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Abstract—Cooperative Driving applications, such as platoon-
ing, pose stringent requirements in terms of safety and reliability.
Multiple communication technologies can be used in parallel to
enhance the reliability of Vehicular Networks (VNs), but this is
not enough. Sensors malfunctions, malicious attacks, and other
possible risks –collectively called misbehaviors–, threaten the
safety of passengers, urging the development of Misbehavior
Detection Systems (MDSs). A full safety framework for VNs
should include one such MDS and be complemented by an
emergency protocol, to be activated when a misbehavior is
detected. The literature offers standalone MDSs whose detection
accuracy is evaluated offline against simulation traces but, to the
best of our knowledge, only few are the MDSs that work also
online, and none of them is coupled with an emergency protocol.
In this paper, we develop a novel framework which includes an
online MDS and an emergency protocol. The detector is based
on a Recurrent Neural Network (RNN) trained over VeReMi,
a dataset that tracks messages exchanged over VNs under
various simulated misbehaviors. The system accurately classifies
malicious messages and distinguishes them from genuine ones
offline. We further show how a good level of accuracy is
preserved while executing the MDS online in a scenario different
from the one used to generate the VeReMi dataset, i.e., during
simulations of platoons afflicted by multiple attacks or sensor
errors. We conclude showing that, online, the MDS quickly
detects failures and timely activates the emergency protocol to
dismantle a misbehaving platoon, ultimately contributing to
the safety of passengers.

I. INTRODUCTION

The exchange of information in Vehicle to Everything
(V2X) systems is crucial for the implementation of Co-
operative Perception (CP) and Cooperative Driving (CD)
systems, the pillars of Smart Mobility Environments (SMEs).
CP refers to systems where a group of distributed agents
with sensing capability exchange information to build a
common knowledge of the environment they operate in. CD
indicates instead the ability of a group of road vehicles
to act in coordination to achieve a common goal as, for
example, avoid accidents, protect Vulnerable Road Users
(VRUs), or efficiently cross an intersection. One specific
CD application is platooning, where a group of vehicles
drive together exploiting a distributed control system so that
vehicles can drive at a reduced distance improving battery
life, infrastructure usage, and safety of passengers.

The general safety of SMEs is jeopardized not only by
deliberate cyber-attacks, but also by any misbehavior or
anomaly in the exchange of information. Such anomalies
stress the algorithms governing CP causing wrong perceptions
that may lead to dangerous CD decisions and actions. For

instance, the authors of [1] consider the loss of information
(missing messages) in a multi-technology communication
system as an anomaly to properly inform a platooning
application on what is the most safe behavior, selecting
between different control laws and finally dismantling the
platoon if the information is not reliable enough to allow
cooperation.

Anomaly and misbehavior are used interchangeably in this
paper, although they may have slightly different meaning in
specific contexts. Our goal is the analysis of any exception
—from cyber-attacks to Global Navigation Satellite System
(GNSS) malfunction, but also jamming, or packet losses
due to interference and so forth— that may hamper the
coordination required to achieve CD. We then seek for a
general, simple, and robust system able to identify all such
possible anomalies.

We remark that, in the context of SME, the detection of
anomalies must be done on-line, or more appropriately at
run-time, with small computational complexity and without
offloading the task to a data-center. In fact, offloading the task
would require large transfers of information, thus high delays,
unacceptable for most CD systems. The use of decentralized
edge computing [2] can be considered, but it is outside the
scope of this work, which instead concentrates on the local
detection of anomalies and on the countermeasures to be
taken accordingly. Given the complexity of the topic, we
focus on run-time misbehavior detection within a platooning
application, and on the actions and protocols implemented to
safely dismantle the platoon, returning the control of vehicles
to either a human driver or an autonomous driving system.

The anomaly detection system must be trained, and this is
traditionally done off-line. Unfortunately, datasets describing
anomalies and misbehavior are very few: We identified
the VeReMi dataset [3], [4] as a suitable starting point
for our work, also because it is a good match with the
simulation environment we use for run-time experiments.
The contributions of this paper1 are thus as follows:

1) We propose a simple, yet effective Machine Learning
(ML) framework based on Long Short-Term Memory
(LSTM) to identify all communication behaviors that
deviate from normalcy, discussing its advantages and
limitations, and train it on the VeReMi dataset;

2) We implement a Misbehavior Detection System (MDS)
based on the aforementioned LSTM suitable for a

1Additional details can be found in [5].



run-time execution on board of single vehicles while
these communicate with neighboring cars and/or the
infrastructure;

3) We validate the MDS showing that its use prevents
practically all accidents that would affect a platoon of
vehicles if these last are unable to identify the simulated
misbehaviors.

We focus on a simple platoon application [6] as an example
of CD where wrong communications may lead to disaster.

II. BACKGROUND AND RELATED WORK

Various surveys cover the topics of attacks to Vehicular
Networks (VNs) [7]–[9], and some focus specifically on ML
based MDSs for VNs [10]–[14]. A first, full overview on
the possible attacks in a VN is given in [9], [12], where the
authors stress the differences between internal and external
attacks. Sun et al. [12], beyond exploring cyber-attacks
against VNs, include a discussion on the misbehaviors arising
from the malicious and potentially remote tampering of
sensors installed on vehicles. Considering the internal defense
against attacks, Van der Heijden et al. [10] introduce and
analyze various misbehavior detection mechanisms, based on
4 major metrics, namely: Behavioral, Trust, Consistency, and
Plausibility. Those detection mechanisms have limitations
in defending against strategies that mimic normal behav-
iors, this is why it is necessary to devise an MDS that
exploits hybrid strategies, including Artificial Intelligence
(AI) techniques, to provide a wide, potentially full, coverage
of all possible anomalies and misbehaviors. Boualouache
et al. [14] highlight and discuss classes of ML methods
used in VNs to implement MDSs, namely, Supervised,
Unsupervised, Reinforcement, Deep and Transfer Learning
techniques, while the survey from Talpur et al. [11] stress
the links between the chosen ML technology and the target
VN application.

Another comparison between different ML techniques is
made in [15], [16], where the researchers contrast unsu-
pervised and semi-supervised ML-based algorithms against
Neural Network (NN) approaches on the same simulations
set, showing that NNs tend to have better performances
compared to other techniques like k-Nearest Neighbor (k-
NN), Support Vector Machine (SVM) and Isolation Forest.
The most common NN approach involves using Recurrent
Neural Networks (RNNs) [17], a well-suited model for
managing ordered data sequences, specifically when the
ordering variable is time, thanks to their architecture that
allows maintaining the memory of previous inputs. LSTM
networks [18] are arguably the most popular used variant,
specifically designed to handle long-term dependencies. Many
works provide a misbehavior detector based on LSTM
[19]–[22], showing how to deal with input data, conducting
effective data manipulation, such as creating sliding or
jumping windows of message sequences to be provided
as NN input. This approach represents the simplest, yet
effective way to deal with misbehavior detection problems
in VNs and this is why we consider LSTMs as the standard

solution for a detection system. The literature related to
MDSs offers also more complex solutions where multiple
ML models are combined. In [23] Sedar et al. present a
combined architecture between LSTM and Reinforcement
Learning (RL) techniques, while in [24] Uprety et al. study
a Federated Learning (FL) approach, aggregating different
models within a centralized server, and providing a new local
detector.

We remark that none of these works attempt to implement
a real-time MDS nor test it within a CD application.
Furthermore, albeit all the proposed techniques have very
good performance from a purely detection point of view, there
is no proof that they would work just as well in avoiding
the collapse of a CD system. Indeed, in all these works the
MDS is not coupled with a protocol suitable to manage the
detected misbehavior and do not consider how the dynamics
of traffic may change the properties of the message sequences
analyzed by the MDS.

III. THE VEREMI DATASET

We do not consider, in this work, jamming or other explicit
attacks to the network itself. In fact, jamming is easy to detect
and defuse at the radio level, e.g., declaring the wireless
network unavailable. Similarly, we do not consider Spoofing,
Sybil or other attacks based on the violation of authentication
mechanisms, as they are normally countered by the use of per-
message digital signatures and a centralized, classical Public
Key Infrastructure (PKI). We therefore consider vehicles as
authenticated and in general trusted as digital entities, still,
we expect that such vehicles can simply start “misbehaving”
because of faults or because of any action, malicious or
not, that alters the semantic of the messages sent. The word
“misbehavior” is thus used to indicate the transmission of
authentic messages that, albeit digitally signed, contain wrong
information because the sender vehicle is either maliciously
injecting wrong data or it is equipped with malfunctioning
sensors. The MDS should detect this kind of messages and, if
detected, the defense protocol described in Sect. V-A should
be activated to preserve vehicles safety.

Most of the MDS for VNs discussed in Sect. II require
the training of a neural network based on a dateset of
messages labeled either as genuine or malicious: The only
well known open dataset of this kind is the VeReMi dataset
[3], [4], which contains tens of millions of messages collected
during simulations of different kind of misbehaviors in VNs
involving thousands of vehicles, traveling for several hours in
an urban scenario. We exploit the VeReMi dataset to design
an MDS crafted to tackle the selection of attacks reported in
Tab. I. The simulations performed to populate the VeReMi
dataset share this common facts:

• They are based on the well-known Luxembourg SUMO
Traffic (LuST) scenario [25].

• Simulations span over a 24h time-horizon, but messages
are collected only during 2 main time intervals, i.e.,
7AM-9AM (rush hour) and 2PM-4PM (medium density
traffic).



Attack
Family Attack Label Description

Position

Constant Cpos Transmit the same GNSS coordinates
over time

Random Rpos Transmit random GNSS coordinates
RndOffset Opos Transmit true GNSS coordinates

shifted with a random offset
Eventual
Stop

EvSt As for Constant, but also speed is
set to 0. This attack falls also in the
Speed based category

Speed Random Rspd Transmit random speed values
RndOffset Ospd Transmit true speed of the vehicle

shifted with a random offset

Information
Replication

Data Replay Drep Transmit information previously re-
ceived from a specific target neighbor

Disruptive Dis Transmit information previously re-
ceived from a random target neighbor

Table I: Misbehaviors selected from the VeReMi dataset used for
training the proposed MDS.

Feature Description

Label A number in the range [0 − 8]. 0 if the message
is classified as “genuine”, 1 to 8 refer to the at-
tacks/misbehaviors presented in Tab. I

sendTime Timestamp added by the sender vehicle
sender Id of the sender vehicle
receiver Id of the receiver vehicle
pos(x,y) X,Y GNSS coordinates of the sender vehicle. NB:

All recorded positions fall in the municipal area of
the city of Luxembourg

spd(x,y) X,Y speed components of the sender vehicle
acl(x,y) As above but for the acceleration

Table II: Features of classified messages. Some features originally
available in the VeReMi dataset are not used in this work, so they
are not reported in this table.

• In all simulations a fraction of vehicles, namely, the
30% of them, are malicious/malfunctioning, while the
remaining 70% always generate genuine messages;
genuine messages are standard Cooperative Awareness
Messages (CAMs) or similar messages sent at 1Hz.

A. Message Extraction, Manipulation and Classification

This work exploits the 2nd extended version of the VeReMi
dataset [4] where different folders are used to group data
according to the simulated misbehavior. Each folder contains:

1) The log files where each vehicle dumped the received
messages. These logs may report “wrong” information
if the logging vehicle was receiving data from a
misbehaving sender.

2) The ground truth, i.e., the true data that should have
been transmitted, thus recorded at transmitter side.

Logged messages are not explicitly tagged as genuine or not,
so, to perform the supervised training of the model, we add
message labels comparing the logs with the ground truth.
We thus recreate the trace of messages exchanged between
each pair of transmitter and receiver, tagging a message
as “genuine” if its version found in the logs (receiver side)
matches with the ground truth, otherwise we apply the label
of the misbehavior as defined by the VeReMi folder. The

∆T ∆(x, y) ∆spd(x, y) ∆acl
[s] [m] [m/s] [m/s2]

m1 −m0 1 (−1.5, 0) (1, 0) 1
m2 −m0 2 (−4.0, 0) (2, 0) 1
m3 −m0 3 (−7.5, 0) (3, 0) 1
m4 −m0 4 (−12.0, 0) (4, 0) 1

Table III: Example of the differential features for a subgroup of 4
messages for a vehicle that accelerates 1m/s2 driving on a straight
road sending standard CAMs at 1Hz. The x coordinate is always
aligned with the vehicle direction, thus the y coordinate is always
0 both for position and speed.

resulting dataset of classified messages is structured as shown
in Tab. II.

B. Feature Engineering and Embedding

To improve the generalization ability and responsiveness
of the MDS, we pre-pend three steps of data manipulation
before feeding the LSTM. The goal is to group messages,
select the appropriate features and normalize the data, and
finally to relabel message groups to help their classification.

1) Message grouping: It is of the utmost importance to
treat messages as part of time-ordered sequences so
to enable, during the training, the learning of the key
temporal-correlations between consecutive messages
that may reveal the symptoms of an attack. In the
literature message grouping has been performed with
sliding or jumping windows, with varying window sizes
from a few units up to hundreds of them. For example,
in [26] a sliding window of size 10 is used. A larger
window size favors the learning of long-horizon latent
features, however, it would increase the classification
delays of the corresponding online MDS, hampering
driving safety. In this work we choose a jumping
window with window size 5, to empower an online
MDS with low memory overhead (only a 5 positions
buffer is required), reduced computational complexity
(classification is performand once every 5 messages),
and low-latency decisions. In particular, considered
that most of CD applications rely on 10Hz beaconing,
the MDS takes decisions every 0.5 s, a time-interval
sufficiently small to activate the defense mechanism.

2) Feature Selection, Normalization and Scaling: Fur-
ther manipulations on the message windows are nec-
essary. First, it is necessary to eliminate the bias
given by the fact that all recorded positions are in
Luxembourg, thus in each window we fix the first
message position as reference for the rest of the
group. Then we compute the feature-wise differences
between the remaining 4 messages and the reference
one. Tab. III illustrates the result of this operation. We
stress that this “progressive difference tables” captures
well the cinematic evolution of the sender vehicle over
time, allowing a neural network to artificially learn the
plausibility and consistency checks that are proposed
as deterministic filters in previous works [3].

3) Group relabeling: The MDS is designed to work
on groups of four “message progressive differences”
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Figure 1: Architecture of the neural network at the core of the
MDS and format of the VeReMi processed data provided as input.

built to highlight the vehicle cinematic evolution as
shown in Tab. III. Such groups must be labeled to
support a supervised learning: We chose to keep the
label of the last message, i.e., the label of m4 out of
the {m0,m1, . . . ,m4} original messages, as label for
the whole group. The most frequent label could also
be chosen, but we prefer to chose the label of m4

(i.e, the very last message of the group) because in
VeReMi misbehaviors are persistent, namely, a vehicle
that starts misbehaving then it keeps misbehaving till
the end of the simulation. Choosing the label of the
last message helps therefore the classifier to detect
also attacks that starts right at the end of a sampling
window, i.e., leads to the raise of a warning also when
the detector samples a 5-message window where only
the last message is not genuine.

IV. MDS ARCHITECTURE AND VALIDATION

Fig. 1 illustrates the architecture of the neural network
empowering the proposed MDS. It comprises a first LSTM
layer to capture temporal correlations between consecutive
messages and a final 9-neurons softmax layer to output labels
in the classification space {0, 1, . . . , 9}, where 0 indicates
genuine messages while labels greater than zero indicate one
of the misbehavior reported in Tab. I. The middle layer is
dense with 156 neurons and ReLu activation.

Prior to training the model, the dataset of message
progressive differences needs to be balanced. In fact, in
VeReMi only the 30% of vehicles is misbehaving, therefore
the dataset over-represents genuine messages. We keep in the
balanced dataset the same amount of progressive differences
for each category of misbehaviors, and a double amount of
genuine ones. This way, we enforce a weak bias towards
genuine messages, which lowers the number of attacks false-
positives, leading to a system where emergency maneuvers
are not activated if not strictly needed. We apply a standard-
scaler to the balanced dataset and then we split it in 77%–23%
portions for training and validation respectively. We start the
offline training with batch-size equal to 64 and 100 epochs,
stopping the training when accuracy improvements are not
greater than 0.001.

A. Offline Accuracy Analysis

The system achieves an overall offline accuracy of 95.22%
in validation. Fig. 2 highlights the differences in terms of
Precision, Recall and F1-Score observed among the various

ge
n

Cp
os

Rp
os

Op
os

R s
pd

O s
pd

E
vS
t

D
is

D
re
p

Misbehaviors

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
M

et
ri

cs

Precision Recall F1-Score

Figure 2: Precision, Recall and F1-Score metrics evaluated on all
the misbehavior categories.
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row.

message classes, while the confusion matrix shown in Fig. 3
helps interpreting these differences. It is immediately clear
that the performance is influenced by the misbehavior type.

Fig. 2 highlights that the MDS worst performance is on
EvSt misbehavior and the best one for Rpos, immediately
followed by Opos. The other misbehaviors fall in between.
Clearly, explaining the detailed reason of each mistake (or
mistake rate) is not possible, but the very good performance
on Rpos and Opos is good news, as these are the most com-
mon misbehaviors in GNSS systems also due to positioning
system signal dilution and pollution.

Even if detailed explanation is not possible, the confusion
matrix in Fig. 3 gives some hints on the reasons of some
errors. First of all, it indicates a good classification precision
in general, since most of the diagonal values exceeds 94%,
with few exceptions, namely, Cpos and EvSt, with the first
that tends to be confused with the second (it happens on
the ≈15% of the Cpos samples). The similar nature of the 2
misbehaviors explains this evidence: In fact, with both the
Constant Position (Cpos) and the Eventual Stop (EvSt),
misbehaving messages are characterized by the “frozen”
GNSS coordinates, with EvSt messages further characterized
by zeros as speed and acceleration values, still, the common
position patterns mildly confuses the classifier. Despite these
flaws limited to specific misbehaviors, the most important
result is the great precision with regards to genuine messages,
because in most of the use cases the classification problem



may be reduced to the binary choice between genuine and
misbehavior. From this perspective, the confusion matrix
confirms that the classifier can accurately support the decision
of raising emergency flags.

V. RUN-TIME MDS AND EMERGENCY PROTOCOL

The neural network described in Sect. IV, once trained over
data extracted from the VeReMi dataset and pre-processed as
described in Sect. III, produces as output a trained model, i.e.,
the message classifier. However, classifying messages from a
dataset is only an exercise, while the final goal is to correctly
identify misbehaviors while driving and appropriately react
to them for the safety of vehicles passengers.

As mentioned earlier we focus on a simple platooning
application, where each vehicle is equipped with the designed
MDS to support the driving strategy reported in Algorithm 1.

Algorithm 1 Driving algorithm informed by the message classifier.

1: procedure INIT()
2: misbehaviors ← load_misbehavior_labels()
3: CLF ← load_trained_classifier()
4: neighMap ← {}
5: procedure ONBEACON(msg=m, neigh=v)
6: if v /∈ neighMap then
7: neighMap ← new msgBuffer[5]
8: neighMap[v].append(m)
9: if neighMap[v].size() == 5 then

10: label ← clf.evaluate(neighMap[v])
11: neighMap[v].clear()
12: CLF.DECISION(label)
13: procedure CLF.DECISION(label=lbl)
14: if lbl ∈ misbehaviors then
15: EMERGENCYPROTOCOL()

During the initialization routine, each vehicle loads the
trained classifier. The ONBEACON procedure is invoked
whenever a vehicle receives a beacon message m from a
neighbor v. If v is a new neighbor, a 5-sized message buffer
is allocated for storing the beacons sent by v (lines 6-7). New
beacons are added to the buffer associated to the specific
sender (line 8). The classifier requires 5 messages to emit a
verdict, so it is invoked when the buffer becomes full (line 9),
hence, a label is generated (line 10) and a decision should be
taken. Decisions upon labels are straightforward: whenever
the classifier detects a misbehavior the emergency protocol is
activated (lines 13-15), otherwise the vehicle continues with
the platooning cooperative driving. The algorithm collects
and evaluates messages from any vehicle, not only from the
vehicles in its own platoon. Clearly, the driving reaction will
be different depending on the misbehaving vehicle. If after a
proper timeout the MDS does not collect at least 5 messages
from the same vehicle, the related buffer is discarded.

A. Platoon Dismantle Protocol for Emergencies

The Finite State Machine drawn in Fig. 4 shows the life-
cycle of vehicles that activate the emergency protocol. Once
a misbehavior is detected, vehicles enter in a GAP_CONTROL
state. In this state they run the Gap Control Algorithm [1]

CACC GAP_CONTROL

AUTONOMOUS

Misbehavior Detected

Raise Warning
Use Radar

Safety Gap Reached

CACC->ACC

Figure 4: Finite State Machine describing the transition from a
CACC driving regime to an AUTONOMOUS one upon detection of
any misbehavior.

whose details are omitted here. In a nutshell, the key
countermeasures taken by vehicles are:

1) Send an emergency warning in broadcast. This way the
first vehicle that detects a misbehavior quickly alerts
nearby vehicles. Warnings are repeated by receiving
vehicles;

2) All vehicles start increasing the distance from the
vehicle in front (GAP_CONTROL);

3) When the distance is safe, switch to an Adaptive Cruise
Control (ACC)-based autonomous driving exclusively
based local sensors.

Vehicles part of a well-behaving platoon drive at distances
that are smaller than those kept by autonomous vehicles
that cannot rely on any form of cooperation. The temporary
GAP_CONTROL regime is thus necessary to increase the safety
gaps before completing the switch to autonomous driving.

Fig. 5 shows the effect of the platoon dismantling protocol
activated when a misbehavior is detected in a platoon of
4 vehicles. The leader is the vehicle v0 (not shown in
Fig. 5) while v1, v2, v3 are the platoon followers. The leader
follows a sinusoidal speed pattern as described in the Caption.
The followers correctly keep a distance corresponding to
a 0.5 s time-headway until a misbehavior is introduced
in the simulation, triggering the transition delimited by
dashed vertical lines in the plot. During this phase the front
distance gently increases for all vehicles until they switch
to autonomous driving based on local sensors with a front-
distance of ≈ 35m. This means that, under emergency, the
protocol is able to guarantee the safety of all vehicles, at the
(obvious) cost of loosing the advantages of platooning, so a
good MDS should report all true misbehaviors, but should
not indulge too much on the side of caution to avoid wasting
the advantages.

VI. EXPERIMENTAL EVALUATION OF THE ON-LINE MDS

We implemented Algorithm 1 and the Emergency Protocol
detailed in Sect. V-A within PLEXE [1], the well-known CD
framework which extends VEINS [27], allowing the realistic
simulation of platoons.2 In particular, through the use of
Python Bindings, we have connected the C++ CD Application
on board of each PLEXE vehicle with the MDS implemented

2The code will be made publicly available on the PLEXE website
when appropriate.
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Figure 5: Evolution over time of the front-distance of the vehicles
before and after the detection of a misbehavior. Before t = 40 s
vehicles adopts the PLOEG Cooperative Adaptive Cruise Control
(CACC) with a time-headway of 0.5 s; the leader follows a
sinusoidal speed pattern with period 10 s and an average speed
of 100 km/h ≈ 27.77m/s, implying a front-distance of ≈ 15m.
At t = 40 s the leader v0 starts sending constPos CAMs, the
followers detect it and enter the GAP_CONTROL mode, slowing
down to enlarge the front-distance until they reach the target one
for an ACC with a 1.2m/s time headway (≈ 35m). This happens
at t ≈ 63 s that is when they switch to the AUTONOMOUS mode.

with PYTORCH. We have also customized the Driving
Application that now fully supports the collection of beacons
and the computation of their progressive differences so to
feed the MDS at run-time. Furthermore, we implemented the
Emergency Protocol as a further PLEXE module, to be used
when the MDS signals a misbehavior. All the misbehaviors
reported in Tab. I have been implemented by altering the
CAMs generated by the Beaconing service already available
in PLEXE. Finally, we configured the PLEXE Sinusoidal
Scenario3 so to mimic the misbehaviors selected by the
experimenter at random start times. Tab. IV reports the main
parameters of the simulation campaign.

A. Experiments Definition and Goals

We crafted the experiments with two main objectives:

1) Evaluate the accuracy and responsiveness of the MDS
at run-time;

2) Evaluate the ability of the framework to reduce
accidents.

The experiments start with platoons of various size that
drive on a highway at steady-state following the leader. The
platoon leader keeps changing his speed, slowly accelerating
and then decelerating, to mimic the usual small variations
of a common driving pattern and also to create a situation
where accidents can happen with higher probability due to

3Documented online:
https://plexe.car2x.org/tutorial/\#sinusoidal-scenario

Parameter Value

Sc
en

ar
io

Road Type 3-Lane Highway
Duration 120 s
Misb. Start Time Uniform[̃15,30]s
Default CACC PLOEG
PLOEG Headway 0.5 s
Autonomous Controller ACC
ACC Headway 1.2 s
Beaconing Frequency 10Hz
Platoon Size 4,8,16
Leader Speed 100km/h
Speed Oscillation Amplitude & Freq 5km/h, 0.1Hz
Repetitions per Experiment 100

C
om

m
.

L2-technology dual radio 802.11p
Tx power 500mW
Broadcast MCS 3Mbit/s
Unicast MCS 12Mbit/s
Rx sensitivity −94dBm

Table IV: Parameters characterizing vehicles and communications
in the simulation experiments.

continuous variations. A random platoon member starts mis-
behaving at a random time instant: The other vehicles should
in principle detect the misbehavior and activate the emergency
protocol. With Platoon Size equal to 4 and 8 the misbehaving
vehicle is selected at random, but the last platoon member
is never chosen, this because a PLOEG controlled vehicle
listens only to messages sent by its predecessor, so wrong
messages transmitted by the last platoon member would not
be processed nor classified by any vehicle. With Platoon Size
equal to 16 the misbehaving platoon member is chosen at
random between the leader (v0) or the 8th platoon member
(v7), to avoid exploring a too large combinatorial space.
Overall, we run (3+7+2)× 2× 8× 100 = 19200 different
simulations, where (3 + 7 + 2) is the number of potential
misbehaving vehicles for the 3 tested values of platoon
size, ×2 for simulations either with or without enabling
the emergency protocol, ×8 represents the 8 simulated
misbehaviors and finally ×100 is the number of repetitions
for pure statistical purposes.

The second goal stated is to assess the ability to avoid
accidents, so we count and compare the number of car
collisions over simulations where the emergency protocol is
respectively enabled or disabled. However, this means that
we test the online prediction accuracy of our MDS on a large
number of “genuine” messages, i.e., those generated from
the start of the simulation till the start of the misbehavior,
but on a smaller number of misbehaving ones, as we stop
predictions as soon as one message is classified as malicious.

We finally highlight how our testing scenario, involving
platoons on a highway, is very different from the Luxembourg
SUMO Traffic (LuST) scenario [25] used for training, so with
our experiments we also want to test the generalization ability
of our framework and its limits in transferring knowledge
from an urban to an highway scenario.

B. Accuracy Evaluation

Tab. V presents the Confusion Matrix for the online
MDS restricted to the binary Genuine VS Misbehaving
classification problem. Rows report the true message type



Genuine Misbehavior

Genuine 1.0000 0.0000
Misbehavior 0.0197 0.9803

Table V: Confusion Matrix for the online MDS restricted to the
binary Genuine VS Misbehaving classification problem.
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Figure 6: Discrete Violin Plots of the reaction-times observed over
all the experiments. Separate Violins are plotted for each category
of misbehavior. Three outliers for the Drep attack are reported out
of scale.

and columns indicate the estimated one, so the diagonal
values represent correct hit-ratios, while the opposite elements
represent miss-ratios. The first row of Tab. V highlights
that, on the large number of simulated genuine messages,
our MDS never reports false positives, hence, no spurious
activation of the emergency protocol is ever triggered. We
claim, accordingly, that our MDS is always able to preserve
the driving advantages of platoons and never introduces
needless overheads. The second row reveals instead that a
minority of wrong messages (the 1.97%) remains undetected,
which means platoons are protected in ≈ 98% but not all of
the cases. We further observe that all cases of undetected
misbehaviors are due to the same class, namely, due to the
Data Reply (Drep) attack.

C. Analysis of the Reaction Time

The analysis of Tab. V establishes the perfect suppression
of spurious emergencies and a great but not perfect detection
accuracy of misbehaving messages. We now shift our interest
towards a further key performance metric for an MDS
evaluated at run-time, i.e., its reaction time. In fact, it is
not enough for an MDS to be accurate, as a slow reaction
time may allow the long persistence of misbehaviors leading
to dangerous situations, up to fatal collisions.

Fig. 6 reports the distribution of reaction times observed
over all the platoons we simulated afflicted by some misbe-
havior. The majority of misbehaviors is detected in around
0.25 s, which means that the detector is able to catch the
anomalies at the very first available sampling window. In fact,
the MDS is invoked every 5 messages, which are generated
every 0.1 s so, on average, an attack should starts 0.25 s
before the first possible output of our classifier. However,
all boxes extend more towards the upper side of the time-
axis, suggesting that misbehaviors are not always detected at
the very first sampling opportunity. In the VeReMi dataset
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Figure 7: Barchart comparing the collision rate in simulations where
the emergency protocol was either enabled (blue) or disabled (red).

vehicles are either misbehaving from the very beginning of
time or they do not at all. This means that, while training,
the MDS has never observed “partially wrong windows”
of messages, i.e., windows that contain a few genuine
messages followed by few wrong ones. This fact may biases
the ability to detect misbehaviors immediately at run-time,
because in our run-time experiments partially wrong windows
can actually be sampled. Worth of notice are the outliers,
especially visible for the Drep attack, which require further
analysis. In the following Sect. VI-D we direct the attention
to the study of safety under the just commented distribution
of reaction times.

D. Analysis of the MDS Protection Power

The average latency-penalty paid by our classifier seems
to be low enough to protect the platoons in the greatest
majority of cases; however, the outliers pointed out in
Sect. VI-C remain a source of concern. Fig. 7 shows a
comparison in terms of collision rate for simulations where
the MDS warnings were either used to enable the emergency
protocol (blue bars) or when the MDS is not used at
all (red bars), thus vehicles use the wrong data. Some
misbehaviors are naturally less dangerous than others, for
example, even turning off all defense mechanisms the Opos,
Rspd or Ospd misbehaviours never lead to any collision,
but this may change using different CACC algorithms or in
heterogeneous conditions [28]. The defense mechanism turns
out to be instead perfectly able to always detect and defuse
the Cpos, Rpos and Opos attacks, reducing the collision rate
from 80% to 0%. Compared to these last three, the Dis
and Drep attacks are slightly less dangerous, leading to
collision in approximately the 63% of the simulations without
defense. The safety protocol fully defuses the Dis attacks and
greatly reduces the collisions in case of Drep ones however,
unfortunately, the ≈ 15% of Drep attacks remain undetected
or the reaction time is too slow and we observe a non zero
number of collisions also when the defenses are enabled. We
hence confirm the observations reported by Kamel et al [4],
who already noticed in their benchmarking study the Drep

ability to trick detection systems.



VII. DISCUSSION AND CONCLUSIONS

This paper introduces a novel safety framework for
vehicular networks that includes an AI-based MDSs and
an emergency protocol to ensure the safe dismantling of a
platoon afflicted by a malicious attack, or malfunctioning
sensors or any kind of anomaly. The MDS is trained over
the VeReMi dataset and its offline accuracy is assessed.
However, compared to most current literature on the subject,
we implement the MDS to be used online, on board of
simulated vehicles, for run-time classification of messages.
We propose a simple emergency protocol to complement the
MDS and protect platoons from multiple misbehaviors. We
show that the MDS used online is accurate and, above all,
extremely responsive, with an average reaction time close to
0.25 s. This good performance allow the timely activation of
the emergency protocol which turns to be a crucial security
mechanism. In fact, the simulation of platoons where a
vehicle starts misbehaving exhibits an overall collision rate
of 58%, which is reduced to only 2% once the defense
mechanism is enabled.

The MDS is based on a supervised training, which
means that the resulting classifier ability to detect novel and
previously unseen misbehaviors is limited. Yet, restricting the
classification to the binary Genuine vs Misbehaving problem,
the MDS is able to defuse also unseen patterns. No system
can be secured against 0-day vulnerabilities, but we think that
such a simple MDS is prone to on-line continuous training.
For instance one can introduce a reinforcement learning
approach to improve the MDS accuracy at run-time, further
enhancing the MDS ability of catching novel risks and thus
protecting platoons and VNs.

We conclude stressing the necessity to test MDS systems
also at run-time in conditions similar to those they may
encounter in real traffic, and not only off-line on partitions of
the training datasets, which are in general collected ensuring
the stationary behavior of the system, thus simplifying the
task for detection systems.
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