schemes. It is clear and probably obvious, as we already
observed with the Matlab+SDR proof-of-concept on 802.11ac,
that the highest PHY rates are fragile. What is instead very inter-
esting to note here, is that overall the performance is more than
acceptable, even if the implementation on openwifi introduces
many approximations and indeed forces architectural choices that
makes the transmitted signals very different, we can colloquially
say “ugly”, compared to the standard, non obfuscated signals, but
also compared to the signals generated with Matlab and high-end
SDR systems. This observation—even if one considers that the
loss of performance is consistent—clearly indicates that more
research and efforts in finding good obfuscation methodologies
will lead in the future to perfectly performing systems.

We now turn our attention to packet aggregation, or more pre-
cisely, MPDUs aggregation into PPDUs. This is one of the main
innovations in 802.11n and more recent 802.11 versions, and it
normally guarantees higher throughput, thanks to a much more
efficient use of the channel time compared to the transmission
of a single MPDU at a time, which implies wasting much more
time in channel contention and transmission of PHY preambles.
Aggregation is a very complex task, and it is rarely studied, as it
is difficult to analyze or measure it without having access to the
chip that implements it.

In openwifi aggregation is done in the FPGA, and this, as we
mentioned, create a mis-alignment with the obfuscation mask
generation process, which runs in the driver and is based on the
generation time of every single MPDU. To try to mitigate this
problem, we have crafted a method that freezes the obfuscation
coefficients during the transmission phase, even if they are re-
generated in the meantime, as changing the obfuscation mask
within the same PPDU would obviously prevent the equalizer of

10

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

1
00

0

1
05

0

1
10

0

1
15

0

1
20

0

Packet Length [Bytes]

0

10

20

30

40

50

Ip
er

f
T

h
ro

u
gh

p
u

t
[M

b
it

/s
]

w/oAGG CLEAN

w/oAGG OBF

wAGG CLEAN

wAGG OBF

Figure 15: Throughput obtained with and without aggregation, with
and without obfuscation as a function of the frame payload length. The
curves interpolate the average values over all the experiments for each
packet length. Single experiment values of throughput are drawn as
scattered marks for each packet length, and they are remarkably close
to the average.

len = 300B

1 2 3 4

MPDU

0

0.2

0.4

0.6

0.8

1

F
re

q
u
e
n
c
y

len = 600B

1 2 3 4

MPDU

0

0.2

0.4

0.6

0.8

1

F
re

q
u
e
n
c
y

len = 900B

1 2 3 4

MPDU

0

0.2

0.4

0.6

0.8

1

F
re

q
u
e
n
c
y

len = 1200B

1 2 3 4

MPDU

0

0.2

0.4

0.6

0.8

1

F
re

q
u
e
n
c
y

CLEAN

OBF

Figure 16: Histogram of the relative frequency of the number of aggre-
gated MPDUs per PPDU with and without obfuscation.

the receiving device to work properly. Moreover, the obfuscation
coefficients used for an aggregated PPDU are those of the most
recent MPDU generated, even if this MPDU is actually not
transmitted in the PPDU. This may look wrong, but it is indeed
the best way we have to approximate a Markovian memory with
the memory of the implemented system, because it guarantees
that the autocorrelation between the PPDU in transmission and
the previous PPDU is the closest possible (with the constraints
of the implementation) to the one ‘designed’ with Eq. (1).

We run these experiments connecting the transmitter and the
receiver directly with a cable, as their complexity makes the in-
terpretation of results on a real wireless channel with interference
impossible.

Fig. 15 reports the throughput of a saturated iperf session with
and without aggregation and with and without obfuscation as the

size of the MPDUs increase from 100 to 1200 bytes. The maxi-
mum aggregation level possible with openwifi is 4 MPDUs per
PPDU. Beyond a size of 1200 bytes the aggregation mechanism
of openwifi does not work properly and we stopped the experi-
ments. Aggregation is still an experimental feature of openwifi,
and we could not dig into the reason of this issue; furthermore, it
is not possible to fix the Modulation and Coding Scheme (MCS)
(as we did to measure the PDR) if the aggregation is active, thus
there is some uncertainty as far the used MCS is concerned. It is
clear that without obfuscation the gain with aggregation is signif-
icant across all MPDU sizes. With the obfuscation on, instead,
the throughput gain seems marginal and increases slightly as
the MPDU size increases, which is not what one would expect.
Furthermore, while the throughput without aggregation remains
the same with or without obfuscation in this case there is a clear
penalty to pay for improved privacy.

To further investigate this matter, we measured the fraction
of PPDU that aggregates 1, 2, 3, or 4 MPDU and we report the
empirical probability density function (pdf) in Fig. 16 for MPDU
sizes of 300, 600, 900 and 1200 bytes. This further analysis
immediately explain the result, showing that with the obfuscation
on the aggregation algorithms on the FPGA tends to transmit non-
aggregated PPDU, and this especially when the MPDU size is
small. We think that this is due to some timing glitch introduced
by the obfuscation procedure, whereby the aggregation algorithm
does not “see” that there are MPDU in the buffer that can be
aggregated. Only when the MPDU size is large these timing
impairments have a smaller impact and allow some level of
aggregation and an increase in throughput. Furthermore, we
observed that with the obfuscation on the MCS oscillates between
MCS=7 and MCS=6, due to the increased frame losses, and this
phenomenon may also influence aggregation, also triggering
frame re-transmissions. The interaction between obfuscation
and aggregation, and indeed in general between obfuscation
principles and implementation details and impairments, still need
research and scrutiny, delving deeper in the implications of pre-
distortion and channel manipulation in general.

7. A Protocol to Negotiate Obfuscation

So far, we have seen that anti-sensing techniques can be imple-
mented in standard devices preserving acceptable communica-
tion performance as shown in Sec. 6.2. However, a solution that
fully preserves unhampered communications and allows sensing
at selected and legitimate receivers is preferable to the blind
obfuscation we presented. This section is devoted to discuss
how such a solution can be implemented in the 802.11 standard,
and different feasible flavors of it, from the simple solution of
de-obfusction only at the receiver, to more sophisticated tech-
niques enabling multi-point sensing at legitimate devices. First
of all, let us recall that the CSI-based sensing and localization
we try to counter with this work is fundamentally different from
positioning techniques proposed in 802.11az2 that are based on

2See the 802.11az Task Group page for further details
(https://standards.ieee.org/ieee/802.11az/7226/).

11

https://standards.ieee.org/ieee/802.11az/7226/

AP STA
beacons

Select BSS
& Cyphersassociation request

Msg1: ANonce

Msg3: IE, GTK, MIC

Msg2: SNonce, IE, MIC

Msg4: ACK,MIC

PTK

PTK

de-obfuscation signaling

IE: Information Elements
GTK: Group Temporal Key
MIC: Message Integrity Code
PTK: Pairwise Temporal Key

Figure 17: 802.11i Four Way Handshake (4WHS) showing also beacons,
association and the position of additional signaling messages for de-
obfuscation.

Time of Flight (ToF) and Angle-of-Arrival (AoA) and require the
active cooperation of the receiver: They focus on the localization
of a cooperating device, and not to the sensing and tracking of
people who may even not carry a device. Rather, this discussion
can be related to 802.11bf ubiquitous Wi-Fi sensing.3

First of all, consider the Four Way Handshake (4WHS) of
the Wi-Fi Protected Access (WPA) negotiation as defined in
the standard [36] and schematically reported in Fig. 17, which
establishes a cryptographically secure communication channel
between an AP and a STA. This channel is then used to trans-
mit user data, but it can also be used to transfer signaling and
management information that we represent in the figure with
the bi-directional block arrow at the end of the 4WHS. Even
though the authentication procedure was slightly modified with
the introduction of the Simultaneous Authentication of Equals
(SAE) procedure [37], our considerations still apply as they only
concern the 4WHS that anyways follows the SAE step.

In the following two subsections we describe the requirements
of two different de-obfuscation procedures: The first one to only
improve the communication performance, and the second one to
also enable multi-point sensing. Recall that transmissions useful
for sensing are only those of the AP, while STAs transmissions
are useless because STAs can move. We consider that beacons
are in any case obfuscated, but since they are always transmitted
at the lowest possible transmission rate, STAs will be able to
decode them with high probability as shown in Fig. 14. Clearly,
these protocols ensure privacy just as long as the AP is trusted:

3The 802.11bf PAR was approved in Sept. 2020 and has already released some
draft documents
(https://standards.ieee.org/ieee/802.11bf/10365/). For a recent
survey of the Task Group activities see [35].

FC addr1 addr2 addr3 KeyID/PNde-obf ...PLCP

Figure 18: Modified 802.11 frame (simplified) for the iterative approach
including the position of the DE-OBF field, encrypted with the same
cypher used for the frame but with a dedicated ephemeral key derived
during 4WHS.

If the attacker controls the infrastructure, then different solutions
should be sought.

7.1. Improving Communications Performance
Fig. 14 shows that the communication performance can suffer

at high transmission speeds. This result confirms the conclusions
we draw in early works (specifically [7] and [11]) and is due
to the high sensitivity of higher-order Quadrature Amplitude
Modulation (QAM) modulations to signal distortion. Albeit we
cannot exclude that theoretic work on the obfuscation function
can improve the situation, a simple and practical solution is
letting the legitimate receiver remove the obfuscation artifacts.
In practice the receiver should know the pre-distortion mask in
Eq. (2) that is applied to each frame for obfuscating its CSI: this
allows to remove the obfuscation from all OFDM symbols before
they are decoded.

The first possibility is an iterative decoding approach: In-
cluding the obfuscation mask in every frame as an additional
field, let’s call it DE-OBF, between the standard 802.11 PLCP
header and the data part, as shown in Fig. 18. The advantage
of this approach is its robustness (each frame remains strictly
a datagram completely independent from others) and the lack
of any synchronization requirement. The overhead is Nsc × Nbo
bits, where here Nsc is the number of carriers actually used (i.e.,
pilots excluded) and Nbo is the number of bits to represent the
multiplication factor (2 in our implementation). Assuming to
improve the multiplication granularity to 8 bits, the overhead
ranges from 52 bytes for simple 20 MHz 802.11a/g systems to
484 bytes for an advanced 160 MHz 802.11ac system.4 These
fields should be transmitted at basic-rate since they need to be
decoded correctly with high probability and a short Cyclic Re-
dundancy Code (CRC) code may be needed to protect them.
They must also be encrypted, possibly using the same cipher as
the data part, but using a dedicated ephemeral key derived during
the 4WHS. The key disadvantage of this approach, apart from
the overhead, is the need for iterative decoding: first the receiver
needs to decode the frame until DE-OBF without inverting the
obfuscation function, just as we do in this implementation, next,
using the knowledge of the DE-OBF field, the complete decoding
of the frame is carried out.

A second possibility is a time-based protocol, i.e., the AP and
STA share a common pseudo-random generator, synchronize
(seed) it appropriately, and then extract a new value from it every
Tobf s. This choice departs slightly from the implementation
we presented, as it entails a time-based evolution of the pro-
cess in Eq. (1) and not a frame-based one. As there is always

4Note we have considered a single stream 802.11ac transmission. For more
complex encodings the overheads scale with the number of spatial streams.

12

https://standards.ieee.org/ieee/802.11bf/10365/

the possibility of de-synchronization of AP and STA that have
to be re-synced as discuss hereinafter, we assume that the de-
vices time-counting is good enough for standard operation. A
frame-based evolution is difficult to conceive because of frame
losses and re-transmissions, which would lead to continuous
de-synchronization of AP and STA.

The initial synchronization can be obtained at the end of the
4WHS (see Fig. 17) with two different approaches:

1. Derive the seed from the ephemeral keys;
2. Explicitly transmit the seed in a management frame that,

being protected by the encrypted channel, will be secure.

The second option introduces a new frame, which may be a
drawback in the standardization procedure, but has the advantage
that re-synchronization during normal operation comes almost
for free. For instance we can imagine that, after a “long” silence
period, the AP (recall that only the AP→STA traffic is used for
sensing) re-starts by transmitting this management frame with a
new seed, which does not need obfuscation as a single frame does
never allow any meaningful sensing. Similarly, the AP can re-
seed the STA if too many re-transmissions happened, assuming
that repeated losses may be caused by the loss of the obfuscation
mask sync.

With the first option, instead, there is the need for the receiver
to communicate the loss of sync to the transmitter. This im-
plies the need of a further function to understand that the sync is
lost. Both functions require some form of signaling communi-
cation between the AP and the STA, thus the advantage of not
introducing a novel management frame is partially lost.

The advantage of the time-based approach is an almost zero
overhead on the channel but, most of all, it does not require itera-
tive decoding. On the other hand, the STA has to continuously
update the obfuscation mask in its NIC even when the mask is
not used in order to ensure the alignment of the sequences.

We can also imagine mixed solutions between the iterative
decoding approach and the time-based protocol. For instance, in
the time-based protocol, the AP can send the obfuscation mask
not as a header field, but as user-data. This way the receiver does
not need to do iterative decoding, but decodes the frame based
on its own obfuscation mask, which is then compared with the
transmitter one, and if they do not match a re-sync is needed. To
reduce the overhead the AP can send this information only every
Nobf frames or send only some values of the mask in every frame
(e.g., the amplification factor of a fraction of the subcarriers), or
a mix of the two.

The selection of the most appropriate solution can be done only
with a formal design of the protocol and also after appropriate
experiments that measure the achievable performance, but this is
outside the scope of this paper.

Per STA obfuscation and de-obfuscation may look an extreme
choice, and quite resource consuming. If the BSS is fully trusted
one may think of using the same masking pattern for all the STAs
to simplify the system. This solution, however, works properly
only with the iterative approach. Conversely, with the time-based
protocol with proactive re-sync by the AP, long silence period
leads to loss sync problems calling for aggressive transmissions
of management re-seeding frames that should be STA-dependent,

as the WPA encryption is different for every station. Furthermore,
the fact that the the pattern is the same for all stations may be
an advantage for an attacker who wants to invert the obfuscation
function. Thus we do not suggest to take this direction.

7.2. Enabling Multi-Point Sensing
Wi-Fi sensing is not just an annoying threat to privacy. It can

indeed be a useful function to provide innovative services such as
multi-point sensing, as proposed in [8, 11, 38], which promises
to achieve much better performance than single-point sensing.
The de-obfuscation protocol described above can help maintain
high communication performance, but in general prevents sens-
ing unless it is done at the STA that receives the information
flow. This, however, will hardly work, as the CSI-based sensing
techniques we are considering are based on fingerprinting of the
environment, hence require that also the sensing device(s) are in
a fixed position.

At this early stage of the analysis, it seems excessively difficult
to design a de-obfuscation protocol that allows exploiting the
standard transmissions from an AP when they are obfuscated
with per-STA pre-processing. Rather, it would be simpler to
exploit a specific sensing channel, which in some sense is similar
to an active attack as we considered in [9, 24]. Clearly, if sensing
is legitimate, we cannot talk about an ‘attack,’ but obfuscation is
welcome in any case to prevent non-legitimate use of this sensing
channel.

We define a sensing channel as a low frame-rate flow. Bea-
cons themselves can be used for CSI-based sensing, which is
the reason why we assume that a complete privacy-preserving
architecture contemplates also the obfuscation of beacons, but
additional frames can be used to improve sensing capabilities
or precision. Ideally, the problem can be solved using one (or
more) common secure channel(s) to distribute the obfuscation
parameters of beacons and additional frames devoted specifically
to sensing.

It is well known that Wi-Fi traditionally has problems with
multicast [39], thus we only sketch here some possible paths
to explore in the future, without the claim to present a full,
detailed design. A possible solution is to implement a separate
obfuscation pattern for the sensing channel and exploit a group
key (also known as shared key or multicast keys) to distribute
the channel sensing parameters to all STAs in the BSS. Group
keys are generated at the end of the 4WHS together with session
keys, and can be used for several purposes, whose discussion is
not due here. Using a group key and some additional signaling
similar to what we discussed in Sec. 7.1, we can obtain the de-
obfuscation of the sensing channel. This can be done for a subset
of fixed STAs devoted to sensing, or can be done for all STAs
also improving the reception of beacons. Attackers would not be
able to access it because they are not allowed to enter the BSS.
An obvious exception are public BSSs, but this discussion goes
beyond our scope.

8. Conclusions and Future Work

Wi-Fi sensing is a novel technology that promises a huge
leap in communication services under Wi-Fi coverage. Indeed,

13

the notion of joint communication and sensing is one of the
pillars of networking beyond 5G, making the scope of channel
sounding and sensing go beyond Wi-Fi. At the same time these
technologies pose unprecedented threats to privacy and security,
as the information leak happens at the physical layer so it cannot
be countered with cryptographic tools.

This paper has presented the implementation in openwifi of an
anti-sensing obfuscation technique working for both 802.11a/g
and 802.11n versions of the standard; preliminary proof-of-
concept works have shown that these techniques work well also
for 802.11ac, so we have no reason to imagine that implemen-
tations in such systems—that cannot be done for technological
reasons in openwifi—will not work. The measures of its per-
formance compared with those obtained in previous works with
Matlab+SDR emulation show that despite the limitations im-
posed by a real implementation the proposed obfuscation still
works. Furthermore, possible protocols to allow legitimate in-
version of the obfuscation function have been discussed. This
work therefore shows that the idea of signal obfuscation is fully
implementable without hampering any functionality of Wi-Fi.
Moreover, it indicates how it can be standardized to achieve a
win-win solution able to maintain high communication perfor-
mance with all the advantages of sensing while fully protecting
the users.

Acknowledgement

This work has been partially funded at the University of Bres-
cia by GÉANT Educational Activities and Services Agreement
ref. SER-21-142, Project “Design and Implementation of an
802.11 Privacy Preserving Sub-Layer (DI-P2SL).”

Furthermore, the work has been enabled in its early stage
by the donation of two Xilinx ZC706 evaluation board by
the Xilinx University Program (https://www.xilinx.com/
support/university.html) that we used for the FPGA im-
plementation.

References

[1] W. Saad, M. Bennis, M. Chen, A Vision of 6G Wireless Systems: Applica-
tions, Trends, Technologies, and Open Research Problems, IEEE Network
34 (3) (2020) 134–142.

[2] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, F. Tufvesson,
6G Wireless Systems: Vision, Requirements, Challenges, Insights, and
Opportunities, Proceedings of the IEEE 109 (7) (2021) 1166–1199.

[3] H. Wymeersch, A. Pärssinen, T. E. Abrudan, A. Wolfgang, K. Haneda,
M. Sarajlic, M. E. Leinonen, M. F. Keskin, H. Chen, S. Lindberg, P. Kyösti,
T. Svensson, X. Yang, 6G Radio Requirements to Support Integrated Com-
munication, Localization, and Sensing, in: 2022 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit),
2022, pp. 463–469.

[4] R. Lo Cigno, F. Gringoli, M. Cominelli, L. Ghiro, Integrating CSI Sensing
in Wireless Networks: Challenges to Privacy and Countermeasures, IEEE
Network 36 (4) (2022) 174–180.

[5] I. Nirmal, A. Khamis, M. Hassan, W. Hu, X. Zhu, Deep Learning for
Radio-Based Human Sensing: Recent Advances and Future Directions,
IEEE Comm. Surveys & Tutorials 23 (2) (2021) 995–1019.

[6] Y. Gu, Y. Wang, T. Liu, Y. Ji, Z. Liu, P. Li, X. Wang, X. An, F. Ren,
EmoSense: Computational intelligence driven emotion sensing via wireless
channel data, IEEE Trans. Emerg. Top. Comput. Intell. 4 (3) (2020) 216–
226.

[7] M. Cominelli, F. Kosterhon, F. Gringoli, R. Lo Cigno, A. Asadi, IEEE
802.11 CSI randomization to preserve location privacy: An empirical
evaluation in different scenarios, Elsevier Computer Networks 191 (22)
(2021) 107970.

[8] M. Cominelli, F. Gringoli, R. Lo Cigno, On the properties of device-
free multi-point CSI localization and its obfuscation, Elsevier Computer
Communications 189 (2022) 67–78.

[9] M. Cominelli, F. Gringoli, R. Lo Cigno, AntiSense: Standard-compliant
CSI obfuscation against unauthorized Wi-Fi sensing, Elsevier Computer
Communications 185 (2022) 92–103.

[10] L. Ghiro, M. Cominelli, F. Gringoli, R. Lo Cigno, On the Implementation
of Location Obfuscation in openwifi and Its Performance, in: 20th IEEE
Mediterranean Communication and Computer Networking Conference
(MedComNet 2022), 2022, pp. 64–73.

[11] M. Cominelli, F. Gringoli, R. Lo Cigno, Passive Device-Free Multi-Point
CSI Localization and Its Obfuscation with Randomized Filtering, in: 19th
IEEE Mediterranean Communication and Computer Networking Confer-
ence (MedComNet), 2021, pp. 1–8.

[12] H. Rahbari, M. Krunz, Secrecy beyond encryption: obfuscating trans-
mission signatures in wireless communications, IEEE Communications
Magazine 53 (12) (2015) 54–60.

[13] K. Chetty, G. Smith, K. Woodbridge, Through-the-Wall Sensing of Person-
nel Using Passive Bistatic WiFi Radar at Standoff Distances, IEEE Trans.
on Geoscience and Remote Sensing 50 (4) (2012) 1218–1226.

[14] F. Adib, D. Katabi, See through walls with WiFi!, in: ACM Int. Conf. of
the Special Interest Group on Data Communication (SIGCOMM), Hong
Kong, 2013, pp. 75–86.

[15] Z. Yang, Z. Zhou, Y. Liu, From RSSI to CSI: Indoor Localization via
Channel Response, ACM Computing Surveys 46 (25) (2013) 1–32.

[16] K. Wu, J. Xiao, Y. Yi, D. Chen, X. Luo, L. Ni, CSI-Based Indoor Localiza-
tion, IEEE Trans. Parallel Distrib. Syst. 24 (7) (2013) 1300–1309.

[17] R. C. Shit, S. Sharma, D. Puthal, P. James, B. Pradhan, A. van Moorsel,
A. Y. Zomaya, R. Ranjan, Ubiquitous localization (UbiLoc): A survey
and taxonomy on device free localization for smart world, IEEE Comm.
Surveys & Tutorials 21 (4) (2019) 3532–3564.

[18] Ma, Y. and Zhou, G. and S. Wang, S., WiFi Sensing with Channel State
Information: A Survey, ACM Computing Surveys 52 (46) (2019) 1–36.

[19] D. Nguyen, C. Sahin, B. Shishkin, N. Kandasamy, K. R. Dandekar, A Real-
Time and Protocol-Aware Reactive Jamming Framework Built on Software-
Defined Radios, in: ACM Workshop on Software Radio Implementation
Forum, 2014, p. 15–22.

[20] M. Schulz, F. Gringoli, D. Steinmetzer, M. Koch, M. Hollick, Massive
Reactive Smartphone-Based Jamming Using Arbitrary Waveforms and
Adaptive Power Control, in: 10th ACM Conf. on Security and Privacy in
Wireless and Mobile Networks (WiSec), 2017, p. 111–121.

[21] Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, A. Arora, PhyCloak: Obfus-
cating Sensing from Communication Signals, in: 13th USENIX Conf. on
Networked Systems Design and Implementation (NSDI’16), Santa Clara,
CA, USA, 2016, p. 685–699.

[22] M. Cominelli, F. Kosterhon, F. Gringoli, R. Lo Cigno, A. Asadi, An
Experimental Study of CSI Management to Preserve Location Privacy,
in: 14th ACM Workshop on Wireless Network Testbeds, Experimental
evaluation & CHaracterization (WiNTECH), London, UK, 2020, pp. 1–8.

[23] L. F. Abanto-Leon, A. Bäuml, G. Sim, M. Hollick, A. Asadi, Stay Con-
nected, Leave no Trace: Enhancing Security and Privacy in WiFi via
Obfuscating Radiometric Fingerprints, Proc. ACM Meas. Anal. Comput.
Syst. 4 (44) (2020) 1–31.

[24] M. Cominelli, F. Gringoli, R. Lo Cigno, Non Intrusive Wi-Fi CSI Obfus-
cation Against Active Localization Attacks, in: 16th IFIP/IEEE Conf. on
Wireless On demand Network Systems and Services (WONS), 2021, pp.
87–94.

[25] Y. Zhou, H. Chen, C. Huang, Q. Zhang, Wiadv: Practical and robust
adversarial attack against wifi-based gesture recognition system, Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 6 (2) (2022) 92:1–
92:17.

[26] P. Staat, S. Mulzer, S. Roth, V. Moonsamy, M. Heinrichs, R. Kron-
berger, A. Sezgin, C. Paar, IRShield: A countermeasure against adversarial
physical-layer wireless sensing, in: 2022 IEEE Symposium on Security
and Privacy (SP), 2022, pp. 1705–1721.

[27] X. Jiao, M. Mehari, W. Liu, M. Aslam, I. Moerman, Openwifi CSI Fuzzer
for Authorized Sensing and Covert Channels, in: 14th ACM Conf. on

14

https://www.xilinx.com/support/university.html
https://www.xilinx.com/support/university.html

Security and Privacy in Wireless and Mobile Networks, 2021, p. 377–379.
[28] P. Y. Chan, A. I.-C. Lai, P.-Y. Wu, R.-B. Wu, Physical Tampering Detection

Using Single COTS Wi-Fi Endpoint, Sensors 21 (16) (2021) 1–15.
[29] M. Lichtman, M. T. Vondal, T. C. Clancy, J. H. Reed, Antifragile commu-

nications, IEEE Systems Journal 12 (1) (2018) 659–670.
[30] W. Yan, T. Voigt, C. Rohner, RRF: A Robust Radiometric Fingerprint

System that Embraces Wireless Channel Diversity, in: Proceedings of the
15th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ACM, 2022, pp. 85–97.

[31] I. Voras, Fixed point math library for c, https://sourceforge.net/
projects/fixedptc, copyright (c) 2010-2012. Ivan Voras <ivoras-
freebsd.org> Released under the BSDL. (2020).

[32] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux device drivers, 3rd Edition,
O’Reilly Media, 2005.

[33] D. Thomas, P. Moorby, The Verilog® hardware description language, 5th
Edition, Springer Science & Business Media, 2008.

[34] F. Gringoli, M. Schulz, J. Link, M. Hollick, Free Your CSI: A Channel
State Information Extraction Platform For Modern Wi-Fi Chipsets, in:
13th ACM Int. Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization (WiNTECH ’19), Los Cabos, Mexico,
2019, pp. 21–28.

[35] F. Restuccia, IEEE 802.11bf: Toward Ubiquitous Wi-Fi Sensing (3 2021).
arXiv:2103.14918.

[36] Wireless lan medium access control (mac) and physical layer (phy) specifi-
cations, amendment 6: Medium Access Control (MAC) Security Enhance-
ments (2004).

[37] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications (2013).

[38] E. Gönültaş, E. Lei, J. Langerman, H. Huang, C. Studer, CSI-Based Multi-
Antenna and Multi-Point Indoor Positioning Using Probability Fusion,

IEEE Trans. on Wireless Communications (2021 (Early Access)).
[39] C. E. Perkins, M. McBride, D. Stanley, W. Kumari, J.-C. Zúñiga, Multicast

Considerations over IEEE 802 Wireless Media, RFC 9119, IETF (10 2021).

Appendix A. Code and development details

The development described and tested in this work is
a fork of the original openwifi project, which we thor-
oughly documented and made publicly available through
github. The obfuscation mechanism, as described, re-
quires modifications both to the Linux driver and to
the FPGA design. The fork related to the Linux
driver and software is available at https://github.com/
ansresearch/openwifi/tree/csiobfuscation-ans; the
fork related to the FPGA hardware design is avail-
able at https://github.com/ansresearch/openwifi-hw/
tree/csiobfuscation-ans. Modification to the FPGA can
probably be optimized and further studies on obfuscation tech-
niques and design for implementation optimization are welcome.

The authors are willing to discuss and cooperate for further-
ing the project. Additional information related to the DI-P2SL
project is available at https://ans.unibs.it/projects/
di-p2sl/.

15

https://sourceforge.net/projects/fixedptc
https://sourceforge.net/projects/fixedptc
http://arxiv.org/abs/2103.14918
https://github.com/ansresearch/openwifi/tree/csiobfuscation-ans
https://github.com/ansresearch/openwifi/tree/csiobfuscation-ans
https://github.com/ansresearch/openwifi-hw/tree/csiobfuscation-ans
https://github.com/ansresearch/openwifi-hw/tree/csiobfuscation-ans
https://ans.unibs.it/projects/di-p2sl/
https://ans.unibs.it/projects/di-p2sl/

	Introduction and background
	Involved Technologies
	Related Work
	Transmitter Side CSI Distortion
	Implementation
	High-Level Design
	Kernel Driver
	FPGA Design

	Performance
	Localization Obfuscation
	Communication Performance

	A Protocol to Negotiate Obfuscation
	Improving Communications Performance
	Enabling Multi-Point Sensing

	Conclusions and Future Work
	Code and development details

