
9966 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Enabling Time-Synchronized Hybrid Networks
With Low-Cost IoT Modules

Alexey M. Romanov , Senior Member, IEEE, Francesco Gringoli , Senior Member, IEEE,
Kamil Alkhouri, Pavel E. Tripolskiy, and Axel Sikora

Abstract—Precisely synchronized communication is a major
precondition for many industrial applications. At the same time,
hardware cost and power consumption need to be kept as low
as possible in the Internet of Things (IoT) paradigm. While
many wired solutions on the market achieve these requirements,
wireless alternatives are an interesting field for research and
development. This article presents a novel IEEE802.11n/ac wire-
less solution, exhibiting several advantages over state-of-the-art
competitors. It is based on a market-available wireless System
on a Chip with modified low-level communication firmware
combined with a low-cost field-programmable gate array. By
achieving submicrosecond synchronization accuracy, our solu-
tion outperforms the precision of low-cost products by almost
four orders of magnitude. Based on inexpensive hardware, the
presented wireless module is up to 20 times cheaper than
software-defined-radio solutions with comparable timing accu-
racy. Moreover, it consumes three to five times less power. To
back up our claims, we report data that we collected with a high
sampling rate (2000 samples per second) during an extended
measurement campaign of more than 120 h, which makes our
experimental results far more representative than others reported
in the literature. Additional support is provided by the size of the
testbed we used during the experiments, composed of a hybrid
network with nine nodes divided into two independent wire-
less segments connected by a wired backbone. In conclusion, we
believe that our novel Industrial IoT module architecture will
have a significant impact on the future technological develop-
ment of high-precision time-synchronized communication for the
cost-sensitive industrial IoT market.

Index Terms—Field-programmable gate array (FPGA),
firmware, hybrid networks, Internet of Things (IoT), Jitter, low-
cost sensors and devices, real-time systems, sensor and actuator
networks, synchronization, WiFi.

I. INTRODUCTION

DURING the last decade, Internet of Things (IoT) has
been one of the key technology drivers, being applied

in smart-buildings [1], agriculture [2], energy [3], industrial

Manuscript received 14 October 2022; revised 16 December 2022; accepted
4 January 2023. Date of publication 9 January 2023; date of current version
23 May 2023. (Corresponding author: Alexey M. Romanov.)

Alexey M. Romanov and Pavel E. Tripolskiy are with the Institute
of Artificial Intelligent, MIREA-Russian Technological University, 119454
Moscow, Russia (e-mail: romanov@mirea.ru).

Francesco Gringoli is with the National Inter-University Consortium for
Telecommunications/Department of Information Engineering, University of
Brescia, 25123 Brescia, Italy.

Kamil Alkhouri was with the Institute of Reliable Embedded Systems and
Communication Electronics, Offenburg University of Applied Sciences, 77652
Offenburg, Germany. He is now with KUNBUS GmbH, 73770 Denkendorf,
Germany.

Axel Sikora is with the Institute of Reliable Embedded Systems and
Communication Electronics, Offenburg University of Applied Sciences, 77652
Offenburg, Germany.

Digital Object Identifier 10.1109/JIOT.2023.3235052

logistics [4], and other application areas. IoT networks of
sensors and actuators have been driving the evolution of the
automation field: in this context, each application area defines
specific requirements in terms of a transmission medium,
range, throughput, communication jitter, etc. For example,
while in some applications, like smart agriculture, wire-
less communications are the fundamental architecture [2], in
other applications, like industrial automation or smart-building
automation, usually wired and wireless solutions are combined
to find the best tradeoff between installation costs and relia-
bility [1]. As another example, high delays can be tolerated
in sensor networks for agricultural monitoring. In contrast,
in other applications, like in phasor measurements for smart
grids [3], [5] or in factory automation, very short latencies
and high-accuracy synchronization are required. It is, espe-
cially, in robot and autonomous vehicle applications, where
both throughput and time sensitivity become fundamental.

For wired connectivity, Ethernet has become the one-size-
fits-all solution for all new connectivity solutions in its various
flavors. The time-sensitive networking (TSN) extension sup-
ports high-accuracy synchronization and vendor-independent
real-time communication. For wireless applications, instead,
a definitive solution still does not exist. Many requirements
advocate for the use of 5G [6] and WiFi [7] technolo-
gies [4], [8].

5G networks in their different flavors combine several
strengths, i.e., long-range, scalability, significant data trans-
mission rates, and even support for time-sensitive communi-
cations [9]. However, one challenge with 5G technology is
a relatively complex commissioning and operation process,
usually provided by a mobile operator. As the underlying
infrastructure is shared among all customers, IoT applications
that require complete control of network resources are not
simply possible. Even though deploying a private 5G system
on a specific industrial facility is feasible, the efforts to oper-
ate its own 5G infrastructure are still significant—even if new
attractive solutions will be available in the near future. Also,
an interesting solution to this challenge was proposed by the
3GPP consortium in the 5G NR specification release 16 with
the possibility to operate 5G communications over unlicensed
spectrum bands, i.e., the same used by IEEE 802.11 (WiFi)
networks [6].

IEEE 802.11 is a well-known technology that has under-
gone more than 20 years of development. The current 6E
release can be deployed over 2 GHz of unlicensed spectrum. It
can provide multigigabit throughput thanks to 160 MHz chan-
nels and MIMO modulations while being cost efficient and

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1838-0489
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0003-0878-2919

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9967

keeping the budget for deploying an IoT network very low [7].
The main disadvantages with respect to 5G are relatively
short ranges (up to 100 m) and non-real-time characteris-
tics. Different attempts have been made to solve these two
issues during the last decade. Directional antennas can easily
increase the 802.11 range up to 1 km [10], albeit compro-
mising omnidirectionality. On the standardization side, IEEE
introduced the 802.11ah amendment, dedicated to reliable
communication in the sub-GHz band with ranges above 1 km
and latencies of ≈ 100 ms [11]. Another practical way of
enhancing range without losing bandwidth was demonstrated
with hybrid networks, where several wireless access points
(APs) are connected with a wired backbone [12].

The other “major” issue of 802.11 is establishing low-
jitter time synchronization between IoT devices. While there
are proprietary extensions, like industrial wireless LAN and
some IEEE802.11 multimedia extensions in IEEE802.11e and
h—trying to improve the best effort networks with a Class-
of-Service approach, the Chinese national committee to IEC
has also introduced two additional standards around the wire-
less infrastructure association (WIA). The WIA FA standard
for Factory Automation [13] solves this problem by building
a dedicated, time-deterministic data link layer on top of the
802.11 physical layer. Even though WIA FA can be profitably
used in some robotic IoT applications, like Automated Guided
Vehicle collision avoidance [4], it cannot guarantee jitter below
1 ms, which is required for high-dynamic distributed motion
control applications. The new standard WIA NR proposes a
New Radio to address this issue, but, based on 5G over unli-
censed spectrum, it is in the early stages of its deployment
roadmap [14].

Software-defined radio (SDR) technology has been consid-
ered a demo platform for showcasing time-sensitive wireless
communication between IoT nodes multiple times. Based on
field-programmable systems-on-chip (FPSoC) equipped with
external radio-frequency (RF) hardware, SDR provides unri-
valed flexibility in modifying the lower layers of wireless
communication stacks. This was exploited for demonstrating
pure wireless and hybrid wired–wireless time synchroniza-
tion with submicrosecond jitter, both in 802.11-compliant
implementations [12] and fully customized communication
solutions [15]. Despite its flexibility, the dramatically high
costs of SDR prevent its adoption as a universal solution for
time-synchronized IoT communications: more than 1000 EUR
are required per node, even in high quantities.

This article proposes a novel approach to build-
ing cost-efficient IoT modules for precisely synchronized
wireless-wired industrial networks. In order to avoid the prob-
lems mentioned earlier with SDR designs, we propose a
solution based on a commercially available wireless System on
a Chip (SoC) extended with a low-cost FPGA, where specific
modifications manage both communication and time synchro-
nization to the software running in the involved devices.

We proposed a new low-footprint generalized Precision
Time Protocol (gPTP) implementation to provide compat-
ibility with Ethernet TSN. It runs on an SoC application
processor along with the FreeRTOS operating system, using
the same adjustable Real-Time Clock hardware as a wireless

synchronization mechanism. The overall production costs of
the module are below 70 EUR in small quantities, which is
around 20 times lower than competitive solutions with com-
parable system performance [16], and more than ten times
cheaper than market-available EchoRing Ethernet bridge,
which provides point-to-point synchronization in 5-ms range.
Our solution, thus, reaches the submicrosecond synchroniza-
tion precision demonstrated with SDR approaches at the cost
of a standard mid-end IoT device. Moreover, we validated the
performance of our solution during long-term tests on a real
prototype of a hybrid network with different network loads
for a total of 120 h, which makes our experimental results on
jitter analysis more representative than those reported in many
recent papers on this topic.

The key contributions of our research to state of the art are
as follows.

1) A novel architecture for a low-cost Industrial IoT (IIoT)
module, providing precisely synchronized wired and
wireless communication and consuming three to five
times less power than FPSoC-based SDR solutions.

2) A novel event synchronization interface for modern
wireless SoCs, which is suitable for mass production
and provides more than five times better synchronization
precision than its known predecessors.

3) A software/firmware stack for synchronization and com-
munication in hybrid networks which has low resource
consumption and is, thus, compatible with low-cost
wireless SoCs and FPGAs, providing better synchroniza-
tion rate and precision than similar solutions.

4) Experimental results from a specially designed auto-
mated testbed show that the proposed solution can
guarantee precisely synchronized communication with
jitter standard deviation below 200 ns.

The remainder of this article is organized as follows.
Section II contains a brief literature review of known solu-
tions. Section III presents the novel IIoT module architecture
and describes the modifications of the wireless SoC firmware
that provide the functionalities necessary to implement the
new event synchronization interface. It also introduces the
FreeRTOS-based implementation of the novel communica-
tion stack, including the design of the gPTP module and
the extensions for wireless synchronization, in addition to
the description of the designed FPGA intellectual property
(IP) cores. Experimental results and analysis are reported in
Section IV. Finally, Section V summarizes the main research
results.

II. STATE OF THE ART

As IoT devices play a key role in different areas of mod-
ern industry, a significant number of projects contributed to
their development [17], [18]. Even though [17] determined
three categories of systems (low-, middle-, and high-end),
developers usually balance cost and performance by combin-
ing different devices: i.e., low-end to collect data and control
actuator, and high-end to perform intelligent control [19].
The same approach and hardware solutions are used in ser-
vice robotics, where hierarchical control systems are already

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9968 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

state of the art [20]. While the majority of IoT devices are
developed around a microprocessor, FPGAs are routinely cho-
sen to process data at high sample rates or to implement
custom interfaces [21]. FPSoC [22] approaches are also con-
sidered, but they are as expensive as high-end IoT modules
despite combining FPGA and microprocessor in one integrated
circuit.

Currently, Ethernet TSN is one of the most promising
contenders for vendor-independent real-time wired commu-
nication between IIoT nodes. However, to perform gPTP
synchronization [23], devices should be equipped with
TSN-compatible Ethernet controllers like the Intel I210.
In contrast, [24] demonstrates that TSN can be supported
with standard Ethernet controllers coupled with dedicated
FPGAs, while an FPSoC-based approach is reported [25].
Implementing the gPTP stack requires high-end IoT devices
running Linux in these cases.

Reference [26] demonstrates a gPTP stack on an
STM32 microcontroller running FreeRTOS and equipped
with an Ethernet interface supporting hardware timestamping.
However, it does not discuss the software stack at all. An
STM32 solution featuring an FPGA for precise timestamping
is described in [27]. Unfortunately, [27] does not reveal many
implementation details and reports a synchronization precision
several times worse than [26].

A survey [28] by Mahmood et al. describes most of the
approaches for clock synchronization over IEEE 802.11 intro-
duced before 2017. Since then, most novel approaches have
adopted FPSoC SDRs with external radio front-ends.

In [16], the modification of the 802.11 timing synchro-
nization function (TSF) on the OpenWiFi FPGA platform1 is
presented. Using PTP, it achieves a clock synchronization error
below 1.4 µs in 90% of the cases. Val et al. [12] developed
an SDR-based solution for synchronization in wired–wireless
hybrid networks compatible with TSN. Finally, Seijo et al. [25]
reported a hybrid TSN proof of concept composed of FPSoC
SDR devices. The main drawback of these solutions is their
cost: e.g., [12] uses ADRV9361-Z7035 Evaluation Kits based
on 20-layer PCBs with a unit price exceeding 1500 EUR,
which is ten times the average cost of high-end commercial
IIoT devices [17].

Liang et al. [15] introduced an innovative SDR solution
for time-sensitive wireless IoT networks that reports 90th per-
centile of jitter below 100 ns. To achieve such results, however,
the authors use three nodes, where each node includes a
USRP X310 high-performance SDR and a powerful worksta-
tion equipped with 64 GB of RAM and a 16-core 3.4-GHz
AMD 1950X CPU. This configuration is far more powerful
and expensive than the majority of IoT high-end devices [17]
available on the market, i.e., a single USRP X310 costs more
than 6500 EUR.

To be precise, SDR is usually not considered as a platform
for final industrial products, due to high cost and high power
consumption. Instead, it is often used as a prototyping platform
for technologies that are then assumed to be implemented in
an application-specific integrated circuit (ASIC). However, the

1https://github.com/open-sdr/openwifi

overall process of new ASIC development and production may
take years, while the so-called “microchip crisis” started dur-
ing the COVID-19 pandemic made it even longer and harder
to plan [29]. In this case, in the short term, SDR becomes
one of a few ways to introduce high-precision wireless syn-
chronization in new products. The other way is described as
follows.

In principle, synchronization approaches based on com-
mercial IEEE 802.11 chipsets are possible as they adopt
reprogrammable real-time microcontrollers to run time-critical
operations: for instance, the 802.11 TSF is already sub-µs
accurate [16]. Unfortunately, manufacturers do not release
toolchains and documentation for modifying the underlying
drivers and firmware. Recently, several open-source projects,
such as Nexmon [30] and PicoScenes [31], changed this trend
and released toolchains for customizing the entire stack of
selected 802.11 chipsets.

In 2021, our team introduced the first synchronization
approach based on Nexmon [32]. In that research, we showed
how to precisely timestamp IEEE 802.11 beacons on a
Raspberry Pi node with the help of an external low-cost
FPGA and custom firmware running in the 802.11 wireless
transceiver of the RP. While being priced below 30 EUR, our
solution provides very promising results, i.e., it achieves a
synchronization error with a standard deviation below 500 ns.
Still, our solution exhibits a few significant drawbacks: 1) it
does not fully meet submicrosecond synchronization precision
requirements: maximum jitter, in fact, can exceed 1 µs; 2) the
RP’s Ethernet interface is unsuitable for real-time communi-
cation; and 3) to deploy the event synchronization interface
originally proposed in [33] and enhanced in [32]: a) the
shielding of the IEEE 802.11 chipset has to be removed and
b) additional wires must be soldered to the tiny pad of the wire-
less receiver input. These operations affect the system’s overall
reliability and are inappropriate for mass production. Finally,
the synchronization algorithm requires transmitting a wireless
frame to trigger the FPGA action, which adds unnecessary
load to the channel. To overcome these problems, we signif-
icantly revised our solution in this article to make it 1) easy
to manufacture and 2) even more precise. In the remainder of
this article, we present our design methodology and describe
the architecture along with the implementation of our novel
IIoT module architecture.

III. NOVEL IIOT MODULE ARCHITECTURE

In this section, we introduce a novel IIoT architecture
inspired by [32], but overcoming its main limitations. It is
based on a commercial industry-ready wireless SoC com-
bined with a low-cost FPGA, features both precise wired
and wireless synchronization capabilities, introduces a novel
event synchronization interface suitable for mass production,
and does not require transmitting additional radio signals. In
our design, all the user-controlled interfaces of the SoC are
connected to the FPGA, which interacts with sensors and
actuators, performs real-time data processing, and includes
the hardware for both wired and wireless synchronization.
While we focused on two specific products, i.e., Cypress IoT

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9969

Fig. 1. Proposed IIoT module architecture.

SoCs CYW43907 and CYW54907, that embed a WiFi 4 and
a WiFi 5 communication processor, respectively, the same
results can be obtained with any wireless SoC equipped with
separate application and communication processors whose
firmware can be customized by direct rebuilding or patching.

The implementation of the proposed architecture (Fig. 1)
assumes that the firmware of the communication processor
can be modified in order to transmit FPGA messages contain-
ing the sequence numbers (SNs) of the WiFi beacons received
from the AP. To this end, an interface directly controlled by
the communication processor should be defined. More specif-
ically, it should provide a very low latency between beacon
reception and message transmission and a way for discriminat-
ing received messages from random interferences. As in [32],
we call it synchronization event interface (SEI). We show in
the following section how we successfully adopted the serial
enhanced coexistence interface (SECI) available in the chosen
SoCs as SEI. While the modifications to the communication
processor described above are the only ones required by the
proposed architecture, the possibility to customize its firmware
makes the entire platform very flexible. Among many promis-
ing options, Pizarro et al. [34] introduced submeter accurate
localization of a wireless node without any additional hardware
on the IIoT module.

In the proposed architecture, the application processor is
mainly used to implement the communication and synchro-
nization protocols for hybrid wired and wireless networks. In
addition, it can process state machines for application tasks.
All real-time data processing and specific sensor and actu-
ator interfaces are implemented on the FPGA. First, within
the FPGA, we can easily implement digital interfaces for
almost all devices available on the market, providing flexi-
bility close to that of FPSoC-based platforms. Second, the
CPU of the application processor runs the real-time syn-
chronization stack, where any additional computational load
can negatively affect its performance. Instead, the FPGA exe-
cutes time-critical tasks in parallel, so they are isolated from
each other. Third, concurrent tasks running on the applica-
tion processor can significantly deteriorate latency. According
to our measurements, the latency of digital input interrupts
the processing of CYW43907 ranges from 1.95 to 4.06 µs
(Fig. 2). Running the Real-Time Clock on the FPGA signifi-
cantly reduces the synchronization error between devices and

Fig. 2. Logarithmic histogram of CYW43907 IRQ latency.

Fig. 3. IIoT module communication through hybrid network concept.

applications. Finally, when additional computational resources
are needed on the FPGA, replacing the current with a new
one is straightforward and does not require code refactor-
ing [35], [36]. Changing the application processor of the SoC,
instead, is not really possible.

Regarding the synchronization methodology, we follow the
hybrid scheme described in [32], which we modified to be
compatible with the hardware solutions proposed in this arti-
cle. First, we equip each IIoT module that can act as a
master (the source providing the clock) or slave, depending
on its configuration, with both wired and wireless interfaces.
The configuration defines the synchronization role of each
interface: for instance, when a module is synchronized through
the wired network, it cannot act as a wireless synchroniza-
tion slave (and vice versa) but can redistribute synchronization
information toward the wireless domain. In addition, a module
can be synchronized with an external clock source distributed
through an Ethernet TSN network, or it can act as a clock
source (grandmaster) endpoint itself.

In summary, the generalized hybrid network of IIoT mod-
ules can be represented as an Ethernet TSN backbone con-
necting several wireless networks, all synchronized to a single
clock source as in Fig. 3. It is also worth mentioning that our
solution does not require Ethernet switches or IEEE 802.11
APs to be TSN compliant: they just need to be compatible with
the standard. Needless to say, the implementation of additional
features (like WiFi-based IIoT module localization [34]) may
introduce some constraints.

The two main challenges of the proposed architecture are:
1) a low-latency SEI that must be both reliable and cheap
to manufacture and 2) a wired and wireless synchronization
stack that matches the limited resources of the application
processor. In the next sections, we introduce the hardware
solutions and the software stack that we developed in order to
satisfy these two requirements: we report in the Appendixes
additional details for readers interested in the implementation.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9970 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 4. Illustration of the beacon timestamping procedure performed by each
node involved in wireless synchronization.

A. Novel SECI-Based Synchronization Event Interface

The SECI is an arbitration mechanism adopted in many
combo chipsets to avoid collisions between Bluetooth and
WiFi transmissions in the 2.4-GHz band. Despite the scarcely
available documentation, some information was recently
presented in [37], which showed how SECI is fundamental
to maintaining communication performance and demonstrated
some underlying vulnerabilities. We modified the behavior of
the SECI interface and adapted it for sharing synchroniza-
tion information between the communication processor and
the FPGA. As our module design does not include a Bluetooth
controller, our modifications do not introduce any side effects.

As our approach uses the beacon transmitted from the WiFi
AP as a reference, we activate an SECI transmission as soon as
a beacon is received (Fig. 4). Thanks to the very low latency
and negligible jitter of the SECI interface (see the Appendix),
the timestamp (TS) produced by the FPGA upon detecting the
SECI transmission approximates the timestamp of the beacon
with very high accuracy. By embedding the SN of the beacon
in the SECI message, an integer of 12 bits, we can use the
same beacon as a common reference at an arbitrary number of
receivers. To match the specifications of the SECI interface,
we encode the message with the 6-to-8 encoding from [38],
which also gives the FPGA the ability to detect spurious SECI
transmissions. We provide details about the internals of such
solution in Appendix A.

B. Software Stack for Synchronization and Communication
in Hybrid Networks

Our new software stack for synchronization and communi-
cation in hybrid networks runs on the application processor
of the SoC. It gets extra hardware support from a special-
ized FPGA core that we describe further in Section III-C.
The software consists of three main modules, shown in Fig. 5:
1) Wireless Timestamp Advertising; 2) gPTP Synchronization;
and 3) Load Generation. These modules run over a FreeRTOS
operating system in parallel with Application software and use
the lightweight Internet protocol (LwIP) library as a network
stack in addition to other System libraries from the WICED
toolchain.

Since most of the wireless synchronization tasks are per-
formed by the communication processor firmware and by the
FPGA, the only purpose of the Wireless Timestamp Advertising
module is to distribute the master clock to other nodes. On
a wireless synchronization master node, this module receives

Fig. 5. Software structure.

Fig. 6. IIoT module prototype (left) and IIoT module PCB layout (right).

the timestamp of the last WiFi beacon from the FPGA and
broadcasts it as user datagram protocol (UDP) messages. On
the wireless slave side, these UDP messages are received and
relayed to the FPGA, which completes the synchronization
procedure. When the IIoT module is not synchronized through
the wireless network, the Wireless Timestamp Advertising
module can be stopped.

The gPTP Synchronization module implements
IEEE 802.1AS (gPTP) as a profile of PTP from IEEE
1588 and provides the functionality required by both
gPTP master and slave endpoints for full compliance with
IEEE 802.1AS. We provide additional details about this
module in Appendix B.

Finally, the Load Generation module controls the network
load. It is used only during experiments but will not be used
in later operations.

C. Hardware Module for Hybrid Networks Implementation

The proposed IIoT module architecture is implemented as a
PCB module with a WiFi module Murata Type 1GC/1PS and
an Intel MAX10 FPGA (Fig. 6). The choice of the WiFi mod-
ule is motivated by compatibility with the software described
in Sections III-A and III-B, while the Intel MAX10 is one
of the cheapest FPGA with integrated memory. The applica-
tion processor of the Murata wireless module is loaded with
firmware based on the wired–wireless synchronization stack
described in the previous section. The D11 communication
processor firmware is patched to send the 12-bit beacon’s SN
through the SECI interface every time it receives a beacon
from the 802.11 AP. The FPGA design, which provides syn-
chronization hardware support (Fig. 7), consists of three main
parts: 1) wired synchronization; 2) wireless synchronization;
and 3) real-time clock adjustment.

The Adjustable Real-Time Clock serves as the primary clock
source for all synchronization-related IP cores and application

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9971

Fig. 7. FPGA firmware structure.

tasks. It is adjusted by one of the two Timestamp match mod-
ules, which depends on the state of the SEL switch configured
during the synchronization startup phase. Even though it would
be possible to reduce FPGA area utilization by using only one
Timestamp match module and switch its inputs with selectors
similar to SEL, this would negatively influence FPGA timing
results as timestamps are 80 bits-wide.

The FPGA also includes a 1-kHz Generator and a USB-UART
Service interface for debugging and monitoring jitter: these
blocks can be removed in real-life applications. For wireless
synchronization, the SECI-decoder receives and timestamps
SECI messages, checks their validity, and decodes the beacon’s
SNs. Beacon’s SNs and their corresponding timestamps are
sent to the Timestamp match core. The second input of this
core is connected to the Timestamp receiver that forwards the
last beacon timestamps received by the Murata SoC from the
wireless synchronization master. Timestamp match has two
separate, three unit-long queues connected to its inputs. The
beacon’s SNs stored in these queues are compared when a
new pair of beacon’s SNs and timestamps arrives at one of
the module’s inputs. If it finds a match between SNs from the
different inputs, the corresponding pair of timestamps will be
sent to SEL to adjust the Real-Time Clock. If the IIoT module is
configured as wireless synchronization master, the SEL selector
simultaneously switches the clock adjustment source to the
Wired Synchronization Timestamp match IP core and connects
its output of SECI-decoder to Timestamp transmitter. The latter
sends the SN, and the timestamp of the received beacons to the
synchronization stack on the Murata SoC application processor
that forwards them to the other wireless IIoT modules.

The wired synchronization hardware is similar to the wire-
less one and includes identical Timestamp receiver, transmit-
ter, and match modules. Instead of the SECI-decoder, there
are two Ethernet timestamping modules that, besides times-
tamping Ethernet frames, forward the corresponding traffic
to the wireless SoC and vice versa. These modules are con-
nected directly to the Reduce Media Independent Interfaces

TABLE I
FPGA FIRMWARE RESOURCE UTILIZATION BY ENTITY

OF DIFFERENT TYPES

TABLE II
FPGA FIRMWARE SYNTHESIS RESULTS

of the Ethernet PHY and the SoC. The Ethernet IN times-
tamping core timestamps all incoming frames and embeds the
80-bit timestamps inside the frames in front of the Ethernet
checksum. The Ethernet OUT timestamping core timestamps
all outgoing frames and sends them back to the SoC each time
it receives a corresponding command via the UART.

While the IIoT module supports up to two independent
Ethernet ports, only one was used in this research. A sec-
ond port can be used for application tasks or to implement
a two-port switch for a daisy-chain connection. Both options
can be easily implemented using available FPGA resources.

IV. EXPERIMENTAL RESULTS

A. Firmware Resource Usage

The PCB of the developed prototype can be equipped
with two different wireless SoCs from Murata (Murata 1GC
based on Cypress CYW43907 and Murata 1PS based on
Cypress CYW54907) and with several FPGAs versions of
the Intel MAX10 series. Since the Murata 1PS module was
still under development during experimental studies, we chose
the 1GC version. The FPGA firmware was synthesized with
Intel Quartus Prime Version 17.0.0 Build 595: according to
the resource consumption that we report in Table I, two out
of five Intel MAX10 pin-compatible FPGAs can be consid-
ered (Table II). Finally, the efficiency of our design is proven
by the low resource usage for Cyclone IV FPGA on the
popular low-cost development kit Terasic DE0-Nano.

Service Interface and 1-kHz Generator are used only for
debugging and monitoring jitter and are not required in real
industrial applications. Still, our design keeps fitting into low-
cost FPGAs even if these modules are included, and we
have enough unused resources for application-related tasks or
Specialized Computational Cores [36].

Our SoC software from Section III-B with the gPTP
Synchronization module requires only 27.6 kB (Table III),2

which is eight times smaller than ptp4l daemon in Linux-based

2The Load Generation module is not listed in Table III as it is used only
to perform experimental studies.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9972 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

TABLE III
MEMORY USAGE OF THE SOFTWARE

TABLE IV
IIOT MODULE PROTOTYPE MANUFACTURING COSTS

implementations. Additionally, we used LwIP instead of stan-
dard sockets implementation, which decreased memory usage
even more. Consequently, we managed to fit it into the built-in
memory of the wireless SoC, which is only 640 kB. The total
size of our software is 499 kB, including a compressed image
of the communication processor firmware, which leaves more
than 140 kB for application-specific functions.

B. Hardware Costs

For our experiments, we implemented modules with a
10M08SCU169C8G FPGA (Module v1). The total cost,
including components and manufacturing, is provided in
Table IV. For comparison reasons, we also show the
cost of an alternative version (Module v2) based on a
10M16SCU169C8G FPGA as well as the cost of these mod-
ules if produced in batches of 1000 pieces, which can be
considered a small quantity for such type of electronics.
Numbers do not include 190 EUR nonrecurring engineering
cost for manufacturing preparations and materials.

Even in single quantities, these costs are around ten times
lower than the FPSoC-based hardware in [12]. Module v2,
equipped with the larger FPGA, has a cost comparable to the
average price of a high-end IoT device [17]. At the same
time, with mass production, this cost can be reduced (to
below 70 EUR), which is comparable with standard mid-end
devices, where no FPSoC device with IEEE 802.11 compatible
interface is available. Thanks to the proposed module archi-
tecture, an 8-layer PCB is entirely sufficient and reduces the
cost of the PCB below 1 EUR. In addition, all components
(except RJ-45 connectors) are suitable for fully automatic
pick-and-place.

It is worth mentioning that manufacturing costs (Table IV)
are only part of the final product cost [39]. The other parts are
dedicated to expenses on development, marketing, customer
support, etc. These costs differ from product to product. In
the industrial automation market, their total sum usually ranges
from 60% to 150% of mass-production manufacturing costs.
Even though pricing and marketing are out of the scope of

Fig. 8. SECI event generation error: (a) transient process and (b) histogram.

this research, using the above-mentioned ratios, we can esti-
mate that the total cost of the proposed solution will be below
167 EUR for Module v1 and below 202 EUR for Module v2.
Thus, it is still several times lower than market-available
solutions, like R3 EchoRing Ethernet Bridge.

We believe these cost considerations, which are often
disregarded in the literature, are fundamental indeed. High
equipment cost, in fact, is one of the key barriers to the
wide deployment of wireless time synchronization. As it
was mentioned above, SDR FPSoC hardware prices exceed
1500 EUR. Similarly, one of the few industrial low-latency
wireless products available on the market, the R3 EchoRing
Ethernet Bridge, costs above 750 EUR and still, as reported
in the datasheet, its synchronization precision lies in 5-ms
range [40]. In contrast, our solution provides a significant drop
in hardware costs and performance, and we show next that its
performance is close to real-time wired solutions used in the
industry nowadays.

C. Synchronization Precision

As synchronization is one of the key features of the
proposed IIoT module architecture, we performed a series of
experiments to properly estimate its precision and compare it
with state of the art.

First, we estimated the jitter of our SECI-based SEI. During
this experiment, we put two IIoT modules close to each
other, keeping the same distance between their antennas and
the antenna of the AP. The firmware of the communication
Processor was configured to send a short SECI message each
time it receives a WiFi beacon. After receiving this message,
the FPGA generates an edge. An FPGA-based logic analyzer
from [41] measures the SECI jitter, i.e., the time differences
between the edges from both FPGAs (Fig. 8). Measurements
ran for approximately 68 min. The results show a maximum
SECI jitter below 730 ns with a standard deviation below 50
ns and 90-percentile (P90) of 70 ns outperforming [32], [33].

In the second experiment, we set up one module as a
wireless synchronization master and the other as a slave.
We implemented another slave device as in [32] with a
Raspberry Pi 3B and a Lattice iCE40 FPGA. The only sig-
nificant modification was the use of timestamps advertised
by our master device as a synchronization source instead of
IEEE 802.11 TSF. The jitter was monitored for 10 h by the
same logic analyzer as in the previous experiments. Fig. 9
shows that the SEI proposed in this article has much less jit-
ter compared to the state of the art. In our prototype, the jitter

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9973

Fig. 9. (a) Wireless synchronization precision is provided by the method
proposed in this article (red) and [32] (blue). (b) Wired synchronization
precision is provided by the method proposed in this article.

TABLE V
SYNCHRONIZATION METHODS’ ERRORS UNDER NO LOAD

IN IEEE802.11

P90 is 110 ns with a maximum of 690 ns and a standard devi-
ation (Sdv.) of 72.67 ns, while in [32], these values are 280,
1620, and 189.1 ns, respectively.

A fair comparison of the different Wi-Fi synchronization
methods is very complicated, as all conditions of the experi-
ments should be similar. In fact, the test results available in the
literature have been executed under different electromagnetic
conditions, with different numbers of nodes, and with various
network loads. At the same time, in most of the papers, at
least in one experiment, the results were collected with point-
to-point synchronization of two wireless nodes in a regular
office environment without additional interference or network
load. This article is no exception (see the second experiment).
Table V compares our solution with the other methods for
this test case, as it is a reasonable and realistic use case.
As can be seen, our solution outperforms most of the oth-
ers, excluding [12]. At the same time, it can be implemented
with market-available components at a much lower cost than
the ones required by [12]. Meanwhile, being fair and wide
(in terms of compared methods), this comparison only covers
some actual use cases, excluding synchronization of multiple
nodes in hybrid networks or operation in crowded radio areas.
Thus, we performed additional experiments to deeply ana-
lyze the performance of our solution. These experiments are
described below.

In the third experiment, we verified our method using wired
synchronization. We used one of our prototypes as a grand-
master and the other as a slave endpoint. Their 1 kHz signals
were connected to the logic analyzer. The output of the grand-
master endpoint was used as a reference. As in previous
experiments, the logic analyzer was configured with a 128×
prescaler. Experimental data was collected for 10 h. Our soft-
ware/firmware stack guarantees synchronization errors below
160 ns [Fig. 9(b)]. Moreover, the synchronization jitter was

Fig. 10. Histograms of (a) normally distributed synchronization error and
(b) normally distributed synchronization error processed by 128× prescaler.

below 90 ns with a standard deviation of only 60.5 ns in 90%
of the cases. Thus, our results are comparable to the known
FreeRTOS-based PTP implementation [26] with an integrated
IEEE 1588-compliant Ethernet controller and much better
than [27] using FPGA-based Ethernet frame timestamping.

The logic analyzer was configured to send the maximum
jitter value that it measured every 64 ms (128 consecutive
measurements) to reduce the amount of data recorded dur-
ing long-term measurements in the last two experiments [41].
Histograms of the normally distributed synchronization error
are shown in Fig. 10(a) and the same error after a prescal-
ing in the logic analyzer in Fig. 10(b). Values around zero
rarely become worst case measurements during the prescaling
interval, which causes a gap in the middle of the second his-
togram. These values do not impact the maximum jitter but
make jitter standard deviation and 90-percentile bigger than
their actual value (more than two times compared to the non-
prescaled case). Thus, our wired and wireless synchronization
approach’s standard deviation and P90 values are even smaller
than the shown values.

Finally, we evaluated the performance in hybrid networks
under specific traffic load conditions using our automated
physical TestBed (APTB) [45] and keeping out any exter-
nal EM interference. The antenna ports of nine devices in
shield boxes were linked with waveguides interconnected via
RF splitters to measure the synchronization accuracy between
devices in the different segments. The structure in Fig. 11
includes two separate wireless networks, with six devices in
one network and three in the other. The WiFi network uses a
TL-WR1043ND AP. One device in each network is configured
as a wireless master, with the others being slaves. The wire-
less masters are synchronized through a wired network, using a
Linux-based third-party TSN switch, and using the DE1-SoC
development kit as their grandmaster. All IIoT modules are
connected to a logic analyzer with their 1 kHz ports. As the
third-party TSN switch does not provide a synchronized 1-kHz
output, a wireless master (Module 1) is used as a reference.
As in the previous experiments, the logic analyzer prescaler
is configured to send the worst case jitter values of subse-
quent 128 measurements. Measurements with network loads
from 0 to 10 Mb/s were performed for 24 h for each load.
The experimental results are presented in Table VI. For the
synchronization error values, the P90 metrics are compared
with [16] results supplementing it with 99-percentile (P99). In
each row of Table VI, worst case values are marked with the
semi-bold font.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9974 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 11. APTB testbed structure for the third experiment. Solid arrows—WiFi
connections through waveguides. Dashed arrows—wired Ethernet connec-
tions. Solid lines—1-kHz digital signals connected to the logic analyzer. Red
line—logic analyzer’s reference 1-kHz signal. Device color scheme: green—
wired synchronization master; blue—wired synchronization slave/wireless
synchronization master; yellow—wireless synchronization slave; and white—
not synchronized.

TABLE VI
SYNCHRONIZATION ERROR IN A HYBRID NETWORK

During 99% of the time, the error does not exceed 700 ns
(cf. Table VI). Moreover, for 90% of the time, it is below
360 ns, which is approximately four times better than [16].
With increased network load, both P90 and P99 are rising
because of the higher loss of UDP broadcasts with master
clock information. Still, even in these cases, the values of
P90 and P99 continue to be below 1 µs. The synchroniza-
tion results achieved in [12] are generally better than ours but
were obtained using 20 times more expensive equipment. In
addition, these works do not investigate any dependency on the
network load. Experiments in [12], [16], [25], and [32] were
performed with only two wireless nodes. Moreover, in [12]
and [16], the duration of the experiments was around 20 min,
and the jitter was estimated once per second by analyzing the
pulse per second signal at the output of each device. In our
work, instead, we performed long-term tests by collecting jitter
2000 times per second with different network loads for a total
of 120 h. And most importantly, we evaluated a more complex
hybrid network consisting of nine modules with independent
wireless segments and a third-party TSN switch as the master
synchronization clock source. This indeed makes our experi-
mental results on jitter analysis more representative than those
reported by recent papers.

We performed another experiment to ensure that experimen-
tal results achieved on APTB are also representative of real
conditions of the noisy radio spectrum. We set up our WiFi

Fig. 12. Synchronization error of slave nodes measured in a crowded area
with several public WiFi networks: (a) slave device located near AP and
(b) slave device distanced from AP by approximately 10 m.

AP in a crowded part of the building where several neighbor-
ing public WiFi networks were present. We placed two nodes,
one master and one slave, as close as possible to the AP; we
placed a second slave at approximately 10 m from the AP in a
position where the signal strength of the neighboring networks
was very high. Fig. 12 presents synchronization errors of both
slave devices measured from 10:00 to 19:00 on a business
day. As it can be seen, the error of the distant slave device
is biased in the interval between 11:00 and 16:00: this can be
explained by considering typical working patterns with peo-
ple being more active at that moment and, hence, generating
more traffic at the neighboring WiFi networks. During this
time interval, the synchronization error also exhibits several
peaks with amplitude above 1µs that are not present, instead,
on the master and slave nodes placed near the AP. Thus, these
deviations can be considered caused by interference from pub-
lic WiFi networks. Numerical analysis of the results shows that
the slave placed near AP provided synchronization error Sdv.
of 86.1 ns, P90 = 130 ns, and P99 = 190 ns. The distant
slave, instead, provided Sdv. of 134.4 ns, P90 = 190 ns, and
P99 = 260 ns. Those values lay in the same range previously
measured in laboratory conditions (Table VI). Thus, the exper-
imental studies performed on APTB represent real applications
in a noisy environment.

As can be seen, regular interference from other WiFi
networks does not significantly impact interdevice synchro-
nization. At the same time, our approach does not introduce
additional features for increasing WiFi reliability, and, in
fact, cannot provide good performance if the radio signal is
jammed. To prevent this, well-known approaches to achieve
Electromagnetic Compatibility should be used, including the
proper isolation of communication part from power electron-
ics as well as IoT device shielding, placement, and antenna
positioning (the proposed IoT module can be equipped with
two external antennas) [46]. Meanwhile, radio conditions in
typical industrial applications can be much better than those
in the described-above experiment, thanks to proper spectrum
planning and frequency allocation, which can minimize radio
interference.

D. Power Consumption

We evaluated the power consumption of our prototype dur-
ing standby and communication, with and without network
load, and we compared it with R3 EchoRing Ethernet Bridge,
and OpenWiFi SDR-solution implemented on Xilinx ZC706

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9975

TABLE VII
PROPOSED IIOT MODULE POWER CONSUMPTION COMPARED TO THE

SDR SOLUTION

development board and Analog devices FMCOMMS2-EBZ
high-speed analog module. For our prototypes and OpenWiFi,
power consumption was estimated by measuring current and
voltage with meters connected to their power supply chains.
For EchoRing, instead, we used information from the vendor’s
datasheets as we did not have access to the actual product. As
it can be seen in Table VII, our IIoT module consumes up
to five times less power in standby and up to three times less
power during active synchronized communication compared to
the FPSoC-based SDR solution. With respect to the EchoRing
Ethernet Bridge product, our solution’s power consumption is
very similar, but its synchronization precision achieves 700 ns,
compared to 5 ms.

V. SUMMARY AND CONCLUSION

In this article, we have designed, implemented, and val-
idated a novel architecture for synchronizing hybrid WiFi-
Ethernet networks that combine the requirements of an
ultralow-cost approach with low power consumption and sig-
nificant performance expectations. The proposed architecture
includes market-available wireless SoC with modified low-
level communication firmware connected with a low-cost

FPGA. It provides a complete solution for industrial communi-
cation in hybrid wired–wireless networks with synchronization
precision below 1 µs (worst case 99-percentile of synchroniza-
tion error does not exceed 700 ns) at the cost of standard
mid-end IoT device, reaching total cost below 167 EUR.
Furthermore, it is characterized by up to 20 times lower prices
and up to five times lower power consumption than competi-
tive SDR-based solutions. To back up our claims, we reported
data that we collected with a high sampling rate (2000 sam-
ples per second) during an extremely long (more than 120 h)
measurement campaign performed on a testbed composed of
a hybrid network with nine nodes divided into two inde-
pendent wireless segments connected by a wired backbone.
Additionally, we verified that experimental results achieved
on the testbed match those measured in the area with sev-
eral public WiFi networks, acting as a source of the RF
interference.

In conclusion, we believe that our novel Industrial IoT
module architecture will have a significant impact on the
future technological development of high-precision time-
synchronized communication for the industrial IoT market.

APPENDIX A
SECI INTERFACE

While the proposed modifications to the SECI interface
could be implemented on all devices that use it, we restrict
the following analysis to the Cypress chipset used in our
prototypes.

Like all the other time-critical operations, the Cypress
chipset manages the IO of the SECI interface in the D11
core. This microcontroller executes tiny real-time firmware
and controls operations like arbitration of channel access and
scheduling of transmission [47]. To add functionalities to the
D11 core, we modify its firmware, called ucode, by using
the same binary-patching approach introduced by the Nexmon
framework.3 We then replace the modified ucode in the soft-
ware image of the SoC that we write into its flash memory:
the new code is loaded into the microcontroller memory at the
next reboot.

In our implementation, we exploit the real-time capabilities
of the D11 core to transmit an SECI message to our FPGA
almost exactly at the end of a received beacon. During a recep-
tion, the microcontroller knows how many bytes of the current
frame has been received and decoded. It can, hence, filter bea-
cons coming from the AP from other frames. When it detects
one, it waits until it is completely received by spinning on
the hardware signal named COND_RX_COMPLETE: when this
happens, it starts the transmission of the SECI message by
writing register BTCX_Transmit_Control. As we imple-
ment spinning by using a single compare-and-jump instruction,
and since the D11 core does not support interrupts, the delay
and, hence, the jitter introduced between the end of the bea-
con’s reception and the start of the SECI message depends
on the D11 clock frequency. In our case, the 200-MHz clock
frequency translates to 5 ns of maximum jitter. Unfortunately,

3The Nexmon project offers tools and resources for binary patching, several
drivers, by Broadcom/Cypress.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9976 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Fig. 13. SECI-frame structure. S-start bit, T-stop bit, and dd are used to
transmit part of beacon’s SN.

much more significant uncertainty is introduced by the sam-
pling process of the OFDM receiver: the actual jitter is, hence,
dominated by this process when operating on a 20-MHz chan-
nel, the receiving hardware samples the incoming signal at
20 MS/s, which corresponds to an uncertainty on the frame
detection process of 50 ns.

The transfer of the beacon’s SN is a bit more complex.
The first reason is that the signal transmitted over the SECI
is designed specifically for sharing channel access information
from a WiFi chipset to a Bluetooth controller (cf. Fig. 13). An
SECI frame is a fixed bit sequence where only the two bits
marked with d can be chosen by the D11 core via two specific
bits of register BTCX_Transmit_Control: multiple SECI
frames must be transmitted for transferring the entire beacon’s
SN. The second reason is that the SECI frame is transmitted
only if at least one of the two bits is modified. Otherwise,
it would not be transmitted. Hence, we adopt the encod-
ing from [38], choosing 6-to-8 encoding, where the 12-bit
SN is encoded into 16 bits with always different consecu-
tive pairs. This also allows the rejection of SNs affected by
spurious SECI transmissions. Finally, we split the encoded
bit sequence into pairs and transmit each separately. The first
pair is embedded into the first SECI frame, transmitted right
after the reception of the beacon, which is used by the FPGA
to sample the timestamp of the beacon. All other pairs are
transmitted asynchronously with other frames.

APPENDIX B
GPTP SYNCHRONIZATION MODULE

The source code of the gPTP Synchronization module is
based on LinuxPTP implementation and PTP demon.4 With
respect to that source code, we introduced in our work some
significant contributions.

1) We ported STM32 PTP demon to the wireless SoC and
upgraded it from PTP to gPTP.

2) We implemented additional features such as gPTP time-
length-value (TLV) structures to be exchanged between
ports to communicate information related to Follow_Up
messages (FOLLOW_UP_INFO_TLV) and to track the
path, over which Announce messages are transmitted
(PATH_TRACE_TLV).

3) We implemented driver support for the FPGA-based
hardware timestamping of gPTP messages over the
Ethernet interface.

Timestamps are appended at the end of the frame to keep
track of incoming frames. On the other side, the UART
interface reads the timestamps of outgoing frames upon
request. The messages timestamped at Tx and Rx are Sync,
pDelay_Req, and pDelay_Resp. Compared to other known

4https://github.com/mpthompson/stm32_f4_ptpd

PTP and gPTP solutions, all clock adjustments, including cal-
culating phase and frequency offset, are done by FPGA based
on the timestamp of the last Sync message and its original
timestamp at the master’s clock side estimated by our software.
Thus, the gPTP Synchronization module performs everything
around the wired gPTP synchronization, while the FPGA only
performs timestamping and adjustment. The communication
via the standard UART interface between the FPGA firmware
and the developed software is based on FreeRTOS drivers.

REFERENCES

[1] R. Khan et al., “A hybrid approach for seamless and interoperable
communication in the Internet of Things,” IEEE Netw., vol. 35, no. 6,
pp. 202–208, Nov./Dec. 2021.

[2] T. Ojha, S. Misra, and N. S. Raghuwanshi, “Internet of Things for agri-
cultural applications: The state of the art,” IEEE Internet Things J.,
vol. 8, no. 14, pp. 10973–10997, Jul. 2021.

[3] G. Bedi, G. K. Venayagamoorthy, R. Singh, R. R. Brooks, and
K.-C. Wang, “Review of Internet of Things (IoT) in electric power and
energy systems,” IEEE Internet Things J., vol. 5, no. 2, pp. 847–870,
Apr. 2018.

[4] H. Shi, M. Zheng, W. Liang, J. Zhang, K. Wang, and S. Liu,
“Transmission scheduling with order constraints in WIA-FA-based AGV
systems,” IEEE Internet Things J., vol. 8, no. 1, pp. 381–392, Jan. 2021.

[5] M. Agustoni, P. Castello, and G. Frigo, “Phasor measurement unit with
digital inputs: Synchronization and interoperability issues,” IEEE Trans.
Instrum. Meas., vol. 71, pp. 1–10, 2022. [Online]. Available: https://
ieeexplore.ieee.org/abstract/document/9775053

[6] S. Parkvall et al., “5G NR release 16: Start of the 5G evolution,” IEEE
Commun. Stand. Mag., vol. 4, no. 4, pp. 56–63, Dec. 2020.

[7] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications—
Redline, IEEE Standard 802.11-2020 (Revision IEEE Std 802.11-2016),
2021.

[8] B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and beyond:
Recent advances and future trends,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2241–2263, Apr. 2019.

[9] B. Bertenyi, “5G evolution: What’s next?” IEEE Wireless Commun.,
vol. 28, no. 1, pp. 4–8, Feb. 2021.

[10] Y. Gu, M. Zhou, S. Fu, and Y. Wan, “Airborne WiFi networks through
directional antennae: An experimental study,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), 2015, pp. 1314–1319.

[11] A. Seferagic, I. Moerman, E. De Poorter, and J. Hoebeke, “Evaluating
the suitability of IEEE 802.11ah for low-latency time-critical con-
trol loops,” IEEE Internet Things J., vol. 6, no. 5, pp. 7839–7848,
Oct. 2019.

[12] I. Val, Ó. Seijo, R. Torrego, and A. Astarloa, “IEEE 802.1AS
clock synchronization performance evaluation of an integrated wired–
wireless TSN architecture,” IEEE Trans. Ind. Informat., vol. 18, no. 5,
pp. 2986–2999, May 2022.

[13] W. Liang et al., “WIA-FA and its applications to digital factory: A
wireless network solution for factory automation,” Proc. IEEE, vol. 107,
no. 6, pp. 1053–1073, Jun. 2019.

[14] H. Yu, P. Zeng, and C. Xu, “Industrial wireless control networks: From
WIA to the future,” Engineering, vol. 8, no. 1, pp. 18–24, 2022.

[15] J. Liang, H. Chen, and S. C. Liew, “Design and implementation of
time-sensitive wireless IoT networks on software-defined radio,” IEEE
Internet Things J., vol. 9, no. 3, pp. 2361–2374, Feb. 2022.

[16] M. Aslam et al., “Hardware efficient clock synchronization across Wi-
Fi and Ethernet based network using PTP,” IEEE Trans. Ind. Informat.,
vol. 18, no. 6, pp. 3808–3819, Jun. 2022.

[17] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A review of
low-end, middle-end, and high-end IoT devices,” IEEE Access, vol. 6,
pp. 70528–70554, 2018.

[18] A. Zrelli, “Hardware, software platforms, operating systems and routing
protocols for Internet of Things applications,” Wireless Pers. Commun.,
vol. 122, pp. 3889–3912, Sep. 2021.

[19] A. Zielonka, A. Sikora, M. Wozniak, W. Wei, Q. Ke, and Z. Bai,
“Intelligent Internet of Things system for smart home optimal con-
vection,” IEEE Trans. Ind. Informat., vol. 17, no. 6, pp. 4308–4317,
Jun. 2021.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

ROMANOV et al.: ENABLING TIME-SYNCHRONIZED HYBRID NETWORKS WITH LOW-COST IoT MODULES 9977

[20] A. M. Romanov, “A review on control systems hardware and software
for robots of various scale and purpose. Part 2. Service robotics,” Russ.
Technol. J., vol. 7, no. 6, pp. 68–86, 2019.

[21] L. Zhao, I. B. M. Matsuo, Y. Zhou, and W.-J. Lee, “Design of an indus-
trial IoT-based monitoring system for power substations,” IEEE Trans.
Ind. Appl., vol. 55, no. 6, pp. 5666–5674, Nov./Dec. 2019.

[22] R. F. Molanes, L. Costas, J. J. Rodríguez-Andina, and J. Fariña,
“Comparative analysis of processor-FPGA communication performance
in low-cost FPSoCs,” IEEE Trans. Ind. Informat., vol. 17, no. 6,
pp. 3826–3835, Jun. 2021.

[23] D. Bruckner et al., “An introduction to OPC UA TSN for industrial
communication systems,” Proc. IEEE, vol. 107, no. 6, pp. 1121–1131,
Jun. 2019.

[24] M. Ulbricht, J. Acevedo, S. Krdoyan, and F. H. P. Fitzek, “Precise fruits:
Hardware supported time-synchronisation on the RaspberryPI,” in Proc.
Int. Conf. Smart Appl., Commun. Netw. (SmartNets), 2021, pp. 1–6.

[25] O. Seijo, X. Iturbe, and I. Val, “Tackling the challenges of the integration
of wired and wireless TSN with a technology proof-of-concept,” IEEE
Trans. Ind. Informat., vol. 18, no. 10, pp. 7361–7372, Oct. 2022.

[26] M. Xuan, F. Yu, and Q.-C. Fan, “Research of distributed acquisi-
tion system based on clock synchronization,” in Proc. Int. Conf. Sens.
Instrum. (ICSI), 2021, Art. no. 1188720.

[27] K. Yuan, X. Guo, and J. Tian, “Research and implementation of clock
synchronization technology based on PTP,” in Proc. J. Phys. Conf.
Series, 2021, Art. no. 12139.

[28] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, “Clock synchronization
over IEEE 802.11—A survey of methodologies and protocols,” IEEE
Trans. Ind. Informat., vol. 13, no. 2, pp. 907–922, Apr. 2017.

[29] J. Kamasa, Microchips: Small and Demanded: CSS Analyses in Security
Policy, Center Security Stud. (CSS), ETH Zürich, Zürich, Switzerland,
2021.

[30] M. Schulz, D. Wegemer, and M. Hollick, “The Nexmon firmware anal-
ysis and modification framework: Empowering researchers to enhance
Wi-Fi devices,” Comput. Commun., vol. 129, pp. 269–285, Sep. 2018.

[31] Z. Jiang et al., “Eliminating the barriers: Demystifying Wi-Fi baseband
design and introducing the picoscenes Wi-Fi sensing platform,” IEEE
Internet Things J., vol. 9, no. 6, pp. 4476–4496, Mar. 2022.

[32] A. M. Romanov, F. Gringoli, and A. Sikora, “A precise synchronization
method for future wireless TSN networks,” IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3682–3692, May 2021.

[33] A. M. Romanov, F. Gringoli, and A. Sikora, “High precision synchro-
nization between commercial WiFi-ICs and external device,” in Proc.
16th Workshop Position. Navig. Commun. (WPNC), 2019, pp. 1–6.

[34] A. B. Pizarro, J. P. Beltrán, M. Cominelli, F. Gringoli, and J. Widmer,
“Accurate ubiquitous localization with off-the-shelf IEEE 802.11ac
devices,” in Proc. 19th Annu. Int. Conf. Mobile Syst. Appl. Services,
2021, pp. 241–254.

[35] A. M. Romanov, M. P. Romanov, and E. I. Shestakov, “A novel archi-
tecture for control systems of modular reconfigurable robots,” in Proc.
IEEE 2nd Int. Conf. Control Tech. Syst. (CTS), 2017, pp. 131–134.

[36] A. M. Romanov et al., “Modular reconfigurable robot distributed com-
puting system for tracking multiple objects,” IEEE Syst. J., vol. 15, no. 1,
pp. 802–813, Mar. 2021.

[37] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein:
Advanced wireless fuzzing to exploit new Bluetooth escalation targets,”
in Proc. 29th USENIX Security Symp., 2020, pp. 19–36.

[38] A. M. Romanov and F. Gringoli, “Enhanced self-synchronized reduced
media-independent interface for robotic and automotive applications,”
IEEE Trans. Ind. Informat., vol. 18, no. 4, pp. 2274–2286, Apr. 2022.

[39] R. DiResta, B. Forrest, and R. Vinyard, The Hardware Startup: Building
Your Product, Business, and Brand. Beijing, China: O’Reilly Media,
2015.

[40] C. Dombrowski and J. Gross, “EchoRing: A low-latency, reliable token-
passing MAC protocol for wireless industrial networks,” in Proc. 21st
Eur. Wireless Conf., 2015, pp. 1–8.

[41] A. M. Romanov, “An easy to implement logic analyzer for long-term
precise measurements,” HardwareX, vol. 9, Apr. 2021, Art. no. e00164.

[42] A. Mahmood, R. Exel, and T. Sauter, “Delay and jitter characterization
for software-based clock synchronization over WLAN using PTP,” IEEE
Trans. Ind. Informat., vol. 10, no. 2, pp. 1198–1206, May 2014.

[43] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Implementation
and evaluation of the reference broadcast infrastructure synchroniza-
tion protocol,” IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 801–811,
Jun. 2015.

[44] A. Mahmood, R. Exel, and T. Sauter, “Performance of IEEE 802.11’s
timing advertisement against SyncTSF for wireless clock synchro-
nization,” IEEE Trans. Ind. Informat., vol. 13, no. 1, pp. 370–379,
Feb. 2017.

[45] A. Sikora, E. J. Sebastian, A. Yushev, E. Schmitt, and M. Schappacher,
“Automated physical testbeds for emulation of wireless networks,” in
Proc. ICMIE, vol. 75, 2016, pp. 1–5.

[46] C. Ziegler, C. Paulwitz, S. Weber, and H. Bachmaier, “Challenges
of industry 4.0 for the assessment of electromagnetic compatibility
(EMC),” in Proc. PCIM Europe Digit. Days Int. Exhibition Conf.
Power Electron. Intell. Motion Renew. Energy Energy Manage., 2021,
pp. 1–8.

[47] M. Schulz, J. Link, F. Gringoli, and M. Hollick, “Shadow Wi-Fi:
Teaching smartphones to transmit raw signals and to extract channel
state information to implement practical covert channels over Wi-Fi,” in
Proc. 16th ACM Int. Conf. Mobile Syst. Appl. Services (MobiSys), 2018,
pp. 256–268.

Alexey M. Romanov (Senior Member, IEEE)
received the graduation degree (Hons.) in mecha-
tronic engineering, the Ph.D. degree in electrical
and electronics engineering, and the Habilitation
degree in electrical and electronic engineering from
MIREA-Russian Technological University, Moscow,
Russia, in 2010, 2014, and 2021, respectively.

Since 2022, he has been a Full Professor with
MIREA-Russian Technological University. During
his career, he participated in a wide range of sci-
entific and industrial projects and coauthored more

than 80 papers and patents. His current research interests include image pro-
cessing, signal processing, real-time sensor networks, robotics, and FPGA
design.

Francesco Gringoli (Senior Member, IEEE)
received the Laurea degree in telecommunications
engineering from the University of Padua, Padua,
Italy, in 1998, and the Ph.D. degree in information
engineering from the University of Brescia, Brescia,
Italy, in 2002.

He is a Full Professor with the University of
Brescia. His research interests include security
assessment, performance evaluation, and medium
access control in wireless LANs.

Kamil Alkhouri received the M.Sc. degree in com-
munication and media engineering from Offenburg
University of Applied Sciences, Offenburg,
Germany, in 2018.

From 2018 to 2022, he was an Academic Engineer
with Offenburg University of Applied Sciences,
participating several projects on time-sensitive
networking. He is currently an Embedded Software
Developer with KUNBUS GmbH, Denkendorf,
Germany. His research interests include embed-
ded software development, synchronization, and
real-time communication.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

9978 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 11, 1 JUNE 2023

Pavel E. Tripolskiy received the engineering and
Ph.D. degrees from MIREA-Russian Technological
University, Moscow, Russia, in 1991 and 1998,
respectively.

He is currently an Associate Professor with
MIREA-Russian Technological University. His
research interests include PCB design, embedded
computing, Internet of Things, and robotics.

Axel Sikora received the Dipl.-Ing. degree in electri-
cal engineering and the Dipl.-Wirt.-Ing. (equivalent
to M.B.A.) in 1993 from RWTH Aachen University,
Aachen, Germany, and the Ph.D. (Dr.-Ing.) degree in
electrical engineering from the Fraunhofer Institute
of Microelectronics Circuits and Systems, Duisburg,
Germany, in 1995.

After various positions in the telecommunica-
tions and semiconductor industry, he became a
Professor with Baden-Wuerttemberg Cooperative
State University Loerrach, Lörrach, Germany, in

1999. In 2011, he joined Offenburg University of Applied Sciences,
Offenburg, Germany, where he currently leads the Institute of Reliable
Embedded Systems and Communication Electronics (ivESK). Since 2016, he
has also been the Deputy Member of the Board to Hahn-Schickard Association
of Applied Research, where he leads the Engineering Divisions and “Software
Solutions.” He is the author, coauthor, editor, and co-editor of several text-
books and more than 205 peer-reviewed papers in the field of embedded
design and wireless–wired networking.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on August 04,2023 at 09:14:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

