
Computer Communications 228 (2024) 107940

A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Optimizing MRAI on large scale BGP networks: An emulation-based approach
Mattia Milani a,b,∗, Michele Segata c, Luca Baldesi d, Marco Nesler e, Renato Lo Cigno f,
Leonardo Maccari g

a Standards, Nokia S&T, München, Germany
b Universidad Carlos III Madrid, Leganés, Spain
c University of Trento & CNIT, Trento, Italy
d University of California, Irvine, USA
e NTS Italy, Bolzano, Italy
f University of Brescia & CNIT, Brescia, Italy
g University of Venice, Venice, Italy

A R T I C L E I N F O

Keywords:
Internet global routing
BGP convergence
Route flapping
Testbed experiments
Network emulation
Topology generation
MRAI setting

A B S T R A C T

Modifying protocols that pertain to global Internet control is extremely challenging, because experimentation
is almost impossible and both analytic and simulation models are not detailed and accurate enough to
guarantee that changes will not affect negatively the Internet. Federated testbeds like the ones offered by the
Fed4FIRE+ project offer a different solution: off-line Internet-scale experiments with thousands of Autonomous
Systems (ASs). This work exploits Fed4FIRE+ for a large-scale experimental analysis of Border Gateway
Protocol (BGP) convergence time under different hypotheses of Minimum Route Advertisement Interval (MRAI)
setting, including an original proposal to improve its management by dynamically setting MRAI based on the
topological position of the ASs in relation to the specific route being advertised with the UPDATE messages.
MRAI is a timer that regulates the frequency of successive UPDATE messages sent by a BGP router to a specific
peer for a given destination. Its large default value significantly slows down convergence after path changes,
but its uncoordinated reduction can trigger storms of UPDATE messages, and set off unstable behaviors known
as route flapping. The work is based on standard-compliant modifications of the BIRD BGP daemon and shows
the tradeoffs between convergence time and signaling overhead with different management techniques.
1. Introduction

The Border Gateway Protocol (BGP) is the only protocol available
to implement the routing function at the Autonomous System (AS)
scale. The border routers of ASs use BGP to export their prefixes and
to propagate other prefixes, and its path-vector approach allows the
Internet to function in a stable way. While BGP evolved in some of its
features, (notably, the security aspects) the way it reaches convergence
is essentially the same as in its original design despite its known limita-
tions. The reason for this ossification is twofold, the first is that operators
are very cautious when considering changes to this component that is
critical for the whole Internet, the second is that we cannot experiment
at scale with BGP, and so it is hard to test the effects of new proposals.
As a result, BGP evolves slowly.

One explanatory example is the notorious slow convergence of BGP,
due to the presence of the Minimum Route Advertisement Interval
(MRAI) timer. When there is a change in the Internet topology, BGP

∗ Corresponding author at: Standards, Nokia S&T, München, Germany.
E-mail address: mattia.milani@nokia.com (M. Milani).

1 As a relevant example, Cisco suggests 30 s MRAI for any regular Exterior BGP (eBGP) peer [1].

will propagate the information on the new topology using UPDATE
messages. Without MRAI this may generate a storm of UPDATE mes-
sages in a very short time, each triggering the recomputation of routing
tables and ultimately clogging the routers. MRAI prevents this flood by
allowing the propagation of only one UPDATE message for every MRAI
interval, with the obvious side-effect of slowing down the convergence.

For this reason the value of MRAI has been a subject of discussion
in the literature. As we show in the review of the state of the art
(Section 2) its default value was initially set to 30 s and then, in absence
of an agreement, it was left to the decision of the network operator1.
Finding an optimal value for MRAI would have a huge positive impact
on the performance of BGP; however, Fabrikant, Rexford et al. [2]
showed that modifying MRAI in an uncoordinated way, can lead in
specific cases to the exponential growth of the number of UPDATE
messages required to achieve a new stability point after a route change,
which is the opposite of what MRAI should achieve. We detail this
https://doi.org/10.1016/j.comcom.2024.107940
Received 1 March 2024; Received in revised form 1 July 2024; Accepted 2 Septem
vailable online 4 September 2024
140-3664/© 2024 Elsevier B.V. All rights are reserved, including those for text and
ber 2024

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/comcom
https://www.elsevier.com/locate/comcom
mailto:mattia.milani@nokia.com
https://doi.org/10.1016/j.comcom.2024.107940
https://doi.org/10.1016/j.comcom.2024.107940
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2024.107940&domain=pdf

M. Milani et al.

t
a
i
m
a
w
o
c

C
F
t
o

P
t
e
s
l
t
t
w
t
M

P
p
n
a
t
o
t
d

t
i
u

i
e

Computer Communications 228 (2024) 107940
problem (Section 3) to show that more than ten years later we are
still in this deadlock: we know that MRAI needs to be optimized, but
we also know that changing it without coordination may make things
worse, and of course, there is no way to coordinate all the network
administrators of all ASs to take a certain decision. This example shows
the inherent hardness of researching on BGP, it is way too complex
to attempt an overall theoretical modeling, simulation approaches are
limited because they capture only a part of the complexity of the
system, and emulation approaches, so far, could not reach the necessary
scale to validate proposals.

Our work has the ambition to show that it is possible to experiment
with a real implementation of BGP, namely BGP Internet Routing Dae-
mon (BIRD),2 reproducing with a real implementation and measures
he results from Fabrikant et al. [2]. We also propose a strategy that
llows the improvement of the convergence of BGP without hampering
ts stability (Section 4), and we evaluate it on emulated networks
ade of tens of thousands of BGP routers using a fully reproducible

pproach (Section 5). This paper extends and completes a previous
ork by the same authors [3] using data we could obtain in the frame
f the Fed4FIRE+ project, which supported our work. In short, the three
ontributions of our paper are the following ones.

onfirm Fabrikant results. We use our emulation framework to confirm
abrikant’s results, which is key to understand the risks associated
o dynamically setting MRAI. We reproduce and confirm Fabrikant
bservation in Section 6.1;

ropose and test a dynamic MRAI configuration strategy. We provide
he initial design of a strategy to dynamically set MRAI. We show
xperimentally that our approach improves the performance of the
tandard BGP configuration in terms of convergence time, with a
imited penalty in the number of generated UPDATE messages (Sec-
ion 6.2). We achieve such results applying a custom propagation timer
hat can be computed by each node cooperatively with the others,
ithout requiring global coordination. We compare this solution with

he standard 30 s MRAI timer and, when scale allows, with BGP without
RAI.

rovide a scalable and repeatable BGP experimentation framework. This
aper uses an experimental approach that enables the emulation of
etworks made of tens of thousands of routers to compare different
pproaches on real code. In our previous work [3] we already provided
he details to reproduce our results. In this work we increase the size
f the emulated networks by a factor of 3, and we add the description
o the two open source components and one protocol extension we
eveloped to make our experiments possible (Section 7), namely:

• We provide the implementation of MRAI in the open source BIRD
daemon. The source code is available in the open-sourced project
repository and it will be forwarded to the BIRD community for
consideration.

• We present the implementation of an Internet-like topology gen-
erator that creates graphs that respect the characteristics of the
Internet, including commercial relationships between ASs. Our
code is realized in the Python language and has become an
integral part of the well known NetworkX Python library.

• Since our proposal includes a modification to the BGP protocol
using a custom extension, we also document its design and show
that it can be deployed incrementally on the Internet, which is a
key requirement for a realistic solution.

Overall, our work showcases how the availability of a large scale
estbed not only leads to viable proposals for long-standing research
ssues, but it also enables the development of open source code that
ltimately benefits the community of the researchers and practitioners.

2 BIRD is one of the most used and well maintained BGP open source
mplementations, used in many real world scenarios see https://bird.nic.cz/
n/case-studies/
2
2. State of the art

Albeit their extreme importance, global routing and BGP have never
been a ‘hot topic’, often perceived more as a management issue relevant
only for operators, even if the slow convergence of BGP is a problem
that may affect the entire Internet, and consequently the ‘digital life’
of people. Clearly there exist several papers dealing with BGP and its
characteristics and features (see [4] and citations therein or [5] to name
a few), but the core itself of BGP, i.e., the Path Vector descriptors
exchanged by Exterior BGP (eBGP) routers, and the policy-based rout-
ing algorithms, do not lend themselves to rigorous theoretical analysis
and modeling, thus preventing elegant and sound theoretical results
similar to those available for link state and distance vector routing
protocols. Indeed, the seminal works by Labovitz et al. at the beginning
of this century [6,7] clearly identified BGP as a major source of Internet
failures and disruptions, and also discussed some possible modifications
to BGP to improve it. In the following years other works [8,9] measured
and quantified the phenomenon in the Internet, proving that it was
real and also potentially very penalizing. After more than 20 years,
however, most of the issues are still there.

BGP research has traditionally been based on simulations [10–12]
and/or small-scale testbeds [13,14], with a few works, like the already
cited paper by Fabrikant et al. [2], addressing specific issues with a the-
oretical analysis based on heuristics considerations on BGP dynamics.
Other significant works on the subject are based on measures, like the
analysis in [15], that clearly identifies the key role of BGP in properties
and performance of the global Internet, or [16,17] analyzing prefix
scaling and router ownership boundaries, but they normally document
the behavior or the properties and consequences of BGP rather than
exploring possible improvements. The PEERING testbed [18] offers an
infrastructure to experiment with BGP, but does not seem prone to
explore performance or major protocol modifications. A work published
at the time of writing this paper proposes BGPEval [19] that uses an
approach similar to ours. The main difference is that we do not make
any assumption on the underlying hardware or software architecture.
As better described in Section 5.1, we rely on kernel name spaces on
the GNU/Linux OS and we do not assume that a single hypervisor is
under the control of the experimenter.

One of the prominent themes in this body of literature is the trade-
off between the generated overhead and the convergence speed of
BGP after a reconfiguration event. BGP is known to be subject to
path exploration, a transitory phenomenon that happens when a router
adopts and publishes a sequence of non-optimal paths for a destination
before reaching a stable state. Path exploration can generate thousands
of update messages in networks made of as few as tens of nodes [20]. In
order to reduce the message overhead, BGP uses MRAI, the minimum
time between two consecutive UPDATE for the same destination sent to
the same neighbor, which is set by default to 30 s [21]. MRAI reduces
the overhead but strongly impacts BGP convergence [22] and its default
value was often discussed [23].

Difficulties and a negative result, however, cannot be a reason to
stop seeking solutions. As noted in [24], which studies the effect of
disabling the use of MRAI in part of the ASs of the Internet, in the
past 10 years the computing capability of routers increased 8-fold,
giving routers the possibility of improve processing, but MRAI default
timer has not been changed. The authors of this work notice that it
is possible to disable MRAI in nearly 90% of ASs without incurring in
instabilities, thus improving the convergence speed of BGP at the cost
of additional processing of routing messages (they must be processed
faster and in bursts), but without a large increases in the number of
messages exchanged. Also this study is based on simulations.

Some older studies like [25,26] suggested that MRAI could be
disabled altogether, but later works have clearly shown that this may
lead to instabilities. The authors of [27], for instance, acknowledge
that fiddling with MRAI can cause routing message bursts and pro-

pose to disperse routing messages in case of bursts to distribute the

https://bird.nic.cz/en/case-studies/
https://bird.nic.cz/en/case-studies/

M. Milani et al.


n
b
c
R
p

s
t
p
a
a
i
i
m
c
𝑟

Computer Communications 228 (2024) 107940
Table 1
Main symbols and notation used in the paper.

Symbol Meaning

 Set of all the nodes of the BGP graph, i.e., ASs

 Set of the logical links between BGP nodes

𝐺( , ) BGP network graph

𝑒𝑖,𝑗 Edge, i.e., logical link between nodes 𝑖 and 𝑗

𝑑, 𝐷 Destinations (prefixes), set of all destinations

 Set of ASs that export at least one destination 𝑑

𝑑𝑟 Set of ASs that, generating an UPDATE, cause maximal
route reconfiguration

𝑖 Set of node 𝑖 neighbors or peers

𝜏(𝑗, 𝑑) Value of MRAI used by a node for destination 𝑑 and
neighbor 𝑗

𝐺𝐴( , ) The ‘ascending’ portion of 𝐺( , )

 Set of nodes in the ‘ascending’ portion of 𝐺( , )

 Set of edges in the ‘ascending’ portion of 𝐺( , )

𝐺𝑇 ( , ) The fully connected sub-graph of Tier-1 ASs in 𝐺( , )

𝐺𝐷( , ) The ‘descending’ portion of 𝐺( , )

𝛥(𝑣) Normalized Destination Partial Centrality (DPC) of node 𝑣

management load among different routers and ASs. Also [28] propose
heuristics to adapt MRAI dynamically and shows via simulations, as
the previous ones, that convergence can be improved while keeping
the number or messages similar to BGP with constant 30 s MRAI.

Several other works including [29–31] make various proposals to
improve BGP performance, reduce convergence times, or reduce route
flapping.

Finally, the authors of [32] attempted a general modeling of Path
Vector routing protocols analyzing what are the key parameters and the
influence of network delays on the convergence speed and properties.
This study confirms all the hints and indications of other works.

3. The problem of MRAI configuration

This section summarizes the BGP protocol and provides an elemen-
tary description to understand the problem of signaling storm addressed
by MRAI. For an in-dept description the reader can refer to the work
by Fabrikant et al. [2].

We model a BGP network as a connected, directed graph 𝐺( , ); 𝑖 ∈
are BGP instances (also routers for simplicity — see Table 1 for the

otation used in the paper). The edges 𝑒 ∈  are the BGP relationships
etween ASs, thus the logical links between BGP instances. An edge 𝑒𝑖,𝑗
an be, for instance, a free peering relation or a customer-provider one.
egardless the commercial relation, if 𝑒𝑖,𝑗 exists, then 𝑖 and 𝑗 are called
eers and 𝑁𝑖 is the set of BGP peers of router 𝑖.

Routers export network prefixes to other routers with UPDATE mes-
ages and cancel them with WITHDRAWAL messages. Prefixes populate
he Routing Information Base (RIB) of BGP instances and are properly
ropagated to all routers in the ASs in order to deliver the packets with
certain destination IP, and this justify the simplification of collapsing

n entire AS into a single node 𝑖 in 𝐺( , ). As a destination IP address
s always mapped onto a prefix, we use the terms prefix and destination
nterchangeably. Every UPDATE contains information about one or
ore destinations. Considering a set 𝐷 that represents the prefixes that

an be advertised on the Internet, then the UPDATE describes a route
as the combination of destination and attributes: 𝑟 = (𝜉, 𝑑), where

the last element of this tuple is a destination network 𝑑 ∈ 𝐷, while 𝜉
represents the attribute list: the path (a sequence of ASs), and a unique
ID of the originator router that we skip in our notation for the sake of
simplicity.

A router 𝑖 uses a function 𝛤 (𝑟) that outputs a score for the route

received by peer 𝑗 based on a local policy. Given two routes 𝑟1 and 𝑟2, 𝑟1

3
is preferable if 𝛤 (𝑟1) > 𝛤 (𝑟2) and 𝑟2 otherwise. When 𝛤 (𝑟1) = 𝛤 (𝑟2) BGP
provides a tie-breaking procedure described in [21]. The simplest form
of policy, that we use in our emulation, takes into consideration the
commercial relationships between 𝑖 and 𝑗 and the (possibly weighted)
length of the AS path indicated in the attributes 𝜉.

When a router updates its routing table, it also schedules a new
UPDATE message to propagate the information. However, when the
Internet topology changes a router will receive UPDATE messages
through multiple paths, and may update its routing table several times
before it converges to the route 𝑟 with the highest score. In principle,
every modification may generate a new UPDATE possibly containing
transient information that will be superseded by the next UPDATE. Such
a storm of UPDATE messages may overload the processing capability of
the routers.

BGP takles this problem with MRAI, that limits the rate of outgoing
UPDATE messages from a router. MRAI is generally set to 30 s (plus
a small random value to avoid synchronizations), as described in the
RFC [21] and can be implemented per peer 𝑗 or per peer 𝑗 and per
destination 𝑑. We consider the second, more fine-grained approach,
which is also the suggested solution in the RFC: a router 𝑖 uses a
separate timer for each peer 𝑗 ∈ 𝑖 and for each destination 𝑑,
initialized to 𝜏(𝑗, 𝑑). Consider the case in which router 𝑖 receives an
UPDATE including a route 𝑟 for destination 𝑑. If the new route changes
the routing table of 𝑖 and triggers the generation of a new UPDATE
towards one of its peers 𝑗, the UPDATE is sent immediately, and the
MRAI timer is started. During this period UPDATE messages from any
peer 𝑘 may change again the routing table of 𝑖 and may trigger the
generation of another UPDATE towards 𝑗, however, the updates are
not sent. When the MRAI timer fires, if the routing table was affected
with respect to the last update sent to 𝑗, the node advertises the new
best option. The routes that have been received but not chosen as
the best ones, are kept in a queue and can be used, for example, as
backups in case of changes in the network. Since UPDATE messages
generally arrive in bursts, MRAI does not affect the generation of the
first UPDATE, but slows down the generation of the following ones,
avoiding UPDATE flooding and possible route flapping. The larger is
MRAI the less is the number of UPDATE generated, but also the slower
is the convergence of the entire network.

3.1. Exponential path exploration

The management of the MRAI timer does not come without contro-
versies. In 2008, thanks to different studies that take into consideration
the dimension of the topology and the latency [33], there has been
an Internet Draft proposal to reduce its default value to 5 s [34]. In
2011, a follow-up Internet Draft [23] proposed to let operators choose
an arbitrary MRAI value for UPDATE messages, while on the other hand
WITHDRAWAL could completely ignore it. None of these Drafts was
approved in the end.

The idea that each operator can decide how responsive to changes
its system is was appealing, but the study presented by Fabrikant et al.
showed also how this can be harmful for the overall network [2]: this
study presents a theoretical result where, with particular configurations
of MRAI timers and realistic topologies, there is an exponential path
exploration behavior. This translates into very long convergence time,
but most of all, many messages wasting the computational power of
routers with a risk of collapse.

Fig. 1 shows an example of such particular graphs. This issue
happens when there are multiple paths leading to the destination and
a specific sequence of timers 𝜏(𝑗, 𝑑) in the propagation path.

Let us assume BGP has converged, so that all MRAI timers are off
and all the nodes can freely propagate messages. 𝑋0 is the entry point
for the destination 𝑑 that is to be announced through the network. Each
node assigns value to a path reading the labels on the edges going from
left to right and interpreting them as a binary number. The higher the

value of a path, the higher the preference. For example, node 𝑋0 prefers

M. Milani et al.

t
v
𝑡

a
v

𝐿

D
a
n
c
s
n

Computer Communications 228 (2024) 107940
Fig. 1. Gadget topology derived from [2] with 3 rings.

the edge with label 1, and 𝑋3 prefers the path 𝑋3, 𝑋2, 𝑋1, 𝑋0, 𝑑 over
he path 𝑋3, 𝑋2, 𝑌2, 𝑋1, 𝑋0, 𝑑 because the first one would be assigned a
alue of 1111𝑏 = 15𝑑 , while the second 1101𝑏 = 13𝑑 . At a certain instant
0 the node 𝑋0 changes the route towards 𝑑 selecting the edge with label

0 (for instance because the other edge is broken) and propagates such
UPDATE to both 𝑋1 and 𝑌1 at the same time. At this point in time node
𝑋1 knows the new path through 𝑋0 and the old one passing through
𝑌1. This old path is not available anymore, but 𝑋1 is not aware of it, so
it decides to reach the destination 𝑑 using the outdated path through
its neighbor 𝑌 1, as that path has a higher score (10𝑏) than the newly
received one going directly through 𝑋0 (01𝑏). 𝑋1 will then propagate
at time 𝑡1 the change to its neighbors with an UPDATE and initialize
two MRAI timers to 𝜏(𝑋2, 𝑑) and 𝜏(𝑌2, 𝑑). Roughly at the same time
also 𝑌1 receives the UPDATE from 𝑋0, updates its table and distributes
its UPDATE to 𝑋1. This operation introduces a small delay 𝜖, so 𝑋1
receives this advertisement at time 𝑡1 + 𝜖 < 𝑡1 + 𝜏(𝑋2, 𝑑) so 𝑋1 cannot
further update 𝑋2 because the MRAI timers was just activated (and the
same happens with 𝑌2).

This behavior makes 𝑋1 send two UPDATE for the same destination
𝑑, the first of which was computed on outdated information. Worse
than that, the correct UPDATE cannot be propagated to the neighbors
before MRAI expires.

The same behavior could happen in the next ring of the chain. The
worst case happens if the timers 𝜏(𝑋3, 𝑑), 𝜏(𝑌3, 𝑑) of 𝑋2 are lower than
𝜏(𝑋2, 𝑑) of 𝑋1: They will fire before 𝑋1 propagates the correct update,
so 𝑋2 is going to propagate 2 outdated UPDATE messaged for every
message it receives from 𝑋1. So the loophole would repeat twice at
this level and would exponentially explode further down the chain.

This is a gadget topology identified by Fabrikant et al. to showcase
the effect, but the original paper describes other realistic situations in
which the presence of multi-paths and a decreasing value of MRAI on
the path produces an exponential number of UPDATE messages and
route oscillation.

4. Centrality-based MRAI configuration

A simple solution to this problem would be to always use an
increasing MRAI compared to the previous hop. This solution has
two drawbacks: first, routers would need to implement some form of
dynamic coordination per each propagation path; second, increasing
MRAI will slow down convergence.

A better policy would be to have MRAI increase in the initial phase
of the propagation, close to the AS 𝑘 that generate the first UPDATE
for route 𝑟. Then, when the routers around 𝑘 stabilize, the new stable
topology can be quickly propagated to the rest of the Internet. To
verify the validity of this intuition we set-up a strategy that exploits
the knowledge of the network graph together with the concept of
Destination Partial Centrality (DPC).

4.1. DPC - destination partial centrality

DPC is a variant of the so-called load centrality which is defined
in its general form as follows [35]. Consider a graph 𝐺( , ) and
an algorithm to identify the (potentially multiple) minimum weight

path(s) between any pair of vertices (𝑖, 𝑗). Let 𝜃𝑖,𝑗 be a quantity of a

4
generic commodity that is sent from vertex 𝑖 to vertex 𝑗. We assume
the commodity is always passed to the next hop following the minimum
weight paths, but any routing metric is valid. In case of multiple next
hops, the commodity is divided equally among them. We call 𝜃𝑖,𝑗 (𝑣) the
mount of commodity forwarded by vertex 𝑣 ∈  with respect to the
ertices 𝑖 and 𝑗. The load centrality of 𝑣 is then given by:

𝐶(𝑣) =
∑

𝑖,𝑗∈
𝜃𝑖,𝑗 (𝑣) (1)

PC adapts load centrality to represent the propagation of routes in
n IP network. In DPC the commodity corresponds to the number of
etworks that a BGP node exports, so only nodes that are directly
onnected to destinations generate the commodity. We call  ⊆  the
et of nodes that export at least one prefix, and 𝑀𝑖,𝑀𝑗 the number of
etworks that are exported by node 𝑖 and 𝑗, respectively, then 𝜃𝑖,𝑗 =

𝑀𝑖+𝑀𝑗
2 . Considering a router 𝑣, 𝜃𝑖,𝑗 (𝑣) = 𝜃𝑖,𝑗 if 𝑣 is in the path from 𝑖 to

𝑗 or zero otherwise. In all our experiments we assign one destination
per node, so that 𝜃𝑖,𝑗 is always unitary but this is an arbitrary choice
that can be replaced with any other suitable one. Considering only the
case when nodes in  export only one prefix, the normalized value of
DPC of any vertex 𝑣 ∈  takes the following form:

𝛥(𝑣) = 1
|| × (|| − 1)

∑

𝑖,𝑗∈
𝜃𝑖,𝑗 (𝑣) (2)

DPC does not express load in terms of traffic, but it captures the
impact of an AS in terms of routing updates it may generate. If one AS
exports many prefixes and it changes its local topology (i.e., adds or
removes a peering edge) this information needs to be propagated on
the Internet to all routers, regardless of the fact the networks actually
generate or receive traffic. DPC also models the fact that some ASs
do not export network addresses so they do not generate load, but
still their centrality can be larger than zero. In a previous work we
have shown that load centrality can be computed in a distributed way
with minimal modifications to a Distance-Vector routing protocol [36].
Section 7.3 describes how DPC can be computed in a distributed
manner with an extension to BGP. Our solution can be incrementally
deployed on the Internet without requiring any global coordination.
Further theoretical details are outside of the scope of this paper, but
principles of centrality-based routing can be found in [36–38].

4.2. Tuning MRAI with DPC

Our proposal configures MRAI as a function of DPC with the fol-
lowing model. We observe that in general, given a route change for
destination 𝑑, the relative UPDATE message propagates in the network
in three separated propagation graphs that we formally define and
comment in Section 4.3:

• Ascending graph 𝐺𝐴( , );
• Tier one graph 𝐺𝑇 ( , );
• Descending graph 𝐺𝐷( , ).

The intuition we follow is that there is an horizon effect, meaning that a
router 𝑗 close to the node 𝑘 that triggers the update has higher chances
of modifying its routing choice than a router 𝑖 that is far away from
𝑘. This is intuitive if we look at Fig. 1 in which 𝑋0 has a choice to
make between one path and another, but once this choice is made, all
the other routers should just keep using the same next hop they used
before the change. Moreover, the BGP network is hierarchical, we know
that there are ASs of strategic importance (so-called Tier-1 ASs) that
represent a narrow waist of the topology. Once the UPDATE reaches a
Tier-1 AS it is less likely it will trigger any reconfiguration anymore,
so updates can propagate at a lower pace without hampering global
routing; however, UPDATE must travel to all BGP routers, because if
the path changes, every router needs to update its knowledge of the

path, so the propagation cannot be stopped.

M. Milani et al.

o
p

m
M

C
C
1
r
i
p
T
n

𝐺
t
a

T
c

i
d
n
A
p

5

n
o
e
S

r
i

Computer Communications 228 (2024) 107940
It must be noted that only 𝐺𝑇 is the same for all destinations, while
𝐺𝐴 and 𝐺𝐷 depends on the destination 𝑑. Ascending and Descending
refer to position of nodes in relation to 𝑑 and 𝐺𝑇 : 𝐺𝐴 includes all nodes
whose path toward 𝑑 does not include any Tier-1 AS and 𝐺𝐷 all the
thers. In presence of peering relations it is possible that all nodes in a
ath are in 𝐺𝐴.

The MRAI timer is set following Eq. (3). Considering a graph-wide
aximum timer 𝑇 = 30 s and DPC 𝛥(𝑖) ∈ [0, 1] for node 𝑖, DPC-based
RAI 𝜏(𝑗, 𝑑) used by node 𝑖 with neighbor 𝑗 for destination 𝑑 is set as

follows:

𝜏(𝑗, 𝑑) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇
2 𝛥(𝑖) ∀𝑖 ∈ 

𝑇
2 ∀𝑖 ∈ 

𝑇 ⋅(1−𝛥(𝑖))
2 + 𝑇

2 ∀𝑖 ∈ 

(3)

In practice, we increase MRAI in the neighborhood of the node trig-
gering the update to avoid the effect identified by Fabrikant, following
the natural increase of DPC as nodes are more central in the global
topology. If paths are all contained in 𝐺𝐴, for some of the nodes farther
away from 𝑑 𝜏(𝑗, 𝑑) will decrease, but it is very unlikely that this pattern
triggers route flapping.3 Instead, after the UPDATE propagation reach
and cross 𝐺𝑇 , MRAI increases as DPC decreases, because the UPDATE
is moving toward less central nodes, where it is less and less likely
to trigger any route change, as paths always follow customer-provider
relations all leading to the same Tier-1 AS.

Centrality is used to capture the position in the BGP graph that an
AS occupies. In this work we pre-compute the propagation graphs and
the DPC in advance, in order to verify that our intuition is correct, how-
ever Section 7.3 explains how to design a BGP extension to compute
DPC on-line. Together with the theory provided in [36–38] this paves
the way for a distributed and incrementally deployable solution.

4.3. Propagating UPDATE messages on the BGP graph

Following a canonical model, the links in the BGP graph 𝐺( , ) can
be of two kinds, either peer-to-peer or customer-provider depending
on commercial agreements. We indicate with 𝛬 = {𝜋, 𝑐, 𝑠} the edge
labels indicating peer, customer, or provider relationship on a directed
edge. The function 𝜆 ∶  → 𝛬 assigns to the edge (𝑖, 𝑗) the role 𝑖
has with respect to 𝑗. Hence, 𝜆(𝑖, 𝑗) = 𝜋 ⟺ 𝜆(𝑗, 𝑖) = 𝜋, while
𝜆(𝑖, 𝑗) = 𝑐 ⟺ 𝜆(𝑗, 𝑖) = 𝑠.

We call 𝐶𝑖 = {𝑗 ∈ 𝑖 ∶ 𝜆(𝑖, 𝑗) = 𝑠} the set of customers of node 𝑖, and
define a Tier-1 AS as one AS that exports no prefixes, has no providers,
and is in a peering relationship with all the other Tier-1 ASs. We
indicate as 𝐺𝑇 ( , ) the fully connected sub graph of Tier-1 BGP
nodes, such that  ⊂  ,  =  × . The propagation of a route
follows the no-valley and prefer-customer standard assumption, depicted
in Fig. 2 that we reproduce from Elmokashfi et al. [39], which means
that routes learned from customers are announced to all neighbors,
while routes learned from peers or providers are announced only to
customers.

When a node 𝑖 ∈  ⧵  generates an UPDATE containing a
route 𝑟, it is propagated to all nodes using the links of 𝐺( , ) with
a very specific pattern of route propagation from 𝑖 to the rest of the
network (we assume that the majority of the modifications to the BGP
graph come from nodes outside of ). We model this pattern by
sub-dividing the graph 𝐺 in three components. The subdivision of 𝐺
depends on the route 𝑟, so it should not be seen as a static partition of
𝐺, rather as a dynamic sectioning that empowers the proper allocation
of MRAI. In the first component nodes 𝑖 either forward the update
to a provider node, or send it to a peer or customer node on paths
that include a peering relation. We call 𝐺𝐴( , ) the graph made

3 A path is all within 𝐺 only if there are some peering relations on it.
𝐴 M

5
Fig. 2. Flow chart for UPDATE forwarding.

of all nodes and edges that are involved in this phase of UPDATE
propagation.

More formally let 𝑖 ∈  ⧵ be the originator of the first UPDATE
and 𝑗 ∈  another node in 𝐺. Then 𝑗 ∈ 𝐺𝐴( , ) ⟺ ∃ 𝑝𝑖𝑗 a path
in 𝐺 between 𝑖 and 𝑗, with 𝑝𝑖𝑗 = (𝑖, 𝑘0)… (𝑘𝑙 , 𝑗) such that:

1. 𝑘𝑥 ∉  , ∀𝑥 = 0,… , 𝑙; and
2. any of the following conditions holds:

(a) 𝜆(𝑢, 𝑡) = 𝑐, ∀(𝑢, 𝑡) ∈ 𝑝𝑖𝑗 ;
(b) ∃𝑧 < 𝑙 ∶ 𝜆(𝑢, 𝑡) = 𝑐,

∀(𝑢, 𝑡) ∈ 𝑝𝑖𝑘𝑧 , 𝜆(𝑘𝑧, 𝑘𝑧+1) = 𝜋,
𝜆(𝑢, 𝑡) = 𝑠, ∀(𝑢, 𝑡) ∈ 𝑝𝑘𝑧+1 ,𝑗 .

ondition 1 simply indicates that no nodes in the path is Tier-1.
ondition 2(a) describes the case in which the path towards a Tier-
AS is made of only customer-provider relationships. Condition 2(b)

epresents the case in which the chain of customer-provider edges
s interrupted by a peering edge and followed by a chain made of
rovider-customer edges. If a route is propagated by a Tier-2 AS to its
ier-3 customers without ever involving a Tier-1 provider, then all the
odes involved belong to the ascending graph.

Routes that are not completely contained in 𝐺𝐴 propagate in
𝑇 ( , ), and then in 𝐺𝐷, the graph connecting the nodes in 

o all the nodes in  = ⧵ ⧵ . More formally 𝑗 ∈  ⟺ ∃𝑝𝑖𝑗
path in 𝐺 between 𝑖 ∈  and 𝑗, with 𝑝𝑖𝑗 = (𝑖, 𝑘0)… (𝑘𝑙 , 𝑗) such that:

1. 𝑗, 𝑘𝑥 ∉  ∪  , ∀𝑥 = 0,… , 𝑙; and
2. 𝜆(𝑢, 𝑡) = 𝑠, ∀(𝑢, 𝑡) ∈ 𝑝𝑖𝑗 .

his simply indicates that the UPDATE propagates along provider-
ustomer relationships.

 is fixed and known, and this is a realistic assumption consider-
ng that Tier-1 ASs are a few well known ones, while the ascending and
escending graphs depend on the originator node; however, a certain
ode 𝑗 can ascertain to which graph it belongs just by looking at the
S path specified in the route 𝑟, making the implementation of the
roposal easy and local, at least once the DPC is known to all nodes.

. Scenarios

The results we present in Section 6 are obtained in two different sce-
arios: one for the Fabrikant-gadgets as shown in Fig. 1, and the second
ne for Internet-like topologies that we generate following Elmokashfi
t al. [39]. Fig. 7 shows an example of an Internet-like topology and
ection 7.1 describes the generator we implemented.

As suggested by the authors of the original paper, to obtain the
oute flapping behavior in the chain-gadget topologies we halve the
nitial value of the MRAI timer at each 𝑋𝑖 from left to right (Fig. 1).

𝜏(𝑋𝑖 ,𝑑) , while the initial
ore formally, the initialization is 𝜏(𝑋𝑖+1, 𝑑) = 2

M. Milani et al.

i
r
o
f
A
t
e
s
o
i
t

𝑑
t
t
t
A
A
F
t
𝑑
t
r

w

𝟑

N

F

D

s
c
b
w
w
u
i

5

t
t
I
I
c

s
t

Computer Communications 228 (2024) 107940
timer values used by 𝑋0 is set to 30 s, then timers are decremented
ndependently. Each 𝑌𝑖 node uses the same timer of 𝑋𝑖−1 to propagate
outes towards 𝑋𝑖. For these scenario we consider an increasing number
f rings, starting from 2, with 5 nodes, up to 8 with 17 nodes, whereas
or the Internet-like topologies we consider here topologies with 12 000
Ss. We use a modified implementation of BIRD on the Fed4FIRE+

estbed to run the experiments. For the evaluation, we exploit a BGP
mulator we develop that is openly available online and that we pre-
ented in [3]. In Section 5.1 we briefly describe the working principle
f the emulator, together with the pointer to the resources that the
nterested reader can refer to for further information, in particular how
o reproduce the results.

In the Internet-like scenario we change the route of the destination
𝑟, selecting the attachment node from the set of nodes that induce
he worst case situation, i.e., the change causes a reconfiguration of
he largest possible number of nodes. In both topologies, in order to
rigger the change in the network we use a well known technique called
S_PATH Prepending, whereby an arbitrary number of entries in the
S_PATH list is added forcing the generation of a new BGP UPDATE.
or the Fabrikant gadget we repeat each experiment 10 times, while for
he Internet-like topologies we repeat 10 experiments choosing different
𝑟 to get more variability. In all cases the initial value of MRAI is subject
o a random relative jitter 𝜌 = 0.05. Every time the timer is reset, a
andom value 𝑥 is drawn from the distribution 𝑈 [1.0−𝜌, 1.0] and MRAI

is set to the default value assigned to the node and route multiplied by
𝑥.

To speed up the initial convergence of the network we configure
only one destination from any node in , consistently with the defini-
tion in Eq. (2). In all experiments we start the network emulation, then
wait for the routing tables of all nodes to converge, and finally trigger
the change in 𝑑𝑟 and measure the effects of the change till convergence.
For the performance evaluation, we consider convergence time and the
number of UPDATE messages generated. We repeat each experiment

ith the following MRAI strategies:

𝟎 s fixed: the default value according to BGP RFC [21];

o MRAI : UPDATE messages are sent immediately without delay,
MRAI deactivated.

abrikant style: MRAI will be set on each node according to the
policies described in Fabrikant work, to reproduce the worst
case scenario;

PC-based: following the centrality computed off-line and the for-
mula in Eq. (3).

it is possible to test other values of MRAI and verify if, even with
tatic settings there exists a better trade-off between overhead and
onvergence time. However, even in case we find a value that performs
etter than the current one, it is extremely improbable that operators
ill converge to a different default value. Furthermore, any fixed value
e heuristically test is bound to the tested topology, and can become
nsuitable when technology evolves or the Internet topology changes
ts characteristics.

.1. BGP emulation toolchain

Within the Internet on FIRE project we developed an emulation
oolchain capable of reproducing BGP networks. The main goal of the
oolchain is to enable the analysis of BGP improvements in complex,
nternet-like networks, as testing new features on the ‘‘real world
nternet’’ can be extremely difficult, beside leading to catastrophic
onsequences in case of mistakes.

The toolchain is developed targeting Fed4FIRE+ federated testbeds,
o we refer to that framework for the reservation of resources, however

he rest of the methodology is general enough to enable running it on

6
Fig. 3. BGP emulation toolchain architecture [3].

different testbeds. Fig. 3 shows the toolchain architecture. In particular,
it assumes the presence of computing nodes which are connected via
wired interfaces. The toolchain reads the topology from a GraphML
file and reserves a certain number of testbed nodes depending on the
number of ASs. On each physical node we run multiple instances of
the BIRD BGP daemon, and each BIRD instance represents one AS. The
number of ASs per node depends on its capabilities. More specifically,
the tool tries to equally distribute all the BGP deamons among the
reserved physical CPUs, we suggest to remain below a ratio of 8 ∶ 1
BIRD processes for each CPU. This process of resource gathering has
been automated through convenience scripts.

Each BIRD daemon runs in an isolated Linux kernel namespace,
communicating with the outside through a virtual interface. In turn,
each virtual interface is bridged with the physical interface of the node,
enabling each BIRD daemon to potentially communicate with any other
one. Depending on the topology, the toolchain configures a /30 IPv4
network for each pair of connected ASs, and then set up the BGP TCP
session.

The toolchain has, in principle, no limits on scalability, and we
tested topologies up to 20 000 ASs. The only limit is the size of the
testbed and the time necessary to setup the experiment. Indeed, the
toolchain automatically installs the necessary software, configures the
nodes, deploys the AS instances, etc. These steps need to be repeated for
each experiment, as nodes reserved in Fed4FIRE+ testbeds are ‘‘vanilla’’
Linux systems. In fact, booting and configuring the nodes might take
several hours, more than what is necessary to run the experiment.

The interested reader can get more detailed information in the
original paper [3], as well as on the resources that are available on
the project website4 and on GitHub.5 Available resources include a
detailed set of instructions enabling users to reproduce our emulations,
as well as a virtual machine that comes with the necessary software
pre-installed for simple tests and experiments.

6. Numerical results

6.1. Results on chain gadgets

Table 2 and Fig. 4 report the results for a chain topology (Fig. 1)
with 17 nodes. Table 2 presents the aggregate results for an easy
comparison. It is clear that the standard 30 s MRAI requires a long
time (more than 150 s on average) to converge, sending between 80
and 95 UPDATE messages. Fabrikant MRAI settings confirm that the
predicted explosion of UPDATE messages happens also with a real
implementation of the protocol. Compared to the no MRAI strategy
this also slows down convergence, as convergence is reached after
exploring many paths, and MRAI is in use. Simply removing MRAI leads
to very fast convergence, but, compared to DPC, doubles the number of
UPDATE messages sent. This is a very simple topology, and messages
are sent in a very short time, hinting that in larger topologies the
number and rate of UPDATE may clog the system. DPC, the method

4 https://iof.disi.unitn.it
5 https://github.com/internetonfire/

https://iof.disi.unitn.it
https://github.com/internetonfire/

M. Milani et al.

t

r

Computer Communications 228 (2024) 107940
Table 2
Statistics on the number of updates and the convergence time for the experiments
with a 17 node chain like the one in Fig. 1.

Strategy 10th Mean 90th

updates

30 s 81.6 88.5 95.2
Fabrikant 157.1 201.3 220.8
No MRAI 131.3 133.0 138.1
DPC 63.0 64.2 66.0

conv. [s]

30 s 146.58 156.40 177.22
Fabrikant 18.14 22.98 25.35
No MRAI 0.19 0.20 0.21
DPC 15.60 16.83 18.60

proposed in this paper, achieves a convergence time roughly 10 times
faster than the standard 30 s setting sending the minimum amount of
UPDATE among the tested solutions. Interestingly, also the variability
of sent UPDATE is minimal, indicating a very stable behavior.

Fig. 4 presents the detailed behavior during the route change
episode. Each line reports the average of 10 curves (one per run)
measured starting form the time when 𝑑𝑟 triggers a reconfiguration.
The time axis spans the entire time needed to reach stability in steps
of 1 s, reduced to 1ms for No MRAI because it converges in less
han 1 s. The four strategies have a very different behavior. The 30 s

MRAI strategy creates bursts of UPDATE which make nodes converge
gradually. The Fabrikant configuration has a long phase in which all
the nodes (excluding one-hop neighbors) do not have a valid path.
The No MRAI strategy behaves as expected, convergence is almost
immediate but path exploration generates more 130 UPDATE messages
concentrated in less than 250ms even if the number of nodes is just
17. The DPC-based strategy does not have a clear pattern of UPDATE
generation as its MRAI is different in different nodes, but offers a clear
improvement over the previous strategies.

Fig. 5 presents the trend of the number of UPDATE sent and the
convergence time as the number of nodes in the Fabrikant-gadget net-
work (Fig. 1) grows. Fig. 5(a) reports the average number of UPDATE
messages on chains of growing length and the exponential growth of
the number of UPDATE messages in the Fabrikant configuration is
clearly visible. Also No MRAI and 30 s have a super-linear growth,
while DPC has a linear growth. Fig. 5(b) reports the convergence time:
DPC substantially improves Fabrikant configuration and outperforms
the 30 s strategy. No MRAI always converges in less than a second, and
thus is not reported.

Since Fabrikant configuration halves the MRAI at every hop we
could not test chains longer than 17 nodes as the MRAI value would
be negligible, hence ‘‘Fabrikant effect’’ canno tbe properly observed.
Nevertheless we can confirm that:

• Fabrikant configuration is systematically outperformed by any
other strategy, thus we verified its abnormal trend;

• The No MRAI strategy produces the fastest convergence but the
time-density of UPDATE messages is not sustainable since it pro-
duces tens of reconfiguration per node in a few hundreds of
milliseconds. While this can be handled in a small gadget, the
computational overhead needed to update routing tables made of
tens of thousands of destinations would not be acceptable;

• The 30 s strategy prevents path exploration, but strongly impacts
convergence time; and,

• DPC-based configuration seems to provide the best trade-off be-
tween convergence speed and number of UPDATE messages.

6.2. Internet-like topologies and scaling

Once verified that in the critical topologies designed by Fabrikant,
DPC-based MRAI proves to be a viable solution, we report the results
obtained on a 12 000 node Internet-like topology, the largest we could
eliably emulate on Fed4FIRE+. We compare only the DPC-based and
7
Fig. 4. Time evolution of MRAI strategies on a 17 nodes chain like the one in Fig. 1.

30 s MRAI strategies since Fabrikant configuration is not applicable to a
generic topology, and No MRAI is unfeasible with thousands of nodes.
Table 3 reports the main statistics and shows that DPC produces on
average more UPDATE messages but converges in just 40% of the time
needed by the 30 s strategy.

Fig. 6 reports the time evolution of all the experiments for additional
insight. The first one is that the number of UPDATE bursts (the blue

M. Milani et al. Computer Communications 228 (2024) 107940
Fig. 5. Convergence time and UPDATE messages with chains of growing length.

Table 3
Statistics on the number of updates and the convergence time (in [s]) for an
Internet-like topology with 12 000 nodes.

Strategy 10th Mean 90th

updates 30 s 106 946 136 563 162 169
DPC 158 237 189 850 210 452

conv. [s] 30 s 205.9 220.5 235.1
DPC 88.0 89.0 118.1

curve spikes in the figure) is reduced with DPC-based MRAI. This means
that the increase in the total number of messages reported in Table 3
is compensated by a smaller number or ‘‘rounds’’ necessary to make
BGP converge. DPC-based centrality does not only reduces the interval
between bursts, it eventually makes each round or UPDATE exchanges
more effective as convergence is faster. The second insight is that with
DPC-based MRAI some rounds of UPDATE exchanges have a greater
effect than others on the number of nodes that reach convergence; it is
an interesting phenomenon that needs further study, as it suggests that
there are some nodes that are more important than others, and should
converge as early as possible. With centrality-based MRAI tuning we
would like to help the convergence of those nodes, and then quickly
propagate ‘‘good’’ information to the rest of the network.

7. Open source code and specifications

Emulating BGP involves a number of complex steps that are needed
to recreate realistic conditions. These steps require the realization of
code and specifications (open source) that are an integral part of
the contribution of this paper. This section documents our implemen-
tation of a realistic BGP topology generator, the implementation of
per neighbor and destination MRAI in the open source BGP daemon
BIRD, and the design of a BGP extension to support the distributed
computation and propagation of DPC. The software is publicly available
both through GitHub6 and Zenodo7.

6 https://github.com/internetonfire
7 https://zenodo.org/doi/10.5281/zenodo.10721373
 n

8
Fig. 6. Evolution in time of the two main MRAI strategies on the same Elmokashfi
topology of 12 000 nodes, average of 10 repetitions for each strategy.

7.1. BGP topology

We implement the model provided by Elmokashfi et al. [39] that
generates graphs preserving the structure of the Internet from a stochas-
tic perspective. Graph nodes represent BGP routers (one per AS) that
can be of four kinds (i.e., Tier-1, Mid-level, Customer, and Content
Provider: {T, M, C, CP}). Their number, interconnection and peering
agreement is generated based on the analysis of the Internet topology.
Fig. 7 reports a generated network with 1000 nodes.

The graph generator is implemented in Python and is now integral
part of the well known NetworkX python package, one of the most
supported and used libraries for network science.8 Fig. 8 shows the
graph generator resource footprint in terms of time and memory needed
on both a normal laptop and a server, respectively in purple and green,
for increasing number of nodes. The first one uses an Intel I7 7500u
cpu (2.7–3.5 GHz) and 16 GB of memory, while the second has an Intel
Xeon Silver (2.3 GHz) with 503 GB of memory available. Overall the
normal laptop requires twice the time and resources when generating
bigger graphs, but it is still possible to execute it in a reasonable time.
Furthermore the execution time and resources used on the server are
remarkably more constant, so that whiskers representing minimum and
maximum are barely visible.

The topology information is stored in a GraphML file, a standard
format to represent graphs, the nodes attributes are (we refer the reader
to [39] for details and terminology):

• type {T, M, C, CP}: defines the type of AS;
• destinations: a string of comma separated IPv4 network identi-

fiers (prefixes) with the respective netmask, indicating the list of
networks the AS exposes.

8 https://networkx.org/documentation/stable/reference/generated/
etworkx.generators.internet_as_graphs.random_internet_as_graph.html

https://github.com/internetonfire
https://zenodo.org/doi/10.5281/zenodo.10721373
https://networkx.org/documentation/stable/reference/generated/networkx.generators.internet_as_graphs.random_internet_as_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.internet_as_graphs.random_internet_as_graph.html

M. Milani et al.

T
g

w
a
a
X

G

f
n

(

Computer Communications 228 (2024) 107940
Fig. 7. Elmokashfi (Internet-like) topology with 1000 nodes, derived from [39], where
ier-1, Mid-level, Customer, and Content-Provider nodes are represented in orange,
reen, purple, and cyan, respectively.

Fig. 8. Time (in minutes) and memory required to generate an Internet-like topology
ith our Python implementation versus the number of AS nodes. Results show the
verage (the dot), maximum and minimum (whisker) across 10 independent runs on
n Intel I7 7500u (2.7–3.5 GHz) in purple, and across 50 independent runs on an Intel
eon Silver (2.3 GHz) with 503 GB of memory in green.

iven 𝑖, 𝑗 ∈  , the attributes for an edge (𝑖, 𝑗) ∈  are:

• type {transit, peer}: indicates whether there is a customer-
provider or a free peering relationship;

• customer 𝑧 ∈ 𝑉 : if the edge (𝑖, 𝑗) is of type customer-provider, 𝑧
identifies which node between 𝑖 and 𝑗 is the customer. For peer
edges, this attribute is set to ‘‘none’’.

We also realized a generator of the Fabrikant gadget networks.

7.2. Implementing MRAI on BIRD

As mentioned in Section 1 BIRD does not implement the func-
tionalities necessary to execute experiments with BGP timers: indeed,
there is no notion of MRAI inside the deamon and therefore all the
UPDATE where distributed immediately. We implemented the MRAI
timer following both the BIRD guidelines but also the specifics of the
original BGP Request For Comment (RFC) [21], i.e., the initial value
of the timer and the usage of a jitter. BIRD provides the possibility
9
Table 4
Description of BGP parameters for distributed computation of the DPC
metric.
Attr. Name Attribute fields

[2 Byte] [Variable size]

NH nNH NH_AS
ASLoad nASL ASL_List

to initialize the nodes through configuration files, so we included new
parameters to tune the new functionalities for each BGP session:

• mrai_time, which can be used to configure the MRAI value in
milliseconds;

• mrai_type, flag used to distinguish between a peer-based MRAI
timer or, by default, peer and destination-based timer;

• mrai_jitter, jitter value used to randomize the MRAI value
at every iteration.

As the original RFC [21] describes, MRAI is a timer defined at the
BGP-session level, but affects separately each destination forwarded in
that session. We anyhow provide the possibility to apply a single timer
to all the destinations that should be distributed towards that neighbor,
by setting mrai_type equal to 0. We test one destination per run so
the value of this flag does not affect our experiments.

We implemented the timer through the introduction of a specific
function and the manipulation of the outgoing queues. Following the
RFC [21], the timer should not delay the evaluation of new routes in
the Adj-RIBs-In but only the process that takes the best route from
the Adj-RIBs-In and places it in the ‘‘active’’ table LOC-RIB and
further propagate the node decision to the Adj-RIBs-Out queues.
The procedure is executed after the Adj-RIBs-in evaluation and
there can be two possible situations:

• MRAI not active: the UPDATE in the Adj-RIB-Out can be
propagated and, after that, the timer will be started according to
the configured value;

• MRAI active: it is not possible to propagate the new information,
so the evaluation of the best route will be executed once the timer
expires.

The second phase is where MRAI actually affects BGP behavior,
stopping potentially flapping routes from propagating further and
avoiding their distribution. Once the routing table has been updated
it is also mandatory to compute the outgoing queue Adj-RIBs-Out,
substituting the path in the UPDATE message if a new route be-
comes the preferred one or even not doing anything if there has been
an oscillation, i.e., a WITHDRAWAL whose effect is cancelled by an
UPDATE. In the first scenario, after the distribution of the message the
timer will become active, with a value defined by the combination of
mrai_time and mrai_jitter. Once this timer expires the function
dest_mrai_timeout is triggered in order to resume the route
comparison process.

7.3. The DPC BGP extension

Here we describe the extension to the BGP protocol to support a
distributed computation of the DPC metric. This proposal requires the
introduction of two new parameters that extend the Path attributes in
the UPDATE message, presented in Table 4. These attributes should be
lagged as optional-transitive, as defined in [21], to ensure that legacy
odes can ignore but still forward them.

The first attribute, NH, is used to identify the list of Next Hops
NHs) that the node can use to propagate the route 𝑑 contained in the
UPDATE message. It is not possible to assume there is only one NH due
to the multi-path peculiarities of BGP and the capability of the ASs to
share aggregated paths. The first element nNH encodes the number of

M. Milani et al. Computer Communications 228 (2024) 107940
elements in the list, and it is a 16 bit object. The second element is a
the actual list of ASs identifiers. Each AS identifier is 32 bit in size, for
a total size of nNH×32 bit.

The second object identifies the current load (the commodity we use
to compute DPC) of known ASs. This is necessary for the receiving AS 𝑖
to compute its own load and DPC, summing the load provided as input
from the other ASs. As the previous attribute, the first item is a 16 bit
counter that identifies the number of ASs in the list ASL_List. Each
object in the list is a tuple (𝜃, 𝐴𝑆𝑖𝑑 , 𝑡) that describes the current load 𝜃
associated with AS identifier 𝐴𝑆𝑖𝑑 and a value 𝑡 to describe when the
load has been propagated. This is necessary to identify outdated values
that are circulating in the network. The load 𝜃 and 𝐴𝑆𝑖𝑑 should be
encoded with 32 bit, while 𝑡 can be stored as UNIX time in milliseconds,
following the standard dimension of 64 bit. In total AS_List has a size
equal to ASLoad×128bit.

A BGP node should keep a dictionary with the last load values
associated with each other AS that shares its metric. In case of changes
to its content, the new values should be included in the next UPDATE
message sent to the neighbors. Each node is responsible to update
its own load value once the input ASs metrics changes and then
redistribute the changes.

To let a generic node 𝑖 compute its input load, it has to know if
neighbor 𝑗 has chosen it to forward traffic to 𝑑. To achieve this goal
we envision three possible methods:

Periodic Route-Refresh: Node 𝑖 periodically asks node 𝑗 for its current
configuration of best paths. This kind of messages, defined
in [40] is usually done only when there has been a change in
the policy and a re-evaluation is required, but in this case can
be exploited to acquire more knowledge of the decision process
of other nodes. This option is fully backward-compatible and
incrementally deployable;

UPDATE back-propagation: Once node 𝑗 has decided to use node 𝑖 as
best neighbor to reach 𝑑, it includes 𝑖 into the set of nodes that,
according to the policies, should be updated. The message is go-
ing to be dumped by 𝑖 because of the loop-detection mechanism,
but the mechanism can still trigger an update of the centrality
depending on the attributes in the UPDATE;

Traffic analysis: This method requires the cooperation of the BGP
daemon and a traffic analyzer. Once the analyzer detects that
the neighbor 𝑗 is forwarding traffic towards 𝑖 for the destination
𝑑 it is safe to assume that 𝑗 chose 𝑖 as best neighbor and therefore
communicate it to the BGP daemon towards a new internal API.

These modifications to BGP will let the network self-compute the
load value depending on the number of routes given as input and
outputs while still providing enough flexibility for ASs to obfuscate the
path through aggregation.

8. Conclusions

Conducting Internet-scale research is extremely challenging for
many reasons. One of them is the performance evaluation of the
proposals: It cannot be tackled with analytic models because they lack
the required detail level, it cannot be easily conducted with (realistic)
simulations because of computing resources limitation as well as the
lack (again) of realistic models, and it cannot be carried out with simple
lab experiments because they lack the scale of the Internet. The use of
large-scale testbeds where the proposed solutions are implemented in
the protocols under study is thus an almost mandatory tool to make
this kind of research credible.

In this work, we have explored the use of the federation of testbeds
provided by Fed4FIRE+ to evaluate changes in the management of
the MRAI timer of BGP using the BIRD open source implementation

properly modified with our proposal and other techniques from the

10
literature. The experimental work has been carefully crafted to make
results easily reproducible (given all the software we developed and
the scripts we have devised are public and open source), offering the
community not only a detailed description of all the experimental
machinery we have developed, but also the code developed, the scripts
to run the experiments and the post-processing tools to obtain results
and graphs.

An experimental setup that can be used to carry out research on BGP
to help improve the overall performance of Internet global routing has
an intrinsic value; furthermore our contribution also shows that it is
indeed possible to improve Internet convergence after a route change
by properly managing MRAI, and this without the risk of signaling
overhead explosion. We have run experiments with simple topologies to
show that analytic results presented in the past with simplified models
show up also in real experiments running actual protocols. Next, we
have clearly explained the theoretical foundations of our proposal, and
validated the results with experiments emulating networks with up
to 12 000 ASs, showing that it is possible to modify BGP to improve
Internet routing convergence time after changes in topology, a fairly
frequent event with the growing number of ASs and prefix destinations.

CRediT authorship contribution statement

Mattia Milani: Writing – review & editing, Writing – original
draft, Validation, Supervision, Software, Methodology, Formal analysis,
Data curation. Michele Segata: Writing – review & editing, Writing
– original draft, Supervision, Software, Data curation. Luca Baldesi:
Writing – review & editing, Writing – original draft, Software, Re-
sources, Data curation. Marco Nesler: Writing – original draft, Soft-
ware, Resources, Data curation. Renato Lo Cigno: Writing – review
& editing, Writing – original draft, Supervision, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Con-
ceptualization. Leonardo Maccari: Writing – review & editing, Writ-
ing – original draft, Visualization, Validation, Supervision, Project ad-
ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Renato Lo Cigno reports financial support was provided by Euro-
pean Commission. co-author Renato Lo Cigno is Area Editor of ‘‘at
large’’ journal and guest editor of other Special Issues but without any
implicaton on this partcular special issue: ‘‘Large-scale Experimental
Platforms for Computer and Networking Research: Recent Advances
and Challenges’’. co-author Michele Segata declares to be Guest Editor
of the Special Issue ‘‘Networking challenges for a sustainable and equal
world’’ and Guest Editor of the Special Issue ‘‘The 16th Wireless On-
demand Network systems and Services Conference (IEEE/IFIP WONS
2021)’’ If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to infuence the work reported in this paper.

Data availability

Links to data/code repositories are available in the article itself.

Acknowledgments

This research was supported by the European Commission, H2020
Programme, Grant Number 732638 ‘Fed4FIRE+’ through the Open Call
5 Experiment IoF (Internet on FIRE) when all authors were with the
University of Trento, Italy. Mattia Milani is now with Nokia, However,
these results were produced before he joined Nokia and therefore do

not necessarily reflect Nokia’s view on the subject.

M. Milani et al. Computer Communications 228 (2024) 107940
References

[1] P. Gill, M. Schapira, S. Goldberg, A survey of interdomain routing policies,
SIGCOMM Comput. Commun. Rev. 44 (1) (2014).

[2] A. Fabrikant, U. Syed, J. Rexford, There’s something about MRAI: Timing
diversity can exponentially worsen BGP convergence, in: IEEE INFOCOM, 2011.

[3] M. Milani, M. Nesler, M. Segata, L. Baldesi, L. Maccari, R.L. Cigno, Improving
BGP convergence with Fed4FIRE+ experiments, in: Proceedings IEEE INFOCOM,
WKSHPS, 2020.

[4] R.B. da Silva, E. Souza Mota, A survey on approaches to reduce BGP interdomain
routing convergence delay on the internet, IEEE Commun. Surv. Tutor. 19 (4)
(2017).

[5] D. Perouli, T.G. Griffin, O. Maennel, S. Fahmy, I. Phillips, C. Pelsser, Detecting
the unintended in BGP policies, in: IEEE International Conference on Network
Protocols, ICNP, 2012.

[6] C. Labovitz, A. Ahuja, A. Bose, F. Jahanian, Delayed internet routing
convergence, IEEE/ACM Trans. Netw. 9 (3) (2001).

[7] C. Labovitz, A. Ahuja, R. Wattenhofer, S. Venkatachary, The impact of internet
policy and topology on delayed routing convergence, in: IEEE INFOCOM, vol. 1,
2001.

[8] Z.M. Mao, R. Bush, T.G. Griffin, M. Roughan, BGP beacons, in: 3rd ACM
SIGCOMM Conference on Internet Measurement, 2003.

[9] R. Oliveira, B. Zhang, D. Pei, R. Izhak-Ratzin, L. Zhang, Quantifying path
exploration in the internet, IEEE/ACM Trans. Netw. 17 (2) (2006).

[10] D. Pei, X. Zhao, D. Massey, L. Zhang, A study of BGP path vector route looping
behavior, in: 24th International Conference on Distributed Computing Systems,
ICDCS, 2004.

[11] X. Dimitropoulos, G. Riley, Large-scale simulation models of BGP, in: IEEE
12th Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, MASCOTS, 2004.

[12] B. Quoitin, C. Pelsser, O. Bonaventure, S. Uhlig, A performance evaluation of
BGP-based traffic engineering, Int. J. Netw. Manag. 15 (3) (2005).

[13] K. Zhang, S.-T. Teoh, S.-M. Tseng, R. Limprasittipom, K.-L. Ma, S. Wu, C.-
N. Chuah, Performing BGP experiments on a semi-realistic Internet testbed
environment, in: IEEE 25th International Conference on Distributed Computing
Systems (ICDCS) Workshops, 2005.

[14] Y. Song, A. Venkataramani, L. Gao, Identifying and addressing reachability and
policy attacks in ‘‘secure’’ BGP, IEEE/ACM Trans. Netw. 24 (5) (2016).

[15] M. Roughan, W. Willinger, O. Maennel, D. Perouli, R. Bush, 10 lessons from 10
years of measuring and modeling the internet’s autonomous systems, IEEE J. Sel.
Areas Commun. 29 (9) (2011).

[16] T. Krenc, A. Feldmann, BGP prefix delegations: A deep dive, in: Proceedings of
the Internet Measurement Conference, 2016.

[17] A. Marder, M. Luckie, A. Dhamdhere, B. Huffaker, k. claffy, J.M. Smith, Pushing
the boundaries with bdrmapIT: Mapping router ownership at internet scale, in:
Proceedings of the Internet Measurement Conference, 2018.

[18] B. Schlinker, T. Arnold, I. Cunha, E. Katz-Bassett, PEERING: Virtualizing BGP at
the edge for research, in: Of the 15th CoNEXT, 2019.

[19] N. Rodday, G.D. Rodosek, BGPEval: Automating large-scale testbed creation,
in: 19th International Conference on Network and Service Management, CNSM,
2023.
11
[20] S. Deshpande, B. Sikdar, On the impact of route processing and MRAI timers on
BGP convergence times, in: IEEE GLOBECOM, vol. 2, 2004.

[21] Y. Rekhter, T. Li, S. Hares, A Border Gateway Protocol 4 (BGP-4), Tech. Rep.
4271, Internet Engineering Task Force, 2006.

[22] X. Wang, O. Bonaventure, P. Zhu, Stabilizing BGP routing without harming
convergence, in: IEEE INFOCOM, WKSHPS, 2011.

[23] P. Jakma, Revisions to the BGP ‘Minimum Route Advertisement Interval’, Tech.
Rep., Internet Engineering Task Force, 2011.

[24] A. García-Martínez, P.R. Torres, M. Bagnulo, BGP convergence in an MRAI-free
Internet, Comput. Netw. 240 (2024).

[25] B. Zhang, D. Massey, L. Zhang, Destination reachability and BGP convergence
time [border gateway routing protocol], in: IEEE GLOBECOM, vol. 3, 2004.

[26] A. Sahoo, K. Kant, P. Mohapatra, BGP convergence delay after multiple simulta-
neous router failures: Characterization and solutions, Comput. Commun. 32 (7)
(2009).

[27] R. Gill, R. Paul, L. Trajković, Effect of MRAI timers and routing policies on
BGP convergence times, in: IEEE 31st International Performance Computing and
Communications Conference, IPCCC, 2012.

[28] N. Laskovic, L. Trajkovic, BGP with an adaptive minimal route advertisement
interval, in: IEEE International Performance Computing and Communications
Conference, IPCCC, 2006.

[29] A. Bremler-Barr, Y. Afek, S. Schwarz, Improved BGP convergence via ghost
flushing, in: IEEE INFOCOM, vol. 2, 2003.

[30] G. Huston, M. Rossi, G. Armitage, A technique for reducing BGP update
announcements through path exploration damping, IEEE J. Sel. Areas Commun.
28 (8) (2010).

[31] W. Sun, Z.M. Mao, K.G. Shin, Differentiated BGP update processing for improved
routing convergence, in: IEEE International Conference on Network Protocols,
ICNP, 2006.

[32] D. Pei, B. Zhang, D. Massey, L. Zhang, An analysis of convergence delay in path
vector routing protocols, Comput. Netw. 50 (3) (2006).

[33] J. Qiu, R. Hao, X. Li, The optimal rate-limiting timer of BGP for routing
convergence, IEICE Trans. Commun. E88-B (4) (2005).

[34] P. Jakma, Revised Default Values for the BGP ‘Minimum Route Advertisement
Interval’, Tech. Rep., Internet Engineering Task Force, 2008.

[35] U. Brandes, On variants of shortest-path betweenness centrality and their generic
computation, Social Networks 30 (2) (2008).

[36] L. Maccari, R. Lo Cigno, Improving routing convergence with centrality: Theory
and implementation of pop-routing, IEEE/ACM Trans. Netw. 26 (5) (2018).

[37] L. Maccari, L. Ghiro, A. Guerrieri, A. Montresor, R.L. Cigno, On the distributed
computation of load centrality and its application to DV routing, in: IEEE
INFOCOM, 2018.

[38] L. Maccari, L. Ghiro, A. Guerrieri, A. Montresor, R.L. Cigno, Exact distributed
load centrality computation: Algorithms, convergence, and applications to
distance vector routing, IEEE Trans. Parallel Distrib. Syst. 31 (7) (2020).

[39] A. Elmokashfi, A. Kvalbein, C. Dovrolis, On the scalability of BGP: The role of
topology growth, IEEE J. Sel. Areas Commun. 28 (8) (2010).

[40] E. Chen, RFC2918: Route Refresh Capability for BGP-4, Tech. Rep. 2918, Internet
Engineering Task Force, 2000.

http://refhub.elsevier.com/S0140-3664(24)00287-1/sb1
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb1
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb1
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb2
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb2
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb2
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb3
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb4
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb5
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb5
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb5
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb5
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb5
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb6
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb7
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb7
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb7
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb7
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb7
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb8
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb9
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb10
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb11
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb11
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb11
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb11
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb11
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb12
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb13
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb14
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb15
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb16
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb17
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb17
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb17
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb17
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb17
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb18
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb19
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb20
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb21
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb21
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb21
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb22
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb23
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb23
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb23
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb24
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb25
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb26
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb27
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb28
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb29
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb30
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb30
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb30
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb30
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb30
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb31
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb31
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb31
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb31
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb31
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb32
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb33
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb33
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb33
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb34
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb34
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb34
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb35
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb36
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb37
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb38
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb38
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb38
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb38
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb38
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb39
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb39
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb39
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb40
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb40
http://refhub.elsevier.com/S0140-3664(24)00287-1/sb40

	Optimizing MRAI on large scale BGP networks: An emulation-based approach
	Introduction
	State of the Art
	The Problem of MRAI Configuration
	Exponential Path Exploration

	Centrality-based MRAI Configuration
	DPC - Destination Partial Centrality
	Tuning MRAI with DPC
	Propagating UPDATE messages on the BGP graph

	Scenarios
	BGP Emulation Toolchain

	Numerical Results
	Results on Chain Gadgets
	Internet-like Topologies and Scaling

	Open Source Code and Specifications
	BGP topology
	Implementing MRAI on BIRD
	The DPC BGP Extension

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

