
1

Multi-Technology Cooperative Driving:
An Analysis Based on PLEXE

Michele Segata, Member, IEEE , Renato Lo Cigno, Senior Member, IEEE , Tobias Hardes, Student Member,
IEEE , Julian Heinovski, Student Member, IEEE , Max Schettler, Student Member, IEEE ,

Bastian Bloessl, Member, IEEE , Christoph Sommer, Member, IEEE , and Falko Dressler, Fellow, IEEE

Abstract—Cooperative Driving requires ultra-reliable communications, and it is now clear that no single technology will ever be able to
satisfy such stringent requirements, if only because active jamming can kill (almost) any wireless technology. Cooperative driving with
multiple communication technologies which complement each other opens new spaces for research and development, but also poses
several challenges. The work we present tackles the fallback and recovery mechanisms that the longitudinal controlling system of a
platoon of vehicles can implement as a distributed system with multiple communication interfaces. We present a protocol and procedure
to correctly compute the safe transition between different controlling algorithms, down to autonomous (or manual) driving when no
communication is possible. To empower the study, we also develop a new version of PLEXE, which is an integral part of this contribution
as the only Open Source, free simulation tool that enables the study of such systems with a modular approach, and that we deem offers
the community the possibility of boosting research in this field. The results we present demonstrate the feasibility of safe fallback, but also
highlight that such complex systems require careful design choices, as naïve approaches can lead to instabilities or even collisions, and
that such design can only be done with appropriate in-silico experiments.

Index Terms—Cooperative driving, vehicular networking, vehicle-to-vehicle communication, platoon controller, simulation techniques

✦

1 INTRODUCTION

The development and testing of cooperative driving applica-
tions heavily relies on simulations. Given the field of study,
this is very rational, as one of the main drivers for vehicular
networks is enhancing safety, and to do this we need to
analyze dangerous situations. So, safety must be enforced
at any step of the development and analytic models are too
coarse to capture all details; on the other hand, real world
Field Operational Tests (FOTs) are very demanding, both in
terms of funding, man-power, and time.

The simulation of cooperative driving applications is very
demanding, as it entails several orders of magnitude in time
scale, and different modeling techniques depending on the
subsystem considered, from transmissions to networking,
from motion prediction to vehicles control and dynamics.
Given the complexity and non-linearity of the entire system,
the traditional divide-et-impera engineering approach that
analyzes each sub-system separately with local performance
evaluation and assumes that the entire system will work
if all subsystems work, cannot be applied. The impact of

• M. Segata is with the Faculty of Computer Science, Free University of
Bolzano, Italy, E-mail: michele.segata@unibz.it.

• R. Lo Cigno is with DII, University of Brescia, Italy, E-mail: re-
nato.locigno@unibs.it.

• T. Hardes is with TU Dresden, Faculty of Computer Science, Germany and
the Software Innovation Campus Paderborn (SICP), Paderborn University,
Germany, E-mail: tobias.hardes@upb.de.

• J. Heinovski, M. Schettler, and F. Dressler are with the School for
Electrical Engineering and Computer Science, TU Berlin, Germany, E-
Mail: {heinovksi, schettler, dressler}@ccs-labs.org.

• C. Sommer is with TU Dresden, Faculty of Computer Science, Germany,
E-mail: sommer@cms-labs.org.

• B. Bloessl is with the Secure Mobile Networking Lab, TU Darmstadt,
Germany, E-mail: mail@bastibl.net.

communications on the safety of cooperative driving must
be evaluated on this latter, not through communications
metrics like packet losses or generic reliability.

As the communication requirements of cooperative driv-
ing are very strict and a single technology might not be
able to meet them [1], it is envisioned that heterogeneous
communications will be employed simultaneously [2]. In
addition, the concept of cooperative driving is intertwined
with the concept of automatic control. Classic mobility
simulators such as SUMO [3] do not model control systems
or vehicle dynamics, but rather try to mimic human driving
behavior through car-following models such as the Intelligent
Driver Model (IDM) [4] or Krauss [5]. For the evaluation of
such systems, the possibility of understanding the effects of
the network on the performance of the autonomous control
system and the dynamics of the vehicle is fundamental to
complete the puzzle.

The main goal of this work is the study of realistic strate-
gies to safely introduce cooperative driving technologies on
the road. To achieve this goal, it is mandatory to propose and
analyze fallback strategies that can give the control of the
vehicle back to the driver when automation fails (especially in
case of communication failures), but to carry out this analysis
it is necessary to have a proper simulation framework that
allows credible and replicable performance evaluation. Thus,
the contribution of this paper, is twofold. In the first part
of the paper, we propose a fallback mechanism called Safe
Autonomous Switchover Algorithm (SafeSwitch) that, in
the reasonable assumption that future vehicles will have
multiple communication technologies, empowers the safe
change of platooning control algorithms as a function of the
available communication technologies, and eventually the
fall back to a simple radar-based Adaptive Cruise Control

2

(ACC) system in case of complete communication failure.
SafeSwitch is derived heuristically. In the second part of the
paper, we describe a simulation tool that we developed to
achieve the first goal, but whose capabilities and potential go
well beyond what we exploit in this paper, thus making it a
contribution on its own. In the paper we highlight the main
features of the framework, while in the additional material
we give a more in-depth description of its functionalities,
how it can be tuned to flexibly address different problems,
and discuss its scalability.

The simulation tool, presented in Section 4, is named
PLEXE and builds on the prototype that we proposed in [6].
PLEXE provides the support for heterogeneous commu-
nication technologies, such as IEEE 802.11p, Visible Light
Communication (VLC), and LTE-based Cellular V2X (C-V2X).
One of its key features is the easy coupling with addi-
tional communication technology models, that makes PLEXE
ready for the evaluation of future systems (e.g., 5G New
Radio (NR), 5G mmWave, RADar-based COMmunication
(RADCOM) [7], and beyond). In addition, it ships with
control algorithms (namely Cooperative Adaptive Cruise
Controllers (CACCs) [8]–[11]) taken from the literature and
enables users to implement and evaluate additional ones
very easily. Together with control algorithms, it implements
vehicle dynamics models to include the effects of actuation
delays, i.e., the control delay that incurs due to engine/brake
dynamics and inertia, which heavily influence the stability
and the performance of the system. Last but not least, PLEXE
and all the required software is Open Source and freely
available online1. PLEXE is modular, which greatly improves
maintainability (including the usage of upgraded version of
software modules) and eases the process of integrating new
simulation modules.

Section 3 presents SafeSwitch that we envisage based
on IEEE 802.11p, LTE, and VLC, and builds on the notion
of safety through redundancy, designing a protocol that
enables the use of more aggressive control technologies
when more communication technologies are available and
relaxes the control requirements as communications degrade,
until no communications are available and vehicles must
return to autonomous and non-cooperative driving. Section 4
describes the PLEXE framework, while Section 5 evaluates the
performance of the system and its ability to guarantee safety.
In the remainder of the paper we assume the reader familiar
with the concepts of platooning, CACC, and string-stability.
A concise primer is reported in the additional material.

2 RELATED WORK

The works that influenced and are related to our contribution
fall in three different areas of research: Heterogeneous
communication technologies to enhance vehicular networks
resilience; fallback mechanisms and protocols to modify coop-
erative driving behavior; and frameworks for the simulation
of cooperative driving. The following subsections analyze
the state of the art in these three fields.

2.1 Heterogeneous Communication Technologies
Vehicle to Everything (V2X) technologies abounds, but it is
now clear that a single technology cannot meet the strict re-

1. http://plexe.car2x.org

quirements of cooperative driving in terms of reliability and
dependability. This self-evident observation has spawned
research that tries to understand the benefits of mixing
together multiple communication technologies in a single
V2X network with sufficient resilience to support dependable
operation and safe fallback in case of some technology failure.

One approach that has often been used is the combination
of IEEE 802.11p and VLC. Ishihara et al. [12] developed a
protocol that forwards all beacons (leader and follower) of a
platoon via the IEEE 802.11p and VLC interface. Simulations
show that the number of lost packets and the end-to-end
delay can be strongly reduced while the platoon is exposed to
a jamming attack. Segata et al. [13] investigated the benefits
and drawbacks use of VLC for platoons compared to an IEEE
802.11p approach. Simulations were performed to evaluate
a combination of VLC and IEEE 802.11p in a traffic jam
situation. The results showed an increased delay for VLC,
but a substantial improvement in terms of scalability to
hundreds of communicating cars. However, the work uses
simplistic assumptions regarding the physical layer and the
VLC channel model.

Another approach, which also analyzes platooning under
the influence of jamming attacks, was presented by Ucar
et al. [14]. Using simulations, the authors showed a reduction
regarding the impact of such an attack by exploiting the
directionality and opacity of light.

Schettler et al. [15] analyzed different protocols that
utilize IEEE 802.11p and VLC together in a freeway scenario.
The proposed protocols were evaluated using simulations
in challenging environments such as emergency braking
maneuvers at high vehicle densities. Results showed that an
additional VLC channel can reduce the IEEE 802.11p channel
load and still maintain a safe distance of close to 5 m between
vehicles in a platoon.

Hardes and Sommer [16] investigated communication
strategies for platooning with VLC and IEEE 802.11p in an
urban environment. They proposed different approaches that
are combining IEEE 802.11p and VLC depending on the road
topology. Simulation results showed that a situation-aware
usage of the IEEE 802.11p channel can strongly reduce the
number of lost beacons.

Besides the use of VLC, the use of 3GPP C-V2X is
also being considered together with other technologies.
Sybis et al. [17] propose a dynamic spectrum management
mechanism that uses C-V2X and IEEE 802.11p based commu-
nication. Based on context-aware databases, sensing nodes,
and spectrum allocation, they propose to transmit critical
information using a primary radio, whereas other types of
data are transmitted at an additional frequency band that is
selected from the spectrum white space. The scheme has been
evaluated with field tests. The use of C-V2X together with
other technologies is still rare, but recent works indicate that
to reach the dependability required by cooperative driving
even this technology alone is not enough [18], [19].

Similarly, mmWave technology has recently attracted
the attention of the research community. While so far there
is little research regarding its use in heterogeneous V2X,
initial works indicate that it will be a valuable network
technology complementing the other alternatives [20]. For
its additional capabilities and bandwidth mmWave can be
utilized in cooperative driving applications similarly to VLC.

3

2.2 CACC Fallback Mechanisms
One of the biggest problems in cooperative driving is dealing
with network failures. A communication failure, let this
be due to congestion or to active attacks [21] might have
serious consequences because vehicles would switch from
their communication-enabled enhanced perception to the
limited, sensor-only perception. If this happens, vehicles
need to switch to a different control/coordination mode to
maintain passengers’ safety, which is not a trivial task.

Congestion or interference-based communication degra-
dation can be handled even with a single communication
technology with appropriate protocols. Segata et al. [22] pro-
pose a communication protocol that adapts the transmission
rate to vehicle dynamics with the aim of minimizing network
resource utilization to the minimum. While this approach
proved successful, it cannot cope with jamming, attacks, or
simply technology failure because it assumes the use of IEEE
802.11p only. Similarly, Giordano et al. [23] design a CACC
using a joint control/network approach that allows setting
theoretical bounds on safety, meaning that the inter-vehicle
distance is guaranteed to be always greater than a certain
bound provided some network constraints are met. Briefly
speaking, such constraints are expressed as a maximum
number of possible consecutive losses; in this case the use
of multiple technologies reduces the probability of such an
event, enabling the possibility to lower the inter-vehicle
distance at no expenses of safety.

To ensure safety under unreliable network conditions
some works perform the fallback to ACC using data obtained
from the radar instead of data received through communi-
cation. One example is the work by Ploeg et al. [24]. The
authors consider a predecessor-following CACC that obtains
the intended acceleration (i.e., prior engine actuation) of the
preceding vehicle through communication and uses it as an
input for the control system, and they extend the CACC to
fall back to the radar-estimated front vehicle acceleration
when data is lost. The authors show that this approach
dampens oscillations better than simply falling back to an
ACC, but it still shows a slightly string-unstable behavior
for small time headways. In addition, the approach can
be employed with predecessor-following CACCs only. In
leader- and predecessor-following CACCs obtaining leader’s
acceleration from the radar is not possible. Wu et al. [25]
tackle the same problem, but in their solution, they predict
missing data using a Kalman filter, which is suitable only
under some regularity assumptions.

Simply switching to ACC might have a negative impact
on safety, as shown by Tu et al. [26] and Qin et al. [27].
Tu et al. [26] show the safety consequences of abruptly
switching from the California PATH CACC [8] to an ACC
in case of communication impairments indicating, as a
potential solution, to limit the size of the platoon, which
is clearly undesirable. The authors highlight the need for
further research in this topic, not only with respect to safe
degradation from CACC to ACC but also on how to switch
back to CACC once communication is reestablished.

2.3 Cooperative Driving Simulation
The analysis is limited to tools that could support our
contribution, since we do no aim at a full survey on vehicular

networking simulators.
The possibility of investigating cooperative driving as a

whole requires either the integration or the bi-directional
coupling of network and vehicular mobility simulators,
enabling the mobility to influence the network behavior
and, most important, vice-versa.

Examples of such frameworks include Veins [28], Eclipse
MOSAIC [29], and iTetris [30]. What differs between these
frameworks are the tools they employ for simulating commu-
nication and mobility. With respect to mobility they all resort
to SUMO [3], even though MOSAIC can support different
simulators as well. With respect to communications, instead,
Veins relies on OMNeT++ [31], iTetris uses ns-3 [32], while
MOSAIC supports both of them.

In platooning-related control theoretic works, the classic
evaluation tool is MATLAB, due to its versatility when it
comes to handling mathematical systems. The downside of
MATLAB-based evaluation is the lack of proper network
modeling. Some studies using MATLAB treat the network
as a simple constant delay [9], [33], but this clearly does not
faithfully depict the behavior of communication standards
such as IEEE 802.11p [34], where the broadcast and period
nature of Vehicle to Vehicle communication (V2V) messages
results in either an immediate delivery (that is, within a few
hundred microseconds) or in a loss.

Modern network simulators interfacing with mobility
ones, indeed put a lot of effort into capturing all the
subtleties of complex wireless networks. This includes
Medium Access Control (MAC) algorithms, transmission
technology details, and propagation models to account for
reflections, building and vehicle shadowing. Conscious of
such needs, we published a concept version of PLEXE [6]
in 20142. This version featured an ACC algorithm and a
CACC (namely the California PATH CACC [8]), a simple
vehicle dynamics model (a first order lag), and the realistic
simulation of the IEEE 802.11p stack thanks to the integration
with Veins [28]. Despite its prototypical nature, PLEXE has
been very successful, empowering many studies beyond
platoon control: from heterogeneous communication e.g.,
with VLC, to platoon maneuvering and formation control, to
vehicular network security and congestion control, to new
simulation tools [10], [13], [21], [35]–[39], and to many others
we cannot mention here.

Another successful Open Source framework for platoon-
ing proposed in the literature is VENTOS [40]. VENTOS
also offers access to ACC and CACC models but, just like
our previously-presented prototype version of PLEXE, it is
monolithically built on top of Veins and restricted to the
evaluation of single technology solutions (namely IEEE
802.11p). Like PLEXE, VENTOS is highly appreciated by
the community for its online availability, but it has not been
actively maintained in the last two years3.

We can also find other sophisticated tools which include
platooning models, such as VISSIM [41]4. In [42], VISSIM is
coupled with ns-3 and MATLAB to study platooning systems.
The main issue is clearly that VISSIM is a proprietary soft-
ware and, in addition, only runs on Windows. Ramezani et al.

2. PLEXE is actively maintained. Version 3.1, the one presented in this
paper, is actively used and fully integrated with SUMO.

3. VENTOS home page: https://maniam.github.io/VENTOS/
4. VISSIM home page: http://www.vissim.com/

4

[43] develop a sophisticated framework for the simulation
and the analysis of truck platooning, with special focus on
traffic flow analysis using the proprietary software Aimsun5,
thus sharing the same limitations as VISSIM.

3 MULTI-TECHNOLOGY CACC TO ACC FALLBACK

We assume vehicles are equipped with multiple commu-
nication technologies, and use them constantly and si-
multaneously to send control information. Technologies
are assumed to be independent of one another, i.e., each
packet generated by a vehicle is sent through all interfaces.
Our Safe Autonomous Switchover Algorithm (SafeSwitch),
the fallback mechanism we propose, relies on the active
monitoring of the state of the communication interfaces. The
basic idea is to monitor the Packet Delivery Ratio (PDR)
of each technology through the others, i.e., if we receive a
frame via a certain technology but not via another we can
automatically and immediately infer that the latter has lost
information. Obviously also interface failure and jamming
indicators can be used, but these local monitors cannot
identify failures, errors, and other impairments happening
at the other communication parties. We describe the details
on how this is implemented in Section 3.1.

When the PDR monitoring procedure detects a failure,
the system modifies the behavior of the vehicles. The actual
action depends on the severity of the issue (e.g., failure of
a single or multiple interfaces), but includes increasing the
inter-vehicle distance and switching to a different control
algorithm, eventually falling back to a standard ACC when
all communications fail. The algorithm performs this in
complete safety as the other backup technologies ensure the
continuous flow of information while the fallback procedure
is in place. It is worth mentioning that in here we only
consider distributed control approaches and not centralized
approaches such as Multi-access Edge Computing (MEC)-
based solutions [44], because such approaches do not rely on
V2V but on Vehicle to Infrastructure communication (V2I).
Any other distributed CACC approach (including for exam-
ple Model Predictive Control (MPC) [45]) can be considered
by SafeSwitch. Regardless of the control mechanism, vehicles
need to exchange data for the system to properly work and
exploiting redundancy is a natural way to improve reliability.
Section 3.2 describes the details of the mechanism, while
Section 3.3 describes the gap control procedure that adapts
the inter-vehicle distance before switching to a different
control algorithm to ensure safe and stable transition.

3.1 Monitoring of Communication Technologies
The technologies we consider are IEEE 802.11p, VLC, and LTE
C-V2X (Mode 3, under coverage, thus subject to handovers),
but the approach is generic and can be modified to account
for different, additional, or fewer interfaces. Details on the
communication technologies are out of the scope of this
contribution. The monitoring process exploits a ring buffer
to store information about frames being received or lost,
such as sequence number, arrival time, etc. The ring buffer is
used to estimate the PDR, thus the methodology we propose

5. Now a division of Siemens, Aimsun has also been extensively used
beyond the specific paper we analyzed; see https://www.aimsun.com/

Listing 1 Ring buffer management.
1: procedure INIT(nInterfaces, bufferSize)
2: latestSeq← −1
3: B ← RingBuffer(nInterfaces, bufferSize)
4: procedure ONFRAME(seq, intf)
5: isNewFrame← seq > latestSeq
6: if isNewFrame then
7: for s = latestSeq + 1 to seq do
8: for all interfaces i do
9: Bi,s ← LOST

10: Bintf,seq ← RECEIVED
11: latestSeq← seq
12: else
13: Bintf,seq ← RECEIVED

is completely technology independent. With respect to the
communication topology we assume broadcast links because
of the control algorithms being considered (PATH and Ploeg).
PATH requires all followers to receive information from
the leader, while both require information of the preceding
vehicle. This information includes acceleration and speed,
while relative distance is obtained through a radar sensor. As
VLC works only in Line of Sight (LOS) conditions, vehicles
propagate leader messages towards the tail of the platoon.
All vehicles send data with a rate of 10 Hz.

Listing 1 shows the pseudo-code that manages the ring
buffer when receiving frames from a specific neighbor. Each
vehicle runs an instance of the algorithm for every vehicle
whose communications are monitored (e.g., two instances to
monitor the platoon leader and the preceding vehicle). An
interface is considered failed if either of the two monitors
“declares” it as failed. The algorithm keeps track of the latest
known frame sequence number, which is initialized to −1
assuming sequence numbers start from zero6. In addition,
the ring buffer B keeps track of bufferSize frames for all the
nInterfaces interfaces.

Each time a frame with sequence number seq is received
from interface intf, the algorithm checks the value of the
sequence number against the one of the most recently
received frame. If it is greater, the received frame is a new
one and the algorithm sets all the frames in between (if
any) as lost for all interfaces. The received frame is set as
received for the interface intf and lost for all the others, and
the variable latestSeq is updated accordingly. If the sequence
number of the received frame is smaller or equal than the
latest known one, the frame is marked as received for the
specific interface if seq falls inside the ring buffer, otherwise
it is simply discarded as a duplicate frame. To compute the
PDR for each technology it is sufficient to count the frames
marked as “received” over the size of the ring buffer.

Figure 1 depicts the graphical evolution of the ring buffer
for a better understanding. Figure 1a shows the ring buffer
potential status after receiving frames up to frame number 3.
In particular, the buffer indicates that frame number 2 has
not been received from the C-V2X interface, while all others
have been correctly received. Figure 1b shows how the state
of the ring buffer changes when receiving frame number 5

6. This is just for the sake of clarity in the paper. The actual implemen-
tation does not depend on this assumption.

5

802.11p

C-V2X

VLC

seq. nr. 1 2 3

(a) after reception of frame 3

802.11p

C-V2X

VLC

seq. nr. 1 2 3 4 5

(b) after reception of frame 5

Figure 1. Graphical evolution of the ring buffer monitoring frame recep-
tions.

active failed

PDR < threshold :
signal failure

recovered :
signal recovery

PDR < threshold :
cancel(recovered)

PDR ≥ threshold :
schedule(∆t, recovered)

Figure 2. Finite state machine driving the PDR monitor of an interface.

from the VLC interface after frame number 3. The algorithm
assumes that frame number 4 is lost on all interfaces while 5
is lost on the 802.11p and the C-V2X interfaces. This view is
clearly temporary. If the vehicle then receives frame 5 from
the 802.11p interface it will update the buffer accordingly.

To inform SafeSwitch about communication failures,
we continuously monitor the PDR of each communication
technology and, when this crosses a certain threshold, we
notify the fallback application following the Finite State
Machine (FSM) in Figure 2. The application is immediately
notified as soon as the PDR falls below the threshold but, to
signal its recovery, the PDR must be higher than the threshold
for a certain period of time (∆t in the picture).

3.2 SafeSwitch Fallback System
SafeSwitch is designed through an FSM whose transitions
are driven by network failures and recoveries signaled by
the PDR monitor defined in Section 3.1 plus additional
events. Figure 3 depicts a sample FSM that considers three
simultaneous communication interfaces. The approach can
easily be extended (or reduced) to additional (or to fewer)
communication technologies. We assume each follower in
the platoon to implement such an FSM and the leader to be
controlled independently, e.g., driven by a classic ACC, as
commonly assumed in the literature [46].

The FSM considers two different numbered states, i.e., Fi

(follow) and Gi (gap control). Fi states indicate that a vehicle
is currently in a stable following state, driven by a certain
control algorithm. The index i accounts for the number of
actively working communication interfaces in that state. Each
state Fi is associated with a specific control algorithm Ci

which, in turn, is associated with a desired inter vehicle gap
gi = hi ·v+di, where hi is the time headway, v is the cruising
speed, and di is the stand-still distance.

Figure 3. Finite state machine driving SafeSwitch.

Gi states describe an intermediate phase where vehicles
switch to a different control mode (we call it gap control,
Section 3.3) where vehicles increase (or decrease) their
inter-vehicle distance before switching to a different control
algorithm.

Assuming the vehicle is with N communication inter-
faces, the state transitions in Figure 3 fall into seven possible
categories:

1) Fi → Gi−1, i = 2, . . . , N : failure of a communication
interface in a stable following state. The vehicle shifts
from a follow state to a gap control state, where the inter-
vehicle distance is progressively increased preparing the
switch to a different control algorithm;

2) Gi → Gi−1, i = 2, . . . , N : failure of a communication
interface while the gap control algorithm is adapting the
inter-vehicle distance. The vehicle simply changes the
target distance accordingly. The gap control algorithm
brings the vehicle to the new target distance;

3) Fi → Gi+1, i = 1, . . . , N − 1: recovery of a communica-
tion interface in a stable following state. The gap control
algorithm reduces the inter-vehicle distance preparing
the switch to a different control algorithm;

4) Gi → Gi+1, i = 1, . . . , N − 1: recovery of a commu-
nication interface while the gap control algorithm is
adapting the inter-vehicle distance. The target distance
is changed accordingly and the gap control algorithm
runs on the new distance;

5) Gi → Fi, i = 0, . . . , N : the target distance is reached
and the vehicle can safely switch to the new control
algorithm, or to the ACC, or even to manual drive if
foreseen by the fallback procedure;

6) F1 → G0: failure of the last available communication
interface. This event can only be measured by means of
a timeout, because there is no information from other
interfaces. The gap control algorithm brings the vehicle
to the correct distance to activate a standard ACC or to
commute to manual driving;

7) G1 → G0: failure of the last available communication
interface while performing a gap control procedure.
Again, this event can only be measured by means of
a timeout and the gap control algorithm brings the
vehicle to the correct distance to activate a standard

6

ACC or to commute to manual driving. Note that states
G0 and F0 are deemed an irrecoverable state of the
system, requiring platoon formation to re-start, hence
no transitions to higher states exist in the state machine.

There is an additional case we do not consider here,
i.e., a complete failure of the electronics that cause all
the communication interfaces to fail simultaneously. How
to tackle such a catastrophic situation is more similar to
handling engine or brake failure, and it is outside the scope
of our work. A similar case occurs when interfaces fail
almost immediately one after the other. In such a case,
the protocol would still handle the failures by transitioning
between Gi states. The behavior of the system would depend
on the severity of the failure though, because a failure is
triggered when the PDR falls below a certain threshold. If the
technologies together can still provide a minimum number of
necessary packets, the protocol can safely bring the vehicles
to a different state.

Listing 2 formally describes the actions undertaken
during the navigation of the FSM of Figure 3. The system con-
siders the variable i, which indicates the number of currently
active interfaces, initialized to N . Upon initialization (Line 1),
the system sets the active state to FN , which corresponds to
driving using the control algorithm CN (and thus an inter-
vehicle gap gN). In addition, the leader of the platoon is
set to be the first vehicle (vehicle 0) and we initialize some
variables that we require to temporarily change the leader in
some cases. setControllerGap(h, d) is a generic function used
to set the inter-vehicle distance to h · v + d for all CACCs.

When an interface fails (Line 9), the system starts the gap
control to change the inter-vehicle distance to gi−1, switches
to state Gi−1, and decreases the number of active interfaces.
In addition, if we are about to switch from a leader-following
to a predecessor-following controller (e.g., from the PATH
CACC to an ACC), the vehicle elects itself as temporary
leader. This flag is included within each beacon periodically
sent by the vehicle.

Upon recovery of an interface (Line 15), the system starts
the gap control to increase the distance to gi+1, switches to
state Gi+1 and sets to i+1 the number of active interfaces. It
also immediately changes the active control system to Ci+1

setting the target distance to the current one. This is required
because when switching to a state with a higher number of
interfaces we might be reducing the inter-vehicle distance
down to a value that can cause the current control system to
become string-unstable (e.g., switching from ACC to CACC).

When the gap control procedure ends bringing the
distance up (or down) to the target (Line 27), the system
disables the gap control and switches to the control algorithm
Ci used within state Fi. In addition, when switching to
a leader-following controller, the vehicle stops advertising
itself as temporary leader.

The remaining case occurs when the last interface fails
(Line 33), which we simply handle as a standard failure
switching to G0. We can improve safety by choosing C1 and
C0 to be the same algorithm (in particular a classic ACC
which requires no communication) or by having C1 be a
CACC using the same spacing policy as C0. This increases
the chances that vehicles are already traveling at the proper
inter-vehicle distance and that the state switch is purely

Listing 2 SafeSwitch actions on events.
1: procedure INIT
2: i← N
3: state← Fi

4: activeController← Ci

5: setControllerGap(hi, di)
6: currentLeader← 0
7: tempLeaders← {0}
8: becomeTemporaryLeader← false
9: procedure FAILURE

10: startGapControl(hi−1, di−1)
11: state← Gi−1

12: if leaderBased(Ci) and not leaderBased(Ci−1) then
13: becomeTemporaryLeader← true
14: i← i− 1
15: procedure RECOVER
16: if i = 0 then
17: return
18: if usesTimeHeadway(Ci+1) then
19: h← (gi − di+1)/v
20: setControllerGap(h, di+1)
21: else
22: setControllerGap(0, gi)
23: activeController← Ci+1

24: startGapControl(hi+1, di+1)
25: state← Gi+1

26: i← i+ 1
27: procedure GAP REACHED
28: state← Fi

29: activeController← Ci

30: setControllerGap(hi, di)
31: if leaderBased(Ci) then
32: becomeTemporaryLeader← false
33: procedure TIMEOUT
34: FAILURE()
35: procedure ONTEMPORARYLEADER(veh, tempLeader)
36: if not isAhead(veh) then
37: return
38: if tempLeader = true then
39: tempLeaders = tempLeaders ∪ {veh}
40: else
41: tempLeaders = tempLeaders \ {veh}
42: currentLeader← max(tempLeaders)

logical, only indicating a complete communication failure,
but without consequences on safety.

The last procedure (Line 35) is not part of the FSM, but
describes how vehicles handle the reception of a frame from a
vehicle having the temporary leader flag enabled (or disabled).
Basically, the transmitting vehicle is added to or removed
from the list of temporary leaders (depending on the value
of the flag) and the one closer to the receiving one is chosen
as its current leader.

3.3 Gap Control System
The last subsystem we need to define is the gap control pro-
cedure. The idea is to progressively modify the ACC/CACC
desired gap to smoothly approach the new target one.

7

Switching from the current gap to the target one immediately
might cause uncomfortable accelerations. Instead, we define
a gap adaptation rate ∆g in m/s and periodically update
the ACC/CACC gap every ∆t seconds. We can directly
use the gap adaptation rate ∆g to update the inter-vehicle
distance for CACCs using a constant-spacing gap policy. For
controllers using a constant time-headway spacing policy,
we need to adapt the time headway with a rate ∆h (in s/s)
that results in an actual distance change rate equal to ∆g
solving the following equation for ∆h:

((h+∆h∆t)v + d)− (hv + d) = ∆g∆t. (1)

In Equation (1), h is the time headway, v is the current
speed, while d is the stand-still distance. The left side of the
equation describes how much the distance changes over the
time period ∆t, which must match the rate ∆g over the same
time period. Solving the equation, we obtain

∆h =
∆g

v
. (2)

Listing 3 describes the gap control procedure. SafeSwitch
invokes the procedure indicating a target time headway
and stand-still distance. For a constant-gap controller, ht =
0. Using these values, it computes the target distance gt.
Depending on whether a time-headway or a constant-gap
spacing policy is used, the procedure initializes the variable h
and g in a different way. When using a time-headway spacing
policy, the procedure adapts the time headway h using the
rate ∆h: it thus initializes h with the current time headway,
while g is used to store the stand-still distance (which is kept
constant). In case of a constant-gap spacing policy, instead,
the procedure adapts the fixed distance g using the rate ∆g:
it thus initializes g with the current distance, while h is set
equal to ht (0). In both cases, the procedure keeps track of
whether it is trying to increase or decrease the gap to decide
whether the procedure is completed or not.

The algorithm progressively adapts the distance by
periodically calling the updateGap procedure (Line 16). The
procedure first checks whether the values h or g have reached
their target value (function isGapControlCompleted); if this is
the case, the gap is set to the final value and the procedure
waits for the vehicle to actually reach the target distance
(isGapReached). When this happens, SafeSwitch is notified the
end of the procedure, thus triggering the switch between a
Gi and an Fi state.

If the gap control procedure is not completed, either h
or g are increased or decreased using the rates ∆h or ∆g,
respectively (Lines 31 and 33).

4 SIMULATION: REQUIREMENTS AND DESIGN

The study of CACC fallback and dynamic management
described in Section 3 requires a comprehensive and modular
simulation framework. As discussed in Section 2.3 none of
the free Open Source frameworks available can support this
research, thus we decided to enhance the PLEXE prototype
presented in [6] and make it an integral part of this contribu-
tion. We start our discussion from Figure 4, which shows the
structure of the framework and its components. The figure
highlights PLEXE core functionalities with green-filled boxes

Listing 3 Gap control algorithm.
1: procedure STARTGAPCONTROL(ht, dt)
2: v ← curSpeed
3: gt ← ht · v + dt
4: increasingGap← true
5: if using time headway then
6: g ← dt
7: h← (curDistance− dt)/v
8: if ht < h then
9: increasingGap← false

10: else
11: g ← curDistance
12: h← ht

13: if gt < g then
14: increasingGap← false
15: updateGap()
16: procedure UPDATEGAP
17: v ← curSpeed
18: ∆h← ∆g/v
19: gt ← ht · v + dt
20: if isGapControlCompleted() then
21: if using time headway then
22: h← ht

23: else
24: g ← gt
25: setControllerGap(h, g)
26: if isGapReached() then
27: gapReached()
28: return
29: else
30: if using time headway then
31: h← h+ sgn(ht − h) ·∆h ·∆t ▷ see footnote
32: else
33: g ← g + sgn(gt − g) ·∆g ·∆t

34: setControllerGap(h, g)
35: schedule(∆t, updateGap())
36: procedure ISGAPCONTROLCOMPLETED
37: if using time headway then
38: if increasingGap then
39: return h ≥ ht

40: else
41: return h ≤ ht

42: else
43: if increasingGap then
44: return g ≥ gt
45: else
46: return g ≤ gt
47: procedure ISGAPREACHED
48: if increasingGap then
49: return curDistance ≥ gt
50: else
51: return curDistance ≤ gt

∗ The sign function is defined as sgn(x) = 1 if x ≥ 0,−1 otherwise.

(or light gray in case of BW printing), while white boxes
indicate external modules.

With respect to mobility, the top box shows the main

8

SUMO

TraCI

ACC ...CACC1

Control systems

ENGINE1
...ENGINE2

Vehicle dynamics

control input

vehicle speed

SUMO core mobility

si
m

ul
at

io
n

st
ep

data passing dynamic linking

OMNeT++

Veins

Veins VLC

INET

SimuLTE

Applications

Maneuvers

Protocols

Scenarios

PLEXE

Traffic helpers

Figure 4. Structure of the PLEXE simulation framework.

components of SUMO. What PLEXE adds to SUMO are
control algorithms and vehicle dynamics models. Control
systems are implemented within a new car-following model,
alternative to the ones that implement human-behavioral
models such as IDM or Krauss. Car-following models are
invoked each time step by the SUMO mobility logic for
each vehicle to compute the speed it will follow in the
next simulation step depending on the state of the vehicle
itself, the surrounding environment, and additional external
variables. The state of the vehicle includes information
such as the current speed, acceleration, and position, the
surrounding environment is represented by other vehicles
or traffic lights, while external variables (especially for
CACC) include data received via wireless communications.
PLEXE offers one ACC algorithm [47, Chapter 6] and four
CACCs [8], [9], [11], [48]. Research based on PLEXE lead to
the implementation of additional ones. We plan to release
these algorithms once their implementation is stable.

Independently of the chosen control algorithm, the output
is the control input, i.e., the desired acceleration of the vehicle.
The desired acceleration is passed to the vehicle dynamics

module, which emulates the response of the vehicle to the
control action. The simplest possible model available in
PLEXE is a first order lag with a time constant τ . A first
order lag, however, does not consider the physical limits of
the vehicles. For example, a vehicle might have a maximum
acceleration that depends on engine power, current gear ratio,
aerodynamic drag, etc. For this reason, PLEXE also offers an
engine model that considers mechanical specifications of the
vehicle to compute its maximum acceleration, deceleration,
and speed. We do not detail the model here but just give
a brief description, as the focus of the work is on the
communication-related insights that PLEXE enables. The
output of the car-following model is a speed that is passed
to the mobility core to update vehicle’s speed and position.

With respect to network modeling, all the involved
software modules are based on the OMNeT++ Discrete
Event Simulation (DES) framework [31]. For coupling the
mobility and the network simulation, SUMO offers the
Traffic Control Interface (TraCI). Through this interface it
is possible to control the simulation, obtain information
about any object (vehicles, traffic lights, pedestrians, . . .),
and change their attributes. In particular, Veins exploits the
interface to track the presence and position of all vehicles
and makes this information available to its own and other
networking models. PLEXE exploits and extends the TraCI
interface as well, enabling the exchange of state information
with the road traffic simulation models in SUMO. This
includes, for example, transferring data to the control system
(e.g., information about surrounding vehicles used in the
computation of the control action) or retrieving vehicle data
(e.g., information to be sent to neighboring vehicles). The
website lists all the APIs that PLEXE offers to the users, which
we clearly do not detail here. By itself, as shown in Figure 4,
PLEXE offers tools to implement maneuvers, to control traffic
and platoons, to define scenarios, protocols, and applications.
These blocks characterize PLEXE and distinguish it from all
other tools, thus we explain them in detail in Section 4.1.

PLEXE can interface external tools to provide additional
functionalities, for example, to investigate the impact of a
particular communication technology on the performance of
the control system. In its prototype design PLEXE extended
Veins, which provides the coupling with SUMO and models
for the IEEE 1609.4 and IEEE 802.11p vehicular networking
standards. When a user downloaded PLEXE he/she in fact
downloaded Veins with additions to the original code base.
This negatively affected both maintainability, as upgrades
to the main Veins release were difficult to integrate, and the
integration of additional tools.

In the new design, components are dynamically linked
against each other and so, for example, PLEXE simply uses
Veins as an external library, and this is the case for all
the additional modules that PLEXE uses. The Veins VLC
module [49], which provides propagation and commu-
nication models for LED-based V2V communications, is
one of these models, fundamental because the interest for
this communication technology is continuously increasing.
There is no need to stress the role of cellular networks in
cooperative driving applications. PLEXE thus couples with
SimuLTE [50], which provides models for 4G LTE. This
includes both the uplink/downlink transmission standard,
typically used in cloud-based or MEC applications, and the

9

new C-V2X Mode 3 that supports direct V2V communication
under the coordination of the eNodeB (eNB) in the release
14 of the standard [51].

The library-like structure of the whole framework makes
it easy to plug-in new tools as they become available. As an
example, to test the ease of integration, we combined PLEXE
with a tool for simulating C-V2X Mode 4 (OpenCV2X [52]),
which provides direct V2V communication through cellular
networks without the coordination of an eNB. It will thus be
easy to integrate OpenCV2X as soon as a stable version is
released, or newly released frameworks such as Simu5G [53].
Here we describe its main features, while in the additional
material we discuss its usage and flexibility.

4.1 Implementation details

As shown in Figure 4, far from just gluing all the network
and mobility modules together, PLEXE offers core function-
alities for the modeling and the analysis of cooperative
driving and platooning systems. In the next subsection we
describe core functionalities from a high-level perspective,
while implementation-specific details can be found in the
additional material.

4.1.1 Core functionalities
PLEXE defines a set of modules dedicated to set up coopera-
tive driving simulations. One core feature is provided by the
traffic helpers block, which is composed of traffic managers
and position helpers.

Traffic managers are responsible to initialize the sim-
ulation from a traffic perspective (injecting vehicles into
the simulation) while position helpers are used by vehicles
to understand their status and the role they have within
platoons. In particular, a position helper can be queried by a
vehicle to know whether it is within a platoon or not, if it is
a leader or a follower, which position it occupies inside the
platoon, which are the other members, what is the id of the
platoon, etc.

Traffic managers are particularly useful to insert pre-
formed platoons in a steady-state configuration and speed-
up simulations. While inserting the platoons, information
about them is stored in a data structure, which is later
accessed by the position helpers for initialization. Once
initialized, each position helper (there is one for each vehicle)
becomes independent from the others to represent the local
knowledge of the vehicle. This is fundamental for studying
cooperative driving maneuvers, where the knowledge of a
vehicle depends on the information received from the com-
munication protocol. Packet losses can lead to inconsistent
views and the simulator must be capable of reproducing
such inconsistencies. As an example, imagine the scenario in
which two consecutive platoons merge together. At the end of
the maneuver, the followers of the second platoon will need
to change their leader upon receiving an update message. If
such message is lost for some vehicles and the protocol has
not been designed to handle such faults, some vehicles will
follow the wrong leader. PLEXE enables the analysis of such
inconsistencies, allowing also protocol verification.

The second building block is represented by scenarios.
Scenarios model the high-level behavior of vehicles. Within
its examples, PLEXE offers some classical ones that include

emergency braking and changing the speed pattern of a
platoon leader.

This is in contrast with applications, where vehicles’ be-
havior is influenced by messages received from the network.
The simplest form of application implemented in PLEXE is
the one that processes incoming frames to check whether
they encapsulate data to feed to the CACCs. Clearly this is a
kind of message influencing vehicle’s behavior.

Another particular type of application is represented by
maneuvers. Although maneuvers are effectively applications,
they deserve a dedicated spot due to the vast amount of
research in the field. In the end, cooperative driving deals
with the coordination of groups of vehicles. Maneuvers in
PLEXE are hierarchically organized, meaning that they all
derive from a base class which offers the same methods but
different implementations. PLEXE offers two sample imple-
mentations: a join-at-back and a merge-at-back maneuver.
The join at back maneuver enables a free vehicle to become
part of an already existing platoon, joining as the last one.
The merge at back is conceptually similar, but, in this case, it
is the leader of a platoon that joins a platoon at the back and
then instructs its followers to change their leader to be the
one of the front platoon.

The final building block consists of protocols. In PLEXE,
a protocol identifies a specific way of exchanging beacons
that encapsulate control data. This is another active research
field, as control information should be frequently and timely
delivered to the control system in order to guarantee safety.
Yet, in highly congested scenarios, packet losses might
hinder correct frame delivery. PLEXE offers two sample
implementations on top of IEEE 802.11p. A classic protocol
sending frames with a frequency of 10 Hz and a slotted
protocol proposed in [1] where vehicles within a single
platoon divide each beacon interval in a number of slots
equal to the number of vehicles in the platoon, each one
sending its beacon in the slot number corresponding to
their position inside the platoon. For the latter protocol,
they exploit leader’s beacons for synchronization.

4.1.2 Validation Example
The full validation of a tool like PLEXE is a constant (and
never ending) endeavor. We offer here a simple sanity
check based on Ploeg’s CACC [9] coupled with IEEE 802.11p
and VLC, showing the difference induced in the platoon
behavior by the two technologies. The vehicles travel with
an average speed of 100 km/h with the leader changing its
speed between 95 and 105 km/h with a frequency of 0.2 Hz.
Setting the CACC parameters to have a time headway of 0.5 s
and a stand-still distance of 2 m, the distance between platoon
vehicles oscillates around 15.9 m. Table 1 lists simulation
parameters.

Figure 5 shows the inter-vehicle distances measured
during the simulation. With respect to IEEE 802.11p, the
graph shows the theoretically expected behavior of Ploeg’s
algorithm [9], as with only 8 vehicles 802.11p causes no
losses and the control system works in perfect conditions.
The CACC progressively smoothens the oscillations and it is
possible to observe the delay in the oscillation introduced by
the time-headway spacing policy. When using VLC, instead,
due to the unreliability of the interface, several packets can
be consecutively lost, causing instability and large distance

10

(a) IEEE 802.11p
14

15

16

17

18
d
is
ta
n
ce

[m
]

(b) VLC

100 105 110 115 120 125

10

12

14

16

18

d
is
ta
n
ce

[m
]

time [s]

Figure 5. Inter-vehicle distances for a platoon of 8 cars using Ploeg’s
CACC under a sinusoidal disturbance and different communication
technologies, following conventions of Table 1. We use different y-axis
ranges on purpose to better show the behavior of the CACC in different
conditions.

Table 1
Road traffic simulation parameters and legend used in all the plots.
Failure and recovery event symbols are shown in black here but are

colored in the plots to indicate the vehicle involved.

Parameter Value

m
ob

ili
ty

Cruising speed 100 km/h
Braking vehicle deceleration 7 m/s2

Post-braking speed 30 km/h
Platoon size 8 cars
Simulation time step 10 ms
Min/max acceleration −9 to 2.5 m/s2

co
nt

ro
lle

rs

Engine lag τ 0.5 s
ACC λ 0.1
PATH C1 0.5
PATH ωn 0.2
PATH ξ 1
PLOEG kp 0.2
PLOEG kd 0.7

V0

V4

V1

V5

V2

V6

V3

V7

failure recovery braking handover

errors that can be observed around 115 s of simulation. These
simple results show the proper implementation of the CACC
algorithms and the correct coupling between vehicle and
communication dynamics as well as the importance thereof.

5 PERFORMANCE EVALUATION

We analyze the performance of SafeSwitch in different scenar-
ios, which include artificially-generated and realistic failures,
as well as emergency braking events. In the following, for
the sake of space, all graphs will refer to the same legend,
depicted in Table 1 together with mobility and control
parameters common to all scenarios. Besides colored lines,
which represent quantities of a specific value, we also show
failure and recovery events marked by a × and a + symbol,
respectively. The color of the symbol indicates on which
vehicle the event occurred. Vertical dashed lines indicate the
occurrence of an emergency braking event, while vertical
gray bands indicate a handover period of the platoon, i.e.,
from the time the first vehicle begins the handover to the
time the last one terminates it. In general, we assume that

Table 2
Configuration of the state machines (scenarios 0 to 3).

SafeSwitch Naïve Fallback

i Ci hi di Ci hi di

0 ACC 1.2 s 2 m ACC 1.2 s 2 m
1 PLOEG 1.2 s 2 m PATH 0 s 5 m
2 PLOEG 1.2 s 2 m — —
3 PATH 0 s 5 m — —

vehicles run PATH in F3, Ploeg with different parameters in
F2 and F1 and a standard ACC in F0.

We compare the full system with the three communication
technologies defined in Section 3 against a naïve baseline ap-
proach (the only possible approach if a single communication
technology is available): When a failure occurs the system
immediately falls back to ACC with a transition F1 → F0

(and vice-versa on recovery). We maintain the temporary
leader mechanism for a fair comparison.

5.1 Benchmark with single failures
We start the performance evaluation with the following basic
scenarios based on crafted single technology failures:
Scenario 0: single failure and recovery on a single vehicle in

the middle of the platoon;
Scenario 1: single failure on all members of the platoon;
Scenario 2: single failure and recovery on a single vehicle in

the middle of the platoon with an emergency braking
occurring after the failure;

Scenario 3: single failure on all members of the platoon with
an emergency braking occurring after the failure.

To simulate the emergency braking event, we inject a vehicle
in front of the platoon that, at a certain instant, abruptly
decelerates down to a lower speed. Table 2 lists the parameter
of the two fallback mechanisms. For SafeSwitch, the failure
will trigger the transitions F3 → G2 → F2, while for the
naïve fallback the transition is obviously F1 → F0. For
the sake of comparison with the naïve approach, we set
h2 = 1.2 s and d2 = 2m for SafeSwitch to match ACC
values. The choice of using PATH in F3 and Ploeg in F2 and
F1 in SafeSwitch comes from the fact that PATH is more
“demanding” in terms of communication requirements as it
needs data from both leading and preceding vehicles and it
employs a constant-spacing policy. This choice, however, can
be customized as SafeSwitch can simply be reconfigured if a
controller assignment is found to be more appropriate.

Figures 6 to 9 show the acceleration and the inter-
vehicle distance measured in the four scenarios. Starting
with Figure 6 (single vehicle failure) it is immediately
clear that our proposed approach behaves more gently,
with unperceivable accelerations. This is not only good for
passengers’ comfort but also for fuel efficiency. With the naïve
approach, the acceleration is larger but not so uncomfortable,
as the controller parameters normally used in the literature,
that we replicate here, limit the impact of large distance error
on the acceleration, but this can also have negative impacts
on safety as we will see shortly.

When one technology fails for all vehicles (Figure 7) the
situation is similar but PLEXE highlights a problem in both

11

(a) acceleration, naïve fallback
-3

-2

-1

0

1

2
ac
ce
le
ra
ti
on

[m
/s

2
]

(b) acceleration, SafeSwitch
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) distance, naïve fallback
0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

(d) distance, SafeSwitch

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

Figure 6. Comparison of acceleration and inter-vehicle distances for
scenario 0 (single vehicle failure and recovery), following conventions of
Table 1.

procedures. Looking at the acceleration profiles, it can be
seen that the deceleration becomes larger and larger towards
the tail of the platoon. This is due to the fact that each
vehicle is increasing the gap to its predecessor, so it needs to
compensate for its own error plus the error induced by its
predecessors. In a large string of vehicles, this might cause
unsafe situations. Moreover, there is an overshoot (vehicles
accelerate again) before reaching stability. The sophisticated
analysis empowered by PLEXE allows spotting the issue and
thinking about possible solutions (e.g., as the problem here
is caused by each vehicle independently increasing their
inter-vehicle gap, the problem might be solved with a more
coordinated approach exploiting remaining communication
technologies). In any case the behavior of SafeSwitch is much
better than the naïve fallback, highlighting the need for
multi-technology resilience and sound fallback mechanisms
for safety. Both in this case and in Figure 6, it is important to
notice that the behavior of SafeSwitch is qualitatively different
from the naïve one, highlighting that probably the abrupt
fallback from cooperative to autonomous driving is not safe.

When considering an emergency braking immediately
after a failure (Figures 8 and 9) the behavior of the two
fallback mechanisms changes dramatically. With respect to
the naïve approach, regardless of whether the failure is for a
single vehicle or for multiple vehicles, a collision occurs, thus
we do not report the relative graphs as they are useless. This
is the consequence of using a small λ for the ACC7 which, in

7. The λ parameter weights the distance error in the control formula.

(a) acceleration, naïve fallback
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) acceleration, SafeSwitch
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) distance, naïve fallback
0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

(d) distance, SafeSwitch

0 20 40 60 80 100 120

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

Figure 7. Comparison of acceleration and inter-vehicle distances for
scenario 1 (multiple vehicles failure), following conventions of Table 1.

(a) acceleration, SafeSwitch-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, SafeSwitch

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 8. Acceleration and inter-vehicle distances for scenario 2 (single
vehicle failure and recovery with emergency braking) for SafeSwitch,
naïve fallback results in crashes (see the additional material), following
conventions of Table 1.

the first two scenarios, results in smooth deceleration when
switching controllers, but induces a slow reaction to the
sudden deceleration of the platoon leader. With SafeSwitch,
instead, the vehicles are capable of decelerating avoiding
the collision and reaching the target inter-vehicle gap. The
graphs again show the problem highlighted by the first two
scenarios, i.e., vehicles at the tail of the platoon are braking
more than the one at the head. While the heading vehicle is
braking with a 7 m/s2 deceleration, the scenario 3 reaches a
maximum of about 8 m/s2.

12

(a) acceleration, SafeSwitch-8

-6

-4

-2

0

2
ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, SafeSwitch

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 9. Acceleration and inter-vehicle distances for scenario 3 (multiple
vehicles failure with emergency braking) for SafeSwitch, naïve fallback
results in crashes (see the additional material), following conventions of
Table 1.

5.2 Multiple artificial failures

We now focus on SafeSwitch only, still considering artificial
failures, in particular multiple consecutive ones. We maintain
the parameters defined in Table 1 but we use the parameters
in Table 3 to configure the FSM, reducing the headway
time for the Ploeg controller to 0.5 s in F2 as commonly
considered when communications work. We define the
following scenarios to analyze:
Scenario 4: multiple failures and recoveries to a single

vehicle in the middle of the platoon;
Scenario 5: multiple failures to all members of the platoon;
Scenario 6: multiple failures and recoveries to a single

vehicle in the middle of the platoon with an emergency
braking occurring after the second failure;

Scenario 7: multiple failures to all members of the platoon
with an emergency braking occurring after the second
failure.

We consider two variants for scenario 7. In the first one,
failures occur spaced in time: vehicles have enough time to
adapt to the new gap, performing the G2 → F2 transition
before the occurrence of the second failure. In the second,
instead, the second failure occurs 1 s after the other: vehicles
thus perform the G2 → G1 transition. We do not consider the
additional variant with three almost simultaneous failures as
the behavior would simply correspond to the one observed
with the naïve fallback, i.e., immediately switching to ACC-
only control. We report here the results for scenarios 4 and 7,
while those for scenarios 5 and 6, all positive, are included
in the additional material to avoid repetitive patterns.

Figures 10 and 11 show the results, which are all similar to
the ones observed for single failures. After the second failure
in Figure 10 the acceleration pattern is slightly different from
the first failure but this is due to a different fallback CACC. In
the top two plots of Figure 11 (failure of different interfaces
spaced in time), instead, the amplification phenomenon
observed in Figure 9 disappears and the reason is the
combination of the spacing policy and the braking event.
As the Ploeg controller uses a time-headway spacing policy,
the target distance depends on the speed, but as the vehicles
slow down their target distance decreases, automatically

Table 3
Configuration of SafeSwitch (scenarios 4 to 7).

i Ci hi di

0 ACC 1.2 s 2 m
1 PLOEG 1.2 s 2 m
2 PLOEG 0.5 s 2 m
3 PATH 0 s 5 m

Parameter Value

PDR thr. (802.11p) 0.8
PDR thr. (C-V2X) 0.8
PDR thr. (VLC) 0.6
recover time ∆t 10 s
ring buffer size 10 packets

(a) acceleration, scenario 4
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 4
0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

Figure 10. Acceleration and inter-vehicle distances for scenarios 4:
Multiple failure and recovery on a single vehicle, following conventions of
Table 1.

reducing the spacing errors and requiring less deceleration
effort to correct it. Again, this is a unique insight provided
by PLEXE, which highlights its importance and versatility
in such complex analyses. When the failures of different
interfaces occur almost simultaneously (bottom two plots of
Figure 11), the behavior is comparable to the one in scenario
3 (Figure 9) because PATH is used to reduce the gap down to
the value required for driving in the state F1. Still, the system
manages to bring the vehicles to the desired inter-vehicle
distance without causing collisions.

5.3 Realistic failures

As a final analysis, we present the behavior of SafeSwitch
under realistic failure models for the three communication
technologies. We simulate an oval-shaped (two long straights
connected by long 180-degree curves) circuit where the
platoon travels continuously. The circuit has a length of
roughly 3.2 km. At the two curves we install two LTE
base stations that manage the resource allocation for the
sidelink (vehicle to vehicle) communications. As vehicles
continuously pass from the coverage of one base station to
the other, the vehicles perform handovers which might cause
packet losses.

Close to one base station, two static IEEE 802.11p nodes
continuously exchange messages, causing interference when
the vehicles are in their proximity. The nodes use a physical
bitrate of 6 Mbit/s and generate a traffic load of roughly
4 Mbit/s, almost saturating the channel. Finally, with re-
spect to VLC, vehicles implement a forwarding mechanism
for frames to the head and the tail of the platoon, as
communication is only possible between adjacent vehicles
and strictly in line of sight. If a frame is lost, its content

13

(a) acceleration, scenario 7, 1st variant-8

-6

-4

-2

0

2
ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 7, 1st variant
0

5

10

15

20

d
is
ta
n
ce

[m
]

(c) acceleration, scenario 7, 2nd variant-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(d) distance, scenario 7, 2nd variant

0 50 100 150 200

0

5

10

15

20

d
is
ta
n
ce

[m
]

time [s]

Figure 11. Acceleration and inter-vehicle distances for scenario 7:
progressive complete failure for all vehicles with an emergency brake,
following conventions of Table 1. The top two plots refer to the first variant
(failures of different interfaces spaced in time) while the bottom two refer
to the second variant (almost simultaneous failure of multiple interfaces).

is lost for all the subsequent vehicles in the direction of
propagation. We do not list the complete set of parameters
for all the technologies as we use the default ones provided
by SimuLTE, PLEXE/Veins, and Veins VLC: the aim of our
work is showing the performance of SafeSwitch and the
unique insights PLEXE can provide rather than performing
a parameter tuning study. Finally, the right-side of Table 3
lists the parameters of the PDR monitor (Section 3.1). We
repeat the simulations 10 times to obtain different random
loss patterns but, for the sake of brevity, we show just one
scenario; two more are included in the Additional Material.

Figure 12 shows the results for the selected simulation.
Together with the dynamics, we also show the measured
Frame Error Rate (FER) for all the technologies, for the leader
and the front vehicle frames. With respect to FERs, for IEEE
802.11p vehicles suffer packet losses when traveling close to
the static nodes that generate channel interference. When this
occurs, all nodes start increasing their gap and then, when
out of the interference zone, re-compact once again. For
C-V2X, handovers cause very brief losses which are quickly
recovered. Vehicles thus begin the fallback procedure and
then quickly return to the initial gap.

Regarding VLC, the simulator shows that the technology
is less reliable compared to the other two, but in the first part
of the simulation this does not trigger failures. It is interesting
to notice, however, the correlation between VLC’s FER and
the dynamics of vehicle V7 starting from simulation time

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(a) leader FER

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(b) front FER

-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) acceleration

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

(d) distance

Figure 12. Vehicle dynamics induced by SafeSwitch and frame error rates
for the scenario with realistic failures, following conventions of Table 1.

150 s. In particular, the distance of V7 from V6 increases due to
losses in IEEE 802.11p and LTE and this causes an increase in
the FER for the VLC interface as it is very sensitive to distance.
When an additional failure occurs, the gap is increased
even further causing additional losses. Above a certain inter-
vehicle distance (roughly 20 m) no VLC communication is
possible and the vehicle is forced to increase the gap to
the maximum under CACC with the next burst of IEEE
802.11p losses. This indicates that SafeSwitch, developed
to ensure the overall safety of the system, can itself induce
a degradation of communication performance due to the
increase in the safety distance, meaning that the design of
the protocol must carefully take into account the intrinsic
characteristics of the lower communication means. This is
again a unique insight that PLEXE provides: the interaction
between communication technologies, cooperative driving
protocols, and vehicle dynamics which would simply be
impossible using standard cooperative driving simulators.

14

6 CONCLUSION

Cooperative driving is a complex topic where many scientific
fields have to merge to achieve meaningful results, and where
performance must be evaluated mainly through credible in-
silico experiments, as building real systems to test is too
expensive and dangerous. This paper has presented our Safe
Autonomous Switchover Algorithm (SafeSwitch), an inter-
disciplinary protocol to appropriately handle fallback pro-
cedures that allow the smooth transition between different
algorithms for platooning longitudinal control and, if needed,
the return to a non-cooperative ACC or even full manual
control. We have shown that to study such procedures it
is necessary to exploit sophisticated simulation tools that
allow the study of vehicles dynamics together with multiple
communication interfaces to empower the safe handling of
conceivable failures of communications systems, including
active jamming that completely shuts off one technology for
the entire platoon.

Besides SafeSwitch and its analysis, one integral contribu-
tion of our work is PLEXE, the simulation tool we developed
having in mind not only our present study, but to enable
future work in the area of cooperative driving. PLEXE is
Open Source, freely downloadable, and actively maintained
to help the study and development of innovative cooperative
driving applications based on many networking technologies,
from IEEE 802.11p, to C-V2X, to VLC, and many others.

ACKNOWLEDGMENTS

Michele Segata would like to thank Giovanni Nardini for the
long discussion and troubleshooting sessions on SimuLTE
and the time he spent fixing the issues inside the codebase.

REFERENCES
[1] M. Segata et al., “Towards Communication Strategies for Platoon-

ing: Simulative and Experimental Evaluation,” TVT, vol. 64, no. 12,
pp. 5411–5423, Dec. 2015.

[2] F. Dressler, F. Klingler, M. Segata, and R. Lo Cigno, “Cooperative
Driving and the Tactile Internet,” Proceedings of the IEEE, vol. 107,
no. 2, pp. 436–446, Feb. 2019.

[3] P. Alvarez Lopez et al., “Microscopic Traffic Simulation using
SUMO,” in IEEE ITSC 2018, Maui, HI: IEEE, Nov. 2018, pp. 2575–
2582.

[4] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States
in Empirical Observations and Microscopic Simulations,” PRE,
vol. 62, no. 2, pp. 1805–1824, Aug. 2000.

[5] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a
microscopic model of traffic flow,” APS Physical Review E, vol. 55,
no. 5, pp. 5597–5602, May 1997.

[6] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, and R.
Lo Cigno, “PLEXE: A Platooning Extension for Veins,” in IEEE
VNC 2014, Paderborn, Germany: IEEE, Dec. 2014, pp. 53–60.

[7] C. D. Ozkaptan, E. Ekici, O. Altintas, and C.-H. Wang, “OFDM
Pilot-Based Radar for Joint Vehicular Communication and Radar
Systems,” in IEEE VNC 2018, Taipei, Taiwan: IEEE, Dec. 2018.

[8] R. Rajamani, H.-S. Tan, B. K. Law, and W.-B. Zhang, “Demon-
stration of Integrated Longitudinal and Lateral Control for the
Operation of Automated Vehicles in Platoons,” TCST, vol. 8, no. 4,
pp. 695–708, Jul. 2000.

[9] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, and H.
Nijmeijer, “Design and Experimental Evaluation of Cooperative
Adaptive Cruise Control,” in IEEE ITSC 2011, Washington, D.C.:
IEEE, Oct. 2011, pp. 260–265.

[10] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and
R. Lo Cigno, “Platooning Maneuvers in Vehicular Networks: a
Distributed and Consensus-Based Approach,” T-IV, vol. 4, no. 1,
pp. 59–72, Mar. 2019.

[11] A. Ali, G. Garcia, and P. Martinet, “The Flatbed Platoon Towing
Model for Safe and Dense Platooning on Highways,” IEEE
Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp. 58–68,
Jan. 2015.

[12] S. Ishihara, R. V. Rabsatt, and M. Gerla, “Improving Reliability
of Platooning Control Messages Using Radio and Visible Light
Hybrid Communication,” in IEEE VNC 2015, Kyoto, Japan: IEEE,
Dec. 2015, pp. 96–103.

[13] M. Segata, R. Lo Cigno, H.-M. Tsai, and F. Dressler, “On Platooning
Control using IEEE 802.11p in Conjunction with Visible Light
Communications,” in IEEE/IFIP WONS 2016, Cortina d’Ampezzo,
Italy: IEEE, Jan. 2016, pp. 124–127.

[14] S. Ucar, S. Coleri Ergen, and O. Ozkasap, “IEEE 802.11p and Visible
Light Hybrid Communication based Secure Autonomous Platoon,”
TVT, vol. 67, no. 9, pp. 8667–8681, Sep. 2018.

[15] M. Schettler, A. Memedi, and F. Dressler, “Deeply Integrating
Visible Light and Radio Communication for Ultra-High Reliable
Platooning,” in IEEE/IFIP WONS 2019, Wengen, Switzerland: IEEE,
Jan. 2019, pp. 36–43.

[16] T. Hardes and C. Sommer, “Towards Heterogeneous Communi-
cation Strategies for Urban Platooning at Intersections,” in IEEE
VNC 2019, Los Angeles, CA: IEEE, Dec. 2019, pp. 322–329.

[17] M. Sybis, P. Kryszkiewicz, and P. Sroka, “On the Context-Aware,
Dynamic Spectrum Access for Robust Intraplatoon Communica-
tions,” Hindawi Mobile Information Systems, Jun. 2018.

[18] A. Bazzi, C. Campolo, A. Molinaro, A. O. Berthet, B. M. Masini,
and A. Zanella, “On Wireless Blind Spots in the C-V2X Sidelink,”
TVT, vol. 69, no. 8, pp. 9239–9243, Aug. 2020.

[19] M. Segata, P. Arvani, and R. Lo Cigno, “A Critical Assessment of
CV2X Resource Allocation Scheme for Platooning Applications,”
in IEEE/IFIP WONS 2021, Virtual Conference: IEEE, Mar. 2021.

[20] B. Coll-Perales, J. Gozalvez, and M. Gruteser, “Sub-6GHz Assisted
MAC for Millimeter Wave Vehicular Communications,” COMMAG,
vol. 57, no. 3, pp. 125–131, Mar. 2019.

[21] R. W. van der Heijden, T. Lukaseder, and F. Kargl, “Analyzing
Attacks on Cooperative Adaptive Cruise Control (CACC),” in IEEE
VNC 2017, Turin, Italy: IEEE, Nov. 2017, pp. 45–52.

[22] M. Segata, F. Dressler, and R. Lo Cigno, “Jerk Beaconing: A
Dynamic Approach to Platooning,” in IEEE VNC 2015, Kyoto,
Japan: IEEE, Dec. 2015, pp. 135–142.

[23] G. Giordano, M. Segata, F. Blanchini, and R. Lo Cigno, “The
joint network/control design of platooning algorithms can enforce
guaranteed safety constraints,” Elsevier Ad Hoc Networks, vol. 94,
Nov. 2019.

[24] J. Ploeg, E. Semsar-Kazerooni, G. Lijster, N. van de Wouw, and
H. Nijmeijer, “Graceful Degradation of Cooperative Adaptive
Cruise Control,” TITS, vol. 16, no. 1, pp. 488–497, Feb. 2015.

[25] C. Wu, Y. Lin, and A. Eskandarian, “Cooperative Adaptive
Cruise Control With Adaptive Kalman Filter Subject to Temporary
Communication Loss,” IEEE Access, vol. 7, pp. 93 558–93 568, Jul.
2019.

[26] Y. Tu, W. Wang, Y. Li, C. Xu, T. Xu, and X. Li, “Longitudinal
safety impacts of cooperative adaptive cruise control vehicle’s
degradation,” Journal of Safety Research, vol. 69, pp. 177–192, Jun.
2019.

[27] Y.-Y. Qin, Z.-Y. He, and B. Ran, “Rear-End Crash Risk of CACC-
Manual Driven Mixed Flow Considering the Degeneration of
CACC Systems,” IEEE Access, vol. 7, pp. 140 421–140 429, Sep.
2019.

[28] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,”
TMC, vol. 10, no. 1, pp. 3–15, Jan. 2011.

[29] B. Schünemann, “V2X Simulation Runtime Infrastructure VSim-
RTI: An Assessment Tool to Design Smart Traffic Management
Systems,” COMNET, vol. 55, no. 14, pp. 3189–3198, Oct. 2011.

[30] M. Rondinone et al., “iTETRIS: A Modular Simulation Platform
for the Large Scale Evaluation of Cooperative ITS Applications,”
Simulation Modelling Practice and Theory, vol. 34, pp. 99–125, May
2013.

[31] A. Varga and R. Hornig, “An Overview of the OMNeT++ Sim-
ulation Environment,” in ACM/ICST SIMUTools 2008, Marseille,
France: ACM, Mar. 2008.

[32] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation, K. Wehrle, M. Güneş, and
J. Gross, Eds., Springer, 2010, pp. 15–34.

15

[33] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe,
and M. Nakamura, “Cooperative Adaptive Cruise Control in Real
Traffic Situations,” TITS, vol. 15, no. 1, pp. 296–305, Feb. 2014.

[34] IEEE, “Wireless Access in Vehicular Environments,” IEEE, Std
802.11p-2010, Jul. 2010.

[35] M. Segata, B. Bloessl, S. Joerer, F. Dressler, and R. Lo Cigno,
“Supporting Platooning Maneuvers through IVC: An Initial Pro-
tocol Analysis for the Join Maneuver,” in IEEE/IFIP WONS 2014,
Obergurgl, Austria: IEEE, Apr. 2014, pp. 130–137.

[36] J. Mena-Oreja and J. Gozalvez, “PERMIT – A SUMO Simulator for
Platooning Maneuvers in Mixed Traffic Scenarios,” in IEEE ITSC
2018, Maui, HI: IEEE, Nov. 2018, pp. 3445–3450.

[37] J. Heinovski and F. Dressler, “Platoon Formation: Optimized Car
to Platoon Assignment Strategies and Protocols,” in IEEE VNC
2018, Taipei, Taiwan: IEEE, Dec. 2018.

[38] T. Hardes and C. Sommer, “Dynamic Platoon Formation at
Urban Intersections,” in IEEE LCN 2019, Poster Session, Osnabrück,
Germany: IEEE, Oct. 2019.

[39] N. Lyamin, B. Bellalta, and A. Vinel, “Age-of-Information-Aware
Decentralized Congestion Control in VANETs,” IEEE Networking
Letters, vol. 2, no. 1, pp. 33–37, Mar. 2020.

[40] M. Amoozadeh, B. Ching, C.-N. Chuah, D. Ghosal, and H. M.
Zhang, “VENTOS: Vehicular Network Open Simulator with
Hardware-in-the-Loop Support,” Procedia Computer Science, vol. 151,
pp. 61–68, Jan. 2019.

[41] M. Fellendorf and P. Vortisch, “Microscopic Traffic Flow Simulator
VISSIM,” in Fundamentals of Traffic Simulation, J. Barceló, Ed.,
Springer, 2010, pp. 63–93.

[42] A. Choudhury et al., “An integrated V2X simulator with applica-
tions in vehicle platooning,” in IEEE ITSC 2016, Rio de Janeiro,
Brazil, Nov. 2016.

[43] H. Ramezani, S. E. Shladover, X.-Y. Lu, and O. D. Altan, “Micro-
Simulation of Truck Platooning with Cooperative Adaptive Cruise
Control: Model Development and a Case Study,” Transportation
Research Record, vol. 2672, no. 19, Dec. 2018.

[44] C. Ayimba, M. Segata, P. Casari, and V. Mancuso, “Closer than
Close: MEC-Assisted Platooning with Intelligent Controller Migra-
tion,” in ACM MSWiM 2021, Alicante, Spain, Nov. 2021.

[45] R. Kianfar, P. Falcone, and J. Fredriksson, “A Receding Horizon
Approach to String Stable Cooperative Adaptive Cruise Control,”
in 14th IEEE International Conference on Intelligent Transportation
Systems (ITSC 2011), Washington, D.C.: IEEE, Oct. 2011, pp. 734–
739.

[46] T. Robinson, E. Chan, and E. Coelingh, “Operating Platoons On
Public Motorways: An Introduction To The SARTRE Platooning
Programme,” in 17th World Congress on Intelligent Transport Systems
(ITS 2010), Busan, South Korea, Oct. 2010.

[47] R. Rajamani, Vehicle Dynamics and Control, 2nd ed. Springer, 2012.
[48] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and

R. Lo Cigno, “A Consensus-based Approach for Platooning with
Inter-Vehicular Communications and its Validation in Realistic
Scenarios,” TVT, vol. 66, no. 3, pp. 1985–1999, Mar. 2017.

[49] A. Memedi, C. Tebruegge, J. Jahneke, and F. Dressler, “Impact
of Vehicle Type and Headlight Characteristics on Vehicular VLC
Performance,” in IEEE VNC 2018, Taipei, Taiwan: IEEE, Dec. 2018.

[50] A. Virdis, G. Stea, and G. Nardini, “SimuLTE - A Modular System-
level Simulator for LTE/LTE-A Networks based on OMNeT++,”
in International SIMULTECH 2014, Vienna, Austria, Aug. 2014.

[51] “GSM; UMTS; LTE; 5G; Release description; Release 14,” 3GPP,
Sophia Antipolis, France, TS 21.914 v14.0.0, Jun. 2018.

[52] B. McCarthy and A. O’Driscoll, “OpenCV2X Mode 4: A Simulation
Extension for Cellular Vehicular Communication Networks,” in
IEEE CAMAD 2019, Limassol, Cyprus, Sep. 2019.

[53] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5G
– An OMNeT++ Library for End-to-End Performance Evaluation of
5G Networks,” IEEE Access, vol. 8, pp. 181 176–181 191, Jan. 2020.

Michele Segata is assistant professor at the Fac-
ulty of Computer Science of the Free University
of Bolzano. His research focuses on cooperative
driving systems.

Renato Lo Cigno is full professor of Computer
Networks at the Information Engineering Depart-
ment of the University of Brescia, Italy. His re-
search interests cover many areas in networking,
including vehicular networks and cooperative
driving.

Tobias Hardes is a PhD candidate at TU Dres-
den, Germany. His research focus is on wire-
lessly connected mobile systems, especially on
platoons in urban areas and UAV networks.

Julian Heinovski is a PhD candidate at the
School of Electrical Engineering and Computer
Science, TU Berlin, Germany. His research in-
terest is in cooperative driving systems, mainly
focusing on platooning.

Max Schettler is a PhD candidate at the School
of Electrical Engineering and Computer Science,
TU Berlin, Germany. His research interest is
in heterogeneous wireless communication and
edge computing.

Bastian Bloessl is a postdoctoral researcher
at the Secure Mobile Networking Lab, TU
Darmstadt, Germany. His research focuses on
software-defined wireless communication sys-
tems.

Christoph Sommer is a full professor and holds
a chair at TU Dresden, Germany, heading the Net-
worked Systems Modeling group. His research
is focused on protocol and system designs of
wirelessly connected mobile systems exhibiting
high topology dynamics.

Falko Dressler is full professor and Chair for
Telecommunication Networks at the School of
Electrical Engineering and Computer Science,
TU Berlin, Germany. His research objectives in-
clude adaptive wireless networking and wireless-
based sensing with applications in ad hoc and
sensor networks, the internet of things, and cyber-
physical systems.

1

Multi-Technology Cooperative Driving:
An Analysis Based on PLEXE

Michele Segata, Member, IEEE , Renato Lo Cigno, Senior Member, IEEE , Tobias Hardes, Student Member,
IEEE , Julian Heinovski, Student Member, IEEE , Max Schettler, Student Member, IEEE ,

Bastian Bloessl, Member, IEEE , Christoph Sommer, Member, IEEE , and Falko Dressler, Fellow, IEEE

✦

We report in this Additional Material some background
and results that may be useful to fully appreciate and exploit
the contribution we provide in the main paper. Section 1
reports a short primer on platooning and longitudinal
vehicles’ control. The material is all available in the original
publications, but we think that having it all available at
hand with a uniform notation makes the paper easier to
read and appreciate. Section 2 presents the results and plots
that are not included in the main paper because they are
somewhat repetitive, but can be useful to build further
contributions beyond our work. Finally, Section 3 adds some
details on PLEXE and show some use cases that highlight the
potentialities of the tool.

1 PLATOONING CONTROL

The goal of this short Section is simply to provide the reader
with all the information needed to easily follow the paper
without the need to browse in the literature and with a
uniform notation. All the equations we provide here are
reported from the cited original works, and correspond to
the implementation in PLEXE. We assume the reader has
some familiarity with control theory and distributed systems
as this is not meant to be a primer or a tutorial on cooperative
driving and platooning. Symbols are described in the text
as soon as they are introduced, but we summarize them
in Table 1 for reader’s convenience. In the following xi, vi
and ai indicate the position (relative to the vehicle in front),
the speed, and the acceleration of the vehicle in position i
in the platoon. A dot on a symbol, as in ȧ, indicate a time
derivative.

• M. Segata is with the Faculty of Computer Science, Free University of
Bolzano, Italy, E-mail: michele.segata@unibz.it.

• R. Lo Cigno is with DII, University of Brescia, Italy, E-mail: re-
nato.locigno@unibs.it.

• T. Hardes is with TU Dresden, Faculty of Computer Science, Germany and
the Software Innovation Campus Paderborn (SICP), Paderborn University,
Germany, E-mail: tobias.hardes@upb.de.

• J. Heinovski, M. Schettler, and F. Dressler are with the School for
Electrical Engineering and Computer Science, TU Berlin, Germany, E-
Mail: {heinovksi, schettler, dressler}@ccs-labs.org.

• C. Sommer is with TU Dresden, Faculty of Computer Science, Germany,
E-mail: sommer@cms-labs.org.

• B. Bloessl is with the Secure Mobile Networking Lab, TU Darmstadt,
Germany, E-mail: mail@bastibl.net.

Table 1
List of symbols.

Symbol Meaning

□̇ first derivative of □
□i value of a variable □ for the i-th vehicle in a platoon
u control input (desired acceleration)
a acceleration
v speed
x position
l length of the vehicle
τ first-order lag time constant
∆t simulation time step
H time headway for inter-vehicle gap (ACC and Ploeg)
λ weight factor between spacing and speed errors (ACC)
kp distance error gain (proportional gain, Ploeg)
kd speed error gain (derivative gain, Ploeg)
dd fixed, desired gap (PATH)
C1 leader and preceding vehicle acceleration weight (PATH)
ξ controller damping ratio (PATH)
ωn controller bandwidth (PATH)

The first requirement to implement an automatic control
on a vehicle is knowing (and modeling) it’s dynamic behav-
ior, or, in other words, understand how the vehicle responds
to an input or command normally given in terms of desired
acceleration.

The simplest possible model available in PLEXE is a first
order lag characterized by the following differential equation
for the acceleration a and the control input u (which is the
command computed by the control law or, equivalently, a
desired acceleration):

ȧ = −1

τ
a+

1

τ
u. (1)

In Equation (1) τ indicates the time constant of the lag: the
higher the value, the slower the response of the engine and
the braking system. A typical value found in the literature is
500 ms [1]. Within the simulator, Equation (1) is implemented
using the following discrete update rule

a[k + 1] = α · u[k] + (1− α) · a[k], α =
∆t

τ +∆t
, (2)

where k is the simulation step and ∆t the sampling time
of the simulator. PLEXE includes more sophisticated models
of vehicles’ dynamics that include the role or air-drag, the
engine power, the gears and so forth. As these models are

2

brand-and-model specific, they are not suited to derive
general results, but they can be used to verify general
hypotheses onto specific vehicles, and can also be used as
templates to include other models and possibly to state
minimum requirements that vehicles have to meet to be part
of a cooperative driving system. The interested reader can
find a complete description of the model in [2, Section 2.3].

In our contribution we assume that when communica-
tions are not available the vehicle falls back to a standard,
radar-based ACC. ACC implementations may differ slightly
one another, but they can all be modeled by the control law
in Equation (3) reported in [3, Chapter 6], which assumes a
constant headway-time between vehicles, as mandated with
human drivers, and thus a distance between platoon vehicles
that increases with speed.

ui = − 1

H
(ε̇i + λδi) (3)

δi = xi − xi−1 + li−1 +Hvi (4)
ε̇i = vi − vi−1 (5)

In Equation (3), H is the time headway and li is the length
of vehicle i.

We note incidentally that this control law assumes that the
radar can efficiently estimate the speed difference of the own
vehicle from the vehicle in front, which is not necessarily
true, thus this model can be somewhat optimistic in the
evaluation of ACC performance. The parameter λ controls
how aggressive the ACC is with respect to the distance
from the vehicle in front. We used a constant value often
reported in the literature in the experiments, which, as we
have shown, can easily lead to accidents in case of abrupt
transition from PATH Cooperative Adaptive Cruise Control
(CACC) (see Equation (7)) to ACC. A larger value of λ, or
better, a dynamic λ can be used to reduce the probability of
rear-end collisions, but this is clearly beyond the scope of
this paper. Also exploring what happens when the control
of the vehicle is given back to the human driver instead of
an ACC is interesting, but to do this analysis the Intelligent
Driver Model (IDM) [4] and Krauss [5] car-following models
already available in PLEXE are not enough, because they
do not account for the “surprise” of a driver that all of a
sudden is requested to be in control of a vehicle they were
not driving till the moment before.

Integral parts of our study are the Ploeg’s and PATH
CACC [1], [6] that we use when all three communication
interfaces are available (PATH) or when only one or two are
available (Ploeg).

Ploeg’s CACC has been designed to mimic an advanced
ACC system, thus it follows the constant headway-time
model:

(6)u̇i =
1

H
(−ui + kp (xi−1 − xi − li−1 −Hvi)

+ kd (vi−1 − vi −Hai) + ui−1)

Ploeg’s CACC allows a smaller headway-time compared to
standard ACC because it can exploit the knowledge of the
front vehicle input ui−1, thus discounting the actuation lag
of the vehicle in front. Given its design goals Ploeg’s CACC
is the ideal transition controller toward an ACC, as it can

Table 2
Network parameters.

Parameter Value

Packet payload size 200 Byte
Beacon frequency 10 Hz

80
2.

11
p

Transmission power 20 dBm
Bit rate 6 Mbit/s
Noise floor −95 dBm
Path-loss model Free-space, α = 2
Frequency 5.89 GHz

V
LC

Transmission power 10 dBm
Bit rate 1 Mbit/s
Headlight max tx range 100 m (LOS)
Taillight max tx range 30 m (LOS)
Headlight max tx angle 45°
Taillight max tx angle 60°

C
-V

2X

Transmission power (UE) 26 dBm
Transmission power (eNB) 40 dBm
Frequency 2.1 GHz
Mode C-V2X Mode 3 (D2D, eNB assisted)
Channel configuration Urban macrocell (SimuLTE provided)

smoothly increase the vehicles’ headway-time to the one
which is safe for the ACC system.

PATH’s CACC goal is instead the maximization of per-
formance in terms of road usage and fuel consumption: both
goals require the minimum possible vehicle inter-distance
independently from the speed. To achieve this goal it uses
information also from the leader of the platoon and not
only from the vehicle in front as described by the following
equations:

(7)ui = α1ui−1 + α2u0 + α3(vi − vi−1)

+ α4(vi − v0) + α5(xi − xi−1 + li−1 + dd)

where

α1 = 1− C1; α2 = C1; α5 = −ω2
n (8)

α3 = −
(
2ξ − C1

(
ξ +

√
ξ2 − 1

))
ωn (9)

α4 = −C1

(
ξ +

√
ξ2 − 1

)
ωn. (10)

Differently from Equations (3) and (6), we have no head-
way time H but a fixed desired distance dd regardless of
the cruising speed. C1, ξ, and ωn are control parameters
regulating the weight between leading and preceding vehicle
accelerations, the damping ratio, and controller bandwidth,
respectively.

PLEXE includes also other CACC models [7]–[9] that we
have not used in this study, and adding others is simple
given the modularity of the simulation framework.

2 ADDITIONAL RESULTS

This section shows additional results that are not included in
the main manuscript. In addition, in Table 2, we list all the
main network parameters used in the simulations. Figures 1
and 2 show the acceleration and distance behavior for the
naïve fallback mechanisms for scenarios 2 and 3 respectively.
It is clear in both cases that the crashes we observe are not
a remote chance, but they are intrinsic to an abrupt change
from a cooperative driving situation, where vehicles exploit
the knowledge of each other dynamics and intentions, to

3

(a) acceleration, näive fallback-8

-6

-4

-2

0

2
ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, näive fallback

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 1. Acceleration and inter-vehicle until the crash for the näive
fallback in scenario 2.

(a) acceleration, näive fallback-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, näive fallback

0 50 100 150 200

0
2
4
6
8

10
12
14

d
is
ta
n
ce

[m
]

time [s]

Figure 2. Acceleration and inter-vehicle until the crash for the näive
fallback in scenario 3.

one of autonomous driving, where vehicles can rely only
on the local sensors. The crashes occur immediately after
the communication failure with the emergency braking; in
practice none of the vehicles attempt a reaction to V0 abrupt
braking, and collisions occur. The experiments stop as soon
as one vehicle collides.

Figure 3 presents the performance of the proposed Safe
Autonomous Switchover Algorithm (SafeSwitch) for scenario
5, i.e., when a technology fails for all the vehicles in the
platoon at the same time and with failure of two technologies.
This can happen in rare cases, for instance if there is a
jamming attack on IEEE 802.11p, or because an LTE base
station fails, thus stopping to serve the entire platoon.
Clearly the occurrence of both cases is extreme. SafeSwitch
works as intended, safely distancing vehicles without abrupt
accelerations. PLEXE highlights the same amplification of
the deceleration observed in scenario 1 (main paper). The
amplification is however more severe and this is due to the
fact that a different controller (i.e., Ploeg) is used, so the
behavior is slightly different.

The situation of scenario 6, multiple failures and recov-
eries at the same vehicle with an emergency brake after the
second failure, leads to the results presented in Figure 4. The
deceleration due to the emergency braking is abrupt, but

(a) acceleration, scenario 5
-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 5

0 20 40 60 80 100 120

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

Figure 3. Acceleration and inter-vehicle distances for scenarios 5 (multiple
failures).

(a) acceleration, scenario 6-8

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(b) distance, scenario 6

0 50 100 150 200

0

5

10

15

20

d
is
ta
n
ce

[m
]

time [s]

Figure 4. Comparison of acceleration and inter-vehicle distances for
scenarios 6 (multiple failures).

this is unavoidable, and during the braking maneuver the
distance of V3, the one with failing communications, reduces
drastically, but remains safe, and then quickly returns to
the distance dictated by Ploeg’s controller in state F1, after
the communication recovery the platoon returns to normal
cruising with PATH’s controller.

Finally, Figures 5 and 6 present two additional runs
relative to the scenario with realistic communication failures.
It is evident that the stochastic pattern of losses affects
the quantitative behavior of the platoon, as the dynamic
patterns observed in the lower plots of these figures are
different and are also different from those reported in the
main paper. However, from a qualitative point of view the
behavior is consistent, with IEEE 802.11p and LTE losses
driving the performance, with Visible Light Communication
(VLC) ones often induced by the increased distance between
vehicles, a situation that can be recovered only if the other
two technologies work well for a long enough period of
time, as can be observed in Figure 6. We also observe that
handovers sometimes result in burst of losses and sometimes
not, hinting that handover procedures can still be improved.
This is very important, in light of 5G advent, where with
a high density of gNodeB and very frequent handovers, it
is important that these latter are loss-free for cooperative

4

0

1
0

1
0

1
F
E
R

11
p

C
-V

2X
V
L
C

(a) leader FER

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(b) front FER

-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) acceleration

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

(d) distance

Figure 5. Vehicle dynamics induced by the fallback FSM and frame error
rates for the scenario with realistic failures, second replica.

driving applications.

3 SAMPLE USE CASES AND SUBPROJECTS

This section describes the structure of PLEXE’s code base
for future users, together with the default scenarios it
provides. The following description assumes the user to
be familiar with the OMNeT++ ecosystem. PLEXE is divided
in three main sub-folders: main source code, examples, and
subprojects. The implementation of all the functionalities is
found under the src/plexe folder, starting from the root,
and this is where the core of PLEXE resides. The examples
folder includes all the sample simulations users can play with
to get acquainted with the frameworks. The subprojects
folder, instead, includes the source code and examples that
involve external libraries such as VLC or Cellular V2X
(C-V2X) modules. By default, PLEXE depends only on SUMO
and Veins, and the other components are optional.

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(a) leader FER

0

1
0

1
0

1

F
E
R

11
p

C
-V

2X
V
L
C

(b) front FER

-3

-2

-1

0

1

2

ac
ce
le
ra
ti
on

[m
/s

2
]

(c) acceleration

0 50 100 150 200

0
5

10
15
20
25
30
35

d
is
ta
n
ce

[m
]

time [s]

(d) distance

Figure 6. Vehicle dynamics induced by the fallback FSM and frame error
rates for the scenario with realistic failures third replica.

3.1 Flexibility through dynamic linking

Optional components are managed through a configure
script, which is present in each subproject. The role of such
script is to configure and check the dependencies of the
subproject (that is, other frameworks such as Veins VLC
or SimuLTE), generate the Makefile needed for building,
and the files required to run simulations. To better explain
this, we describe the veins_vlc subproject, which includes
example simulations like the ones provided by basic PLEXE,
but its vehicles are using VLC to communicate. We are going
to consider the file system structure in listing 1, which shows
a partial view of the folder structure and the most relevant
files. Listing 2 shows a portion of the configure script.
Lines 2 to 18 define the dependencies which, in this specific
case, are PLEXE, Veins, and Veins VLC. For each dependency
the user needs to provide:

• name: a name of the dependency;

5

• library: the name of the shared library which the
subproject will be linked against;

• default_path: the default root path where the library
is located. The user can override this via command line
arguments when running the script;

• versions: a list of accepted versions of the library;
• source_folder: the location (starting from the root

path of the library) where the source files are located;
• lib_folder: the location (starting from the root path of

the library) where the compiled shared library is located;
• images_folder: the located (starting from the root

path of the library) where additional images provided
by the library are located. It is possible to make use of
such images (e.g., a car or a pedestrian) when running
the OMNeT++ simulation in graphical mode;

• version_script: name of a script that prints (or a file
that contains) the version of the library.

Lines 20 to 24, instead, define the properties of the plexe_-
vlc subproject itself, i.e., the name of the shared library
(being built), and the parameters required to run simulations
(the shared library itself and where OMNeT++ will find the
.ned files).

The script automatically checks for the presence of all the
components and that the versions correspond to the required
ones, generating an error for the user if such task fails. Upon
a successful execution, the script generates a Makefile
for building the subproject and the script required to run
the simulation, which automatically indicates to OMNeT++
where to find all the dependencies. The user can now
develop custom OMNeT++ modules (in src/plexe_vlc)
and simulations (in examples/platooning_vlc or any
other folder). For the former step, it is important to remember
that if the user adds new C++ source files, the configure
scripts needs to be run again to update the Makefile. For
example, PlatoonVlcCar.ned defines an OMNeT++ com-
munication node representing a vehicle which, differently to
standard PLEXE, uses a VLC interface. As the configure script
automatically resolves the dependencies, the user can now
import the modules provided by Veins VLC and sobstitute
the 802.11p interface with VLC. The user has clearly the
possibility to add a new interface to study heterogeneous
communication systems.

To run a simulation, after defining all the classic OM-
NeT++ configuration files such as omnetpp.ini in a folder
of choice, the user can simply exploit the script generated by
configure. For example, running ../../bin/plexe_-
vlc_run from the examples/platooning_vlc folder
will start the OMNeT++ GUI, permitting the user to choose
which simulation to run. The user can also specify to run
through command line arguments, as in standard PLEXE.

This brief description shows how flexible PLEXE is even
considering its complexity, and that integrating a new com-
munication technology or any other OMNeT++ framework
simply requires to add a dependency to a project.

3.2 Base scenarios

Base PLEXE scenarios are located in the examples folder and
the main one resides inside the platooning subfolder. This
example simulates two scenarios using the available ACC
and CACC algorithms. The scenarios include a sinusoidal

1 /Users/user/src/
2 |-- plexe/
3 | |-- print-plexe-version
4 | |-- src/
5 | | |-- libplexe.dylib
6 | | |-- plexe/
7 | |-- subprojects/
8 | |-- plexe_vlc/
9 | |-- configure

10 | |-- bin/
11 | |-- plexe_vlc_run
12 | |-- examples/platooning_vlc/
13 | | |-- omnetpp.ini
14 | |-- src/plexe_vlc/
15 | | PlatoonVlcCar.ned
16 | | VlcRepropagationProtocol.cc
17 | | VlcRepropagationProtocol.h
18 | | VlcRepropagationProtocol.ned
19 |-- veins/
20 | |-- print-veins-version
21 | |-- src/
22 | |-- libveins.dylib
23 | |-- veins/
24 |-- veins-vlc/
25 |-- print-veins_vlc-version
26 |-- src/
27 |-- libveins-vlc.dylib
28 |-- veins-vlc/

Listing 1. File system structure (only most relevant folders and files
shown).

speed profile, a classical test of the stability of control systems,
and an emergency braking scenario, which is of obvious
interest for safety reasons. Obtaining simple performance
metrics of control systems starting from the examples is just
a matter of changing the parameters. For example, by re-
configuring the emergency braking scenario and introducing
an artificial frame error rate ranging from 0 % to 80 %, we
obtain the results in Figure 7. In the scenario we have
a platoon of 8 vehicles with the leader performing an
emergency braking maneuver with a deceleration of 8 m/s2.
We repeat each simulation point 10 times and we compute
the minimum inter-vehicle distance between each pair of
vehicles. We then plot the average over the 10 repetitions
with the relative 95 % confidence intervals. In the graph, we
only show the results for the PATH [6] and the Ploeg [1]
CACCs.

The main differences between the two is that the PATH
CACC employs a leader- and predecessor-following control
topology with a fixed inter-vehicle spacing policy (which in
our simulation is set to 5 m), while Ploeg’s CACC employs a
predecessor-following control topology with a time-headway
spacing policy of the form

d = d0 +Hv, (11)

where H = 0.5 s is the time-headway and v is the speed in
m/s. The d0 = 2m term is defined as the stand-still distance,
which avoids the vehicles colliding with each other when the
speed goes to zero.

What the figure shows is, first of all, the robustness of
CACCs to packet losses. The performance is unaffected for
losses up to 20 %, and for vehicles to become dangerously
close we need to have packet loss rates higher than 50 %.

This is a very basic scenario, but it is of extreme interest
in the cooperative driving community, and obtaining such

6

1 [...]
2 plexe = Library(name="Plexe", library="plexe", default_path="../../",
3 versions=["3.0"], source_folder="src/plexe",
4 lib_folder="src", images_folder="images",
5 version_script="print-plexe-version")
6 veins = Library(name="Veins", library="veins", default_path="../../../veins",
7 versions=["5.1"], source_folder="src/veins", lib_folder="src",
8 images_folder="images", version_script="print-veins-version")
9 veins_vlc = Library(name="Veins VLC", library="veins-vlc",

10 default_path="../../../veins_vlc", versions=["1.0"],
11 source_folder="src/veins-vlc", lib_folder="src",
12 images_folder="images",
13 version_script="print-veins_vlc-version")
14
15 libraries = LibraryChecker()
16 libraries.add_lib(plexe)
17 libraries.add_lib(veins)
18 libraries.add_lib(veins_vlc)
19
20 makemake_flags = ["-f", "--deep", "--no-deep-includes", "--make-so", "-I", ".", "-o", "plexe_vlc",
21 "-O", "out", "-p", "PLEXE_VLC"]
22 run_libs = [join("src", "plexe_vlc")]
23 run_neds = [join("src", "plexe_vlc")]
24 run_imgs = []
25
26 libraries.check_libraries(makemake_flags, run_libs, run_neds, run_imgs)
27 [...]

Listing 2. Partial content of the configure file of the veins_vlc subproject.

0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

frame error rate

av
g
m
in

d
is
ta
n
ce

(m
) PATH Ploeg

Figure 7. Average minimum inter-vehicle distance with 95 % confidence
intervals in an emergency braking scenario as function of the frame error
rate for the PATH and the Ploeg CACCs.

results is a matter of a few minutes.
Another sample scenario of interest is the aforementioned

join at back maneuver. In this example, a lone vehicle joins
an existing platoon of 4 cars by first requesting permission
to join, then being instructed to approach the platoon, and
finally joining the platoon.

Other examples include a scenario where a human
vehicle is inserted into the simulation, to show how to
simulate mixed scenarios where human-driven vehicles can
interfere from a mobility and a communication perspective.
In addition, we find a simple scenarios showing the behavior
of the realistic engine model by simulating a drag race
between three different types of vehicle.

3.3 Heterogeneous scenarios
PLEXE includes sample scenarios for the subprojects,

which deals with VLC and C-V2X. In the VLC subproject, we
have the same main scenario (sinusoidal plus emergency
braking) but using VLC as the underlying communica-
tion technology as previously described. In addition, there

is a modified communication protocol that performs re-
propagation of the beacon messages as VLC works only
in direct line-of-sight.

In the C-V2X subproject, instead, we have two platoons
running on a ring-like freeway that are located far apart.
The two platoons use the LTE uplink/downlink standard to
communicate with a centralized Traffic Authority (TA) server.
One platoon queries the TA for other platoons and, upon
receiving the reply, requests the TA guidance to approach
such platoon with the aim of merging. Once the approaching
platoon is close enough to the other, the TA demands the for-
mer to contact the latter and performs the merge maneuver
autonomously using direct Vehicle to Vehicle communication
(V2V) communication via IEEE 802.11p. In addition, V2V
beacons with control information are sent redundantly using
C-V2X Mode 3. This example is particularly important as it
shows how vehicles can be coordinated on different levels
(locally with V2V communication and remotely through the
infrastructure) and how easily PLEXE enables cooperative
driving studies with heterogeneous networking technologies.

The final subproject (named plexe_hetnet) includes a
ring road scenario with a platoon of vehicles using multiple
communication technologies simultaneously to communicate
in a V2V fashion. This is the scenario on top of which
we developed the evaluation of SafeSwitch, and it can be
extremely useful to users to understand how to integrate
multiple communication technologies into their cooperative
driving scenarios or even integrate additional simulation
frameworks.

One fundamental aspect which always represents a
parameter of choice when selecting a simulation framework
is scalability. The scalability of PLEXE heavily depends on
the communication models required for the analysis. Some
of them can be very demanding in terms of computation. For
example, Veins VLC employs geometrical models to compute
the effect of vehicle shadowing, which clearly cannot be

7

neglected. In the past, when considering IEEE 802.11p only,
we could easily simulate hundreds of vehicles [10], but such
a large number of vehicles would be difficult to handle
when using very detailed communication models. To give
the reader an idea, we run a set of simulations with a single
platoon composed by 8, 16, and 32 cars, using different
communication technologies, and measuring the execution
time. In the simulation, each vehicle sends 10 broadcast
frames per second. Figure 8 plots the real time factor of
the simulation, which is defined as follows. Let ts and tw
the time elapsed in the simulation and in the real world,
respectively. The real time factor is defined as f = tw/ts .
For example, if f = 0.1, it means that simulating 1 s requires
100 ms in the real world. On the contrary, if f = 10 the user
needs to wait 10 s for each second within the simulation.
Simplistically speaking, the lower the value of f , the better.
Clearly, the real time factor heavily depends on the hardware.
The results in Figure 8 are obtained on a 2018 MacBook Pro
with an Intel i9 processor. Running the simulations on a
different hardware would quantitatively change the results,
but qualitatively they should be, in general, the same.

First of all, the plot highlights a well-known fact about
network simulations, i.e., that the real time factor increases
more than linearly in the number of network nodes. This is
true when all nodes communicate with each other because,
disregarding optimizations, the communication model needs
to compute the probability of reception for each node
in the simulation, so the complexity intuitively increases
quadratically. Overall, in the worst case, i.e., with 32 cars and
3 simultaneous communication technologies, the real time
factor is roughly 12, meaning that it requires 120 s in the real
world to simulate a scenario of 10 s in PLEXE.

The graph finally highlights the impact of communication
models: the more the technologies, the higher the simulation
time. The IEEE 802.11p model provided by Veins is the
most efficient one. When using only this technology, even
a simulation with 32 vehicles runs faster than real time.
What it is interesting to observe is the huge impact of
the VLC model. For 8 and 16 vehicles, the VLC model is
faster than the simulations using IEEE 802.11p and C-V2X,
but then its real time factor drastically increases for the
simulation with 32 cars. As mentioned before, the VLC
channel layer requires geometrical computations to calculate
the effects of shadowing. For a small number of vehicles, the
computational effort is limited, but this quickly grows as we
increase the nodes in the simulation, dominating over all the
other algorithmic components.

These results show that PLEXE can potentially scale but
there is clearly a limitation induced by the models that
researchers need to consider. It is thus necessary to select
the communication models and the scale of the simulation
depending on the required granularity. If a study focuses
on the physical layer and requires very low level channel
details (e.g., ray tracing), it will certainly be unfeasible to run
a simulation with hundreds of cars. On the other hand, if the
user is interested in traffic-related metrics for which a large
number of vehicles is required (e.g., throughput), considering
multiple communication technologies might not be necessary.
It is thus needed to find the right balance depending on the
requirements but, as we have clearly shown, the flexibility
of PLEXE enables its users to easily tune and configure the

802.11p only
VLC only
802.11p and C-V2X
802.11p, C-V2X, and VLC

5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

re
al

ti
m
e
fa
ct
o
r
[#

]

number of vehicles [#]

(a) full y axis

802.11p only
VLC only
802.11p and C-V2X
802.11p, C-V2X, and VLC

5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

re
al

ti
m
e
fa
ct
or

[#
]

number of vehicles [#]

(b) zoomed y axis

Figure 8. Simulation real time factor as function of the number of vehicles,
for different communication models. The gray line highlights a real time
factor of 1.

simulator for their purposes.

REFERENCES
[1] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, and H.

Nijmeijer, “Design and Experimental Evaluation of Cooperative
Adaptive Cruise Control,” in IEEE ITSC 2011, Washington, D.C.:
IEEE, Oct. 2011, pp. 260–265.

[2] M. Segata, “Safe and Efficient Communication Protocols for Pla-
tooning Control,” PhD Thesis, University of Innsbruck, Innsbruck,
Austria, Feb. 2016.

[3] R. Rajamani, Vehicle Dynamics and Control, 2nd ed. Springer, 2012.
[4] M. Treiber, A. Hennecke, and D. Helbing, “Congested Traffic States

in Empirical Observations and Microscopic Simulations,” PRE,
vol. 62, no. 2, pp. 1805–1824, Aug. 2000.

[5] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a
microscopic model of traffic flow,” APS Physical Review E, vol. 55,
no. 5, pp. 5597–5602, May 1997.

[6] R. Rajamani, H.-S. Tan, B. K. Law, and W.-B. Zhang, “Demon-
stration of Integrated Longitudinal and Lateral Control for the
Operation of Automated Vehicles in Platoons,” TCST, vol. 8, no. 4,
pp. 695–708, Jul. 2000.

[7] A. Ali, G. Garcia, and P. Martinet, “The Flatbed Platoon Towing
Model for Safe and Dense Platooning on Highways,” IEEE
Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp. 58–68,
Jan. 2015.

[8] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and
R. Lo Cigno, “A Consensus-based Approach for Platooning with
Inter-Vehicular Communications and its Validation in Realistic
Scenarios,” TVT, vol. 66, no. 3, pp. 1985–1999, Mar. 2017.

[9] G. Giordano, M. Segata, F. Blanchini, and R. Lo Cigno, “The
joint network/control design of platooning algorithms can enforce
guaranteed safety constraints,” Elsevier Ad Hoc Networks, vol. 94,
Nov. 2019.

[10] M. Segata, B. Bloessl, S. Joerer, et al., “Towards Communication
Strategies for Platooning: Simulative and Experimental Evalua-
tion,” TVT, vol. 64, no. 12, pp. 5411–5423, Dec. 2015.

